1997 Paper 9 Question 13

Types

Give the syntax of (types and terms of) the second-order polymorphic lambda calculus $\lambda 2$ whose five ways of constructing terms, M, are: identifiers, lambda abstraction, application, type abstraction and type application. (The last two are sometimes known as *generalisation* and *specialisation*.) Make it clear which, if any, sub-phrases of terms represent types or type variables. [4 marks]

Give a term M conforming to the syntax of $\lambda 2$ which is not well-typed according to the usual inference rules for $\lambda 2$. [2 marks]

Let λU be the untyped lambda calculus whose terms N have syntax:

$$N ::= x \mid \lambda x.N^1 \mid N^1 N^2.$$

Define a function *erase* : $\lambda 2 \rightarrow \lambda U$ which removes all types from a $\lambda 2$ term, but which preserves the rest of it.

[Hint:
$$erase(\Lambda \alpha.M) = erase(M)$$
.] [3 marks]

Now find (or briefly justify why this is impossible):

- (a) two well-typed λ^2 terms M_1 and M_2 without free type variables such that $erase(M_1) = erase(M_2) = \lambda x.x$ and that M_1 and M_2 differ by more than type variable renaming;
- (b) a well-typed $\lambda 2$ term M_3 such that $erase(M_3) = \lambda x.xx$;
- (c) a well-typed $\lambda 2$ term M_4 such that $erase(M_4) = (\lambda x.xx)(\lambda x.xx);$
- (d) a well-typed $\lambda 2$ term M_5 such that $N_5 = erase(M_5)$ has no ML type;
- (e) a λU term N_6 which has an ML type, but such that there is no well-typed $\lambda 2$ term M_6 with $erase(M_6) = N_6$.

[11 marks]