Probability

A gate in a communications network is always in one of two states, *open* or *closed*. At each clock pulse it may change state according to the following rules:

- If it is *open* it remains open with probability 1α and changes to *closed* with probability α .
- If it is *closed* it remains closed with probability 1β and changes to *open* with probability β .

It may be assumed that $0 < \alpha < 1$ and that $0 < \beta < 1$. Let u_n be the probability that the gate is *closed* just after the *n*th clock pulse. Derive a difference equation for u_n and justify your derivation. [4 marks]

Let u_0 be the probability that the gate is *closed* initially. Solve your difference equation so as to give u_n in terms of α , β , u_0 and n. [7 marks]

Determine an expression for u_n in the limit as $n \to \infty$ and explain informally why this does not depend on u_0 . [3 marks]

Find u_n in each of the four extreme cases: $\alpha = 0, \beta = 0; \alpha = 0, \beta = 1; \alpha = 1, \beta = 0;$ and $\alpha = 1, \beta = 1$. Explain the operation of the system in each case. [6 marks]