
1997 Paper 9 Question 13

Types

Give the syntax of (types and terms of) the second-order polymorphic lambda
calculus λ2 whose five ways of constructing terms, M , are: identifiers, lambda
abstraction, application, type abstraction and type application. (The last two are
sometimes known as generalisation and specialisation.) Make it clear which, if any,
sub-phrases of terms represent types or type variables. [4 marks]

Give a term M conforming to the syntax of λ2 which is not well-typed according
to the usual inference rules for λ2. [2 marks]

Let λU be the untyped lambda calculus whose terms N have syntax:

N ::= x | λx.N1 | N1N2.

Define a function erase : λ2 → λU which removes all types from a λ2 term, but
which preserves the rest of it.

[Hint: erase(Λα.M) = erase(M).] [3 marks]

Now find (or briefly justify why this is impossible):

(a) two well-typed λ2 terms M1 and M2 without free type variables such that
erase(M1) = erase(M2) = λx.x and that M1 and M2 differ by more than type
variable renaming;

(b) a well-typed λ2 term M3 such that erase(M3) = λx.xx;

(c) a well-typed λ2 term M4 such that erase(M4) = (λx.xx)(λx.xx);

(d) a well-typed λ2 term M5 such that N5 = erase(M5) has no ML type;

(e) a λU term N6 which has an ML type, but such that there is no well-typed λ2
term M6 with erase(M6) = N6.

[11 marks]

1

