1997 Paper 7 Question 12

Communicating Automata and Pi Calculus

Define the concepts of *strong simulation* and *strong bisimulation* between processes. [4 marks]

Here are three vending machines, selling tea for 20p and/or coffee for 40p:

$$T \stackrel{\text{def}}{=} 20p.tea.T$$

$$C \stackrel{\text{def}}{=} 20p.20p.coffee.C$$

$$CT \stackrel{\text{def}}{=} 20p.(tea.CT + 20p.coffee.CT)$$

"20p" is the user's action of inserting a coin; "tea", "coffee" are the user's actions of selecting a drink. (For simplicity, the delivery of a drink is not represented.)

One might hope that CT can be made to behave like C or T respectively by blocking off (i.e. by restricting by ν) the appropriate select button. But prove, by considering bisimulations or otherwise, that one of the following assertions is true, the other false:

$$(\boldsymbol{\nu} \ tea) \ CT \sim C$$
$$(\boldsymbol{\nu} \ coffee) \ CT \sim T \qquad [8 \ marks]$$

In the case which is false, is there a simulation in one direction? Give a precise reason for your answer. [3 marks]

Now redesign T, C and CT, in a way which still has reasonable behaviour for a machine selling tea and/or coffee, but so that *both* of the above assertions hold, and justify the claim. [5 marks]