1997 Paper 10 Question 11

Numerical Analysis I

Define absolute error and relative error. How are they related?
Consider the quadratic expression $Q(x)=a x^{2}+b x+c$ in which a, b, c and x are all represented with the same relative error δ.

In computing $b x$, estimate the worst-case relative error, and hence the worst-case absolute error.

Now estimate the worst-case absolute error in computing $Q(x)$.
Comment on the suitability of the formula

$$
x=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}
$$

for computing one of the roots of $Q(x)$ in floating-point arithmetic. Derive an alternative formula and describe how it could be used in practice. Illustrate your answer by applying it to the case $a=4, b=400, c=7$ on a decimal machine with only 4 significant digits available. [You may assume $\sqrt{b^{2}-4 a c} \simeq b-(2 a c / b)$ for the purposes of calculation.]
[12 marks]

