1997 Paper 5 Question 10

Logic and Proof

Using binary predicate symbols $E Q(=)$ and $L T(<)$ and binary function symbols $S U M(+)$ and $\operatorname{PROD}(\times)$, write down predicate calculus formulae that formalise the following statements (some of which are false) about the natural numbers:
(a) there is a smallest number
(b) there is no largest number
(c) every number is the sum of two squares
(d) there exist two numbers whose product is less than their sum

For each of the formulae (e) to (j) below, state whether it is valid (true in all interpretations) or not. Either give an informal justification of the validity, or outline a falsifying interpretation.
(e) $(\forall x P(x)) \rightarrow(\exists x P(x))$
$(f) \quad(\exists x P(x)) \rightarrow(\forall x P(x))$
$(g) \quad((\forall x P(x)) \wedge(\forall x Q(x))) \rightarrow(\forall x(P(x) \wedge Q(x)))$
(h) $((\exists x P(x)) \wedge(\exists x Q(x))) \rightarrow(\exists x(P(x) \wedge Q(x)))$
(i) $(\forall x \exists y P(x, y)) \rightarrow(\exists y \forall x P(x, y))$
$(j) \quad(\exists x \forall y P(x, y)) \rightarrow(\forall y \exists x P(x, y))$

