1997 Paper 2 Question 4

Probability

A gate in a communications network is always in one of two states, open or closed. At each clock pulse it may change state according to the following rules:

- If it is open it remains open with probability $1-\alpha$ and changes to closed with probability α.
- If it is closed it remains closed with probability $1-\beta$ and changes to open with probability β.

It may be assumed that $0<\alpha<1$ and that $0<\beta<1$. Let u_{n} be the probability that the gate is closed just after the nth clock pulse. Derive a difference equation for u_{n} and justify your derivation.

Let u_{0} be the probability that the gate is closed initially. Solve your difference equation so as to give u_{n} in terms of α, β, u_{0} and n.

Determine an expression for u_{n} in the limit as $n \rightarrow \infty$ and explain informally why this does not depend on u_{0}.

Find u_{n} in each of the four extreme cases: $\alpha=0, \beta=0 ; \alpha=0, \beta=1 ; \alpha=1, \beta=0$; and $\alpha=1, \beta=1$. Explain the operation of the system in each case.

