1997 Paper 6 Question 10

Logic and Proof

State the rules on sequents $\Gamma \Rightarrow \Delta$ involving the universal quantifier in first-order predicate calculus. [2 marks]

Give examples to illustrate the need for the side conditions on variable occurrences. [4 marks]

One of the sequent rules for the universal quantifier makes use of the notion of substituting a term for a variable in a formula. Give an example to show what goes wrong if a free variable in the term being substituted becomes bound or "captured" after substitution. [3 marks]

Let the notation $A\langle t/x \rangle$ denote the result of substituting t for some occurrence of x in A if no variable in t becomes bound after substitution. Assume the usual first-order sequent calculus rules (including *cut*), together with all sequents of the form

$$\Gamma \ \Rightarrow \ t=t, \ \Delta$$

and

$$\Gamma, t_1 = t_2, A\langle t_1/x \rangle \Rightarrow A\langle t_2/x \rangle, \Delta$$

where t, t_1 and t_2 range over arbitrary terms, x is a variable and the substitutions with t_1 and t_2 are for the same occurrence of x.

Give an informal argument that these two rules for "=" are sound principles for reasoning about equality. [2 marks]

Prove that:

$$(a) \Rightarrow \forall x \ \forall y \ ((x = y) \to (y = x))$$
 [3 marks]

$$(b) \Rightarrow \forall x \; \forall y \; \forall z \; ((x=y) \land (y=z) \to (x=z))$$
 [3 marks]

$$(c) \Rightarrow \forall y ((\exists x (x = y) \land P(x)) \rightarrow P(y))$$
 [3 marks]