1997 Paper 6 Question 9

Foundations of Functional Programming

The λ_I -calculus is a variant of the λ -calculus. The *terms* of the λ_I -calculus, known as λ_I -*terms*, are constructed recursively from a given set V of variables; the λ_I -terms take one of the following forms:

x	variable
$\lambda x.M$	abstraction, where M is a $\lambda_I\text{-term}$ and $x\in \mathrm{FV}(M)$
MN	application, where M and N are λ_I -terms.

The set of free variables FV(M), $\beta\eta$ -equality and $\beta\eta$ -reduction are defined in a similar fashion to the corresponding λ -calculus definitions.

- (a) Define an equality-preserving translation from λ_I -terms to combinators constructed using **I**, **B**, **C** and **S**. Indicate why these combinators are not enough to express the usual λ -calculus. [6 marks]
- (b) Demonstrate the translation using the λ_I -term $\lambda x \cdot \lambda y \cdot (xMMy)$, where M is the identity function $\lambda z \cdot z$. [3 marks]
- (c) Define the Church numerals for the usual λ -calculus, and identify those numerals which are not λ_I -terms. [3 marks]
- (d) By adapting the definition of the Church numerals, define λ_I -terms \overline{n} for each $n \ge 0$ such that

 $\overline{n} MN = M^n(N)$ for $n \ge 1$ and arbitrary λ_I -terms M, N $\overline{0} \overline{m} \overline{n} = \overline{n}$ for arbitrary $m, n \ge 0$.

Show that these equalities are indeed satisfied. [Hint: the λ_I -term shown in (b) may help to resolve a particular case.] [8 marks]