1997 Paper 5 Question 11

Foundations of Functional Programming

- (a) Give the definition of a head-normal form and head reduction of a λ -term. Argue that every normal form is a head-normal form. [4 marks]
- (b) Let $Y_M \equiv \lambda f.WWM$, where $W \equiv \lambda x.\lambda z.f(xxz)$ and M is an arbitrary term. Give a head-normal form and normal form for the following λ -terms, or indicate why they do not exist:
 - (i) Y_M
 - (*ii*) $Y_M(KI)$, where $K \equiv \lambda x \cdot \lambda y \cdot x$ and $I \equiv \lambda x \cdot x$
 - (*iii*) $Y_M(K)$, where K is as above

[You may assume that head reduction always terminates when a head-normal form exists.] [6 marks]

(c) A λ -term is solvable if there exist variables x_1, \ldots, x_n and λ -terms N_1, \ldots, N_m for $n, m \ge 0$ such that $(\lambda x_1 \ldots \lambda x_n . M) N_1 \ldots N_m = I$.

Show that every head-normal form is solvable. [4 marks]

For each term in (b), prove that it is solvable or that it is unsolvable. [6 marks]