1997 Paper 8 Question 11

Information Theory and Coding

The input source to a noisy communication channel is a random variable X over the four symbols a, b, c, d. The output from this channel is a random variable Yover these same four symbols. The joint distribution of these two random variables is as follows:

	x = a	x = b	x = c	x = d
y = a	$\frac{1}{8}$	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{4}$
y = b	$\frac{1}{16}$	$\frac{1}{8}$	$\frac{1}{16}$	0
y = c	$\frac{1}{32}$	$\frac{1}{32}$	$\frac{1}{16}$	0
y = d	$\frac{1}{32}$	$\frac{1}{32}$	$\frac{1}{16}$	0

- (a) Write down the marginal distribution for X and compute the marginal entropy H(X) in bits. [3 marks]
- (b) Write down the marginal distribution for Y and compute the marginal entropy H(Y) in bits. [3 marks]
- (c) What is the joint entropy H(X, Y) of the two random variables in bits? [4 marks]
- (d) What is the conditional entropy H(Y|X) in bits? [4 marks]
- (e) What is the mutual information I(X;Y) between the two random variables in bits? [2 marks]
- (f) Provide a lower bound estimate of the channel capacity C for this channel in bits. [2 marks]
- (g) Draw a Venn diagram that describes the relationships among the quantities H(X), H(Y), H(X|Y), H(Y|X), H(X,Y), and I(X;Y). [2 marks]