1997 Paper 3 Question 1

Continuous Mathematics

Suppose that some continuous function f(x) has Fourier Transform $F(\mu)$. Now consider the consequences in the Fourier domain of each of the following operations upon f(x):

- (a) What will be the Fourier Transform of the n^{th} derivative of f(x) with respect to x: $\frac{d^n}{dx^n} f(x)$? [4 marks]
- (b) What will be the Fourier Transform after shifting f(x) by a distance α : $f(x \alpha)$? [4 marks]
- (c) What will be the Fourier Transform after dilating f(x) by a factor α : $f(x/\alpha)$? [4 marks]
- (d) Suppose that f(x) is convolved with another function g(x) whose Fourier Transform is $G(\mu)$. What will be the Fourier Transform $H(\mu)$ of the convolution result h(x) where

$$h(x) = \int_{-\infty}^{+\infty} f(\alpha)g(x-\alpha)d\alpha?$$

[4 marks]

(e) Suppose now that a two-dimensional continuous function f(x, y) has a 2D Fourier Transform $F(\mu, \nu)$. Define the Laplacian operator ∇^2 and express the 2D Fourier Transform of $\nabla^2 f(x, y)$. [4 marks]