
1997 Paper 8 Question 7

Optimising Compilers

Summarise the idea of the 3-address instruction and briefly indicate its advantage
over stack-oriented instructions as intermediate code. Explain the notion of the
flowgraph containing such instructions, giving such a flowgraph for the C function:

int f(int x, int g())

{ return x==0 ? g(x) : x*f(x-1, g);

}

You should explain how arguments and results of functions in your example are
communicated; also make clear any difference in the representation of calls to f

and g. [8 marks]

Given a flowgraph in which each node contains a single 3-address instruction (not
grouped into basic blocks), design dataflow equations (and thence an algorithm)
for reaching definitions. [9 marks]

The reaching definitions RD(n) of a node n are the set of nodes m such that m
contains a 3-address instruction such as

m : x := a + b

which writes to (“defines”) one of its operands (here x), and such that there is a
path in the flowgraph from m to n by which the value given to x at m may still be
unchanged (by other assignments to x) when it reaches n. Hence in

1: y := 1;

2: if x<=1 goto 5;

3: y := x*y;

4: x := x-1; goto 2;

5: return

we would have RD(3) = {1, 3, 4} and RD(4) = {3, 4}; note that the definition (of
y) at 3 reaches via the loop back to 3 even though it would not be available because
of node 4.

Develop a program in which m ∈ RD(n) but which no run-time execution can
cause the value assigned at m to reach n. To what extent can we fix this problem?

[3 marks]

[Hint: work by analogy from live variable or available expression analysis; determine
the direction of the analysis and suitable gen and kill properties of nodes. You may
find it convenient to consider cases like “l contains a statement x := e” or “l contains
some other statement”.]

1


