1997 Paper 2 Question 5

Probability

Suppose $f(x)$ is a probability density function associated with a continuous random variable X and $y(x)$ is a transformation function whose inverse is the function $x(y)$. The derived random variable $Y=y(X)$ will be associated with some probability density function $g(y)$ where:

$$
g(y)=f(x(y))\left|\frac{d x}{d y}\right|
$$

Suppose that X is distributed Uniform $(0,1)$ and, accordingly, has an associated probability density function $f(x)$ given by:

$$
f(x)= \begin{cases}1, & \text { if } 0 \leqslant x<1 \\ 0, & \text { otherwise }\end{cases}
$$

Suppose, further, that Y is required to be distributed as a triangular distribution such that the probability density function $g(y)$ is:

$$
g(y)= \begin{cases}1+y, & \text { if }-1 \leqslant y<0 \\ 1-y, & \text { if } 0 \leqslant y<1 \\ 0, & \text { otherwise }\end{cases}
$$

Determine the transformation function $y(x)$ that satisfies this requirement.
[15 marks]
An experienced gambler notes that when two fair and independent dice are thrown the sum S of the two scores is distributed as a similar, albeit discrete, triangular distribution. S can be transformed into a derived random variable $T=\alpha S+\beta$ (where α and β are constants).

Take the range of values of S as 1 to 13 and observe that the probability of each of these outcomes is zero. What values of α and β ensure that the discrete distribution of T corresponds most closely to the continuous distribution of Y ? [5 marks]

