1997 Paper 6 Question 12

Semantics of Programming Languages

A language L of expressions, E, for infinite lists of integers is given by:

$$E ::= \mathbf{ints} \mid \mathbf{from}(n) \mid n : E \mid \mathbf{incr}(E)$$

where n ranges over the integers. A binary relation of evaluation between L-expressions is inductively defined by the following axioms and rule:

$(\Downarrow_{\mathrm{ints}})$	$\mathbf{ints} \Downarrow 0 : \mathbf{incr}(\mathbf{ints}).$	
$(\Downarrow_{\mathrm{from}})$	$\mathbf{from}(n)\Downarrow n:\mathbf{from}(n')$	where $n' = n + 1$.
(↓:)	$n:E\Downarrow n:E.$	
$(\Downarrow_{\mathrm{incr}})$	$\frac{E \Downarrow n : E'}{\mathbf{incr}(E) \Downarrow n' : \mathbf{incr}(E')}$	where $n' = n + 1$.

Prove that for every E, there are unique n and E' such that $E \Downarrow n : E'$. [5 marks]

A binary relation \mathcal{R} between L-expressions is called a *bisimulation* if whenever $(E_1, E_2) \in \mathcal{R}$ then $E_1 \Downarrow n: E'_1$ and $E_2 \Downarrow n: E'_2$ hold for some n and some $(E'_1, E'_2) \in \mathcal{R}$. We write $E_1 \approx E_2$ if E_1 and E_2 are related by some bisimulation.

Prove that $ints \approx from(0)$.

[5 marks]

Prove that \approx has the congruence property for the language L, i.e. that if $E_1 \approx E_2$, then $E[E_1] \approx E[E_2]$ (where $E[E_1]$ is any L-expression containing an occurrence of E_1 and $E[E_2]$ denotes the result of replacing that occurrence by E_2). [Hint: show that \approx is preserved by the operations n:- and $\operatorname{incr}(-)$, by constructing suitable bisimulations.] [5 marks]

State, with justification, whether or not \approx is an equivalence relation. [5 marks]