1997 Paper 8 Question 14

Numerical Analysis II

Define the Chebyshev polynomial $T_k(x)$. Evaluate $T_4(\frac{1}{2})$ using the formula $T_{k+1}(x) = 2xT_k(x) - T_{k-1}(x)$. What is the leading coefficient of $T_k(x)$? [4 marks]

The best L_{∞} approximation to $f(x) \in C[-1, 1]$ by a polynomial $p_{n-1}(x)$ of degree n-1 has the property that

$$\max_{x \in [-1,1]} |e(x)|$$

is attained at n + 1 distinct points $-1 \leq \xi_0 < \xi_1 < \ldots < \xi_n \leq 1$ such that $e(\xi_j) = -e(\xi_{j-1})$ for $j = 1, 2, \ldots n$.

Let $f(x) = x^2$. Show, by means of a clearly labelled sketch graph, that the best polynomial approximation of degree 1 is a constant. [3 marks]

Now suppose $f(x) = x^3$ is the function to be approximated. Taking account of symmetry, sketch the graph of f(x) and its best L_{∞} approximation by a polynomial of degree 2. [5 marks]

By differentiating e(x), find the polynomial $p_2(x)$. [6 marks]

State a formula for the best approximation to $f(x) = x^n$ by a polynomial of degree n-1. [2 marks]