1997 Paper 12 Question 13

Numerical Analysis II

Define the Chebyshev polynomial $T_{k}(x)$. Evaluate $T_{4}\left(\frac{1}{2}\right)$ using the formula $T_{k+1}(x)=2 x T_{k}(x)-T_{k-1}(x)$. What is the leading coefficient of $T_{k}(x)$? [4 marks]

The best L_{∞} approximation to $f(x) \in C[-1,1]$ by a polynomial $p_{n-1}(x)$ of degree $n-1$ has the property that

$$
\max _{x \in[-1,1]}|e(x)|
$$

is attained at $n+1$ distinct points $-1 \leqslant \xi_{0}<\xi_{1}<\ldots<\xi_{n} \leqslant 1$ such that $e\left(\xi_{j}\right)=-e\left(\xi_{j-1}\right)$ for $j=1,2, \ldots n$.

Let $f(x)=x^{2}$. Show, by means of a clearly labelled sketch graph, that the best polynomial approximation of degree 1 is a constant.

Now suppose $f(x)=x^{3}$ is the function to be approximated. Taking account of symmetry, sketch the graph of $f(x)$ and its best L_{∞} approximation by a polynomial of degree 2 .

By differentiating $e(x)$, find the polynomial $p_{2}(x)$.
State a formula for the best approximation to $f(x)=x^{n}$ by a polynomial of degree $n-1$.

