1997 Paper 1 Question 7

Discrete Mathematics

Let us say that a finite partial order (A, \sqsubseteq) is tree-like if, for every $a \in A$, the set (of its predecessors) $\{x \in A \mid x \sqsubseteq a \wedge x \neq a\}$ either is empty or has a unique maximal element. Equivalently, pictorially, this holds when the Hasse diagram of A consists of one or more trees.

State which of the following relations on the integers $\{1,2, \ldots, 10\}$ are tree-like partial orders and give a one-sentence justification.
(a) R where $x R y \Leftrightarrow x=y$
(b) R where $x R y \Leftrightarrow x \leqslant y$ (here \leqslant is the usual ordering on integers)
(c) R where $x R y \Leftrightarrow x$ divides-exactly-into y
(d) R where $x R y \Leftrightarrow x=y$ or x is the greatest prime factor of y

To count the number $C(n)$ of tree-like partial orders of n elements, assume $A=\{1,2, \ldots, n\}$ and then place each element i in turn into a Hasse diagram starting from 1 and such that no later element $j>i$ is placed such that $j \sqsubseteq i$.

Show that, provided $n>1$, we have $C(n)=f(n, C(n-1))$ and give the function $f(n, m)$. Provide a base case and thereby solve the recurrence for $C(n)$. [12 marks]

