Optimising Compilers

Briefly summarize the main concepts of strictness analysis including the kind of languages to which it applies, and the way in which both system-provided and user-defined functions f yield strictness properties $f^{\#}$ (relate the types of f and $f^{\#}$). [6 marks]

Give the strictness functions corresponding to the following ternary functions:

$$(a)$$
 f1(x,y,z) = x*y + z

(c)
$$f3(x,y,z) = pif x=9$$
 then y else z

where $pif e_1$ then e_2 else e_3 is the *parallel conditional*: it behaves similarly to the standard conditional in that if e_1 evaluates to true or false then it yields e_2 or e_3 as appropriate; however, evaluation of e_2 and e_3 occurs concurrently with e_1 to allow the pif construct also to terminate with the value of e_2 when e_2 and e_3 both terminate with equal values (even if e_1 computes forever).

Comment briefly how your strictness property for f1 would change if the multiplication returned zero without evaluating the other argument in the event that one argument were zero. [7 marks]

Let g, h_1 and h_2 be binary functions and recall the definition of function composition:

$$g \circ \langle h_1, h_2 \rangle = \lambda(x, y) \cdot g(h_1(x, y), h_2(x, y)).$$

Define three such functions in an ML-like syntax (whose arguments and results are integers) and which have the property that

$$(g \circ \langle h_1, h_2 \rangle)^{\#} \neq g^{\#} \circ \langle h_1^{\#}, h_2^{\#} \rangle.$$

[Hint: you might find it helpful to think of a solution where g may ignore one of its arguments but always does when composed with $\langle h_1, h_2 \rangle$.] Comment whether this inequality means that $g^{\#} \circ \langle h_1^{\#}, h_2^{\#} \rangle$ fails to be a safe strictness property for $g \circ \langle h_1, h_2 \rangle$. [7 marks]