Pi Calculus

What are the three kinds of *commitment* for a process in the π calculus? Explain informally how the commitments of $P \mid Q$ arise from those of P or Q or both. [6 marks]

We wish to implement a queue, to be weakly equivalent to the specification

$$Q\langle\rangle \stackrel{\text{def}}{=} join(x).Q\langle x\rangle$$
$$Q\langle x_1 \dots x_n\rangle \stackrel{\text{def}}{=} join(x).Q\langle x_1 \dots x_n x\rangle + \overline{serve}\langle x_1\rangle.Q\langle x_2 \dots x_n\rangle$$

The body of the queue is to consist of a chain of cells, each having the form $\overline{a}\langle x, b \rangle$; to hold a queue of *n* items $x_1 \dots x_n$ we define a chain parametrically on its head a_0 and tail a_n as follows:

$$Cells\langle x_1 \dots x_n \rangle \stackrel{\text{def}}{=} (a_0 a_n)(\nu a_1 \dots a_{n-1}) \big(\overline{a}_0 \langle x_1, a_1 \rangle \mid \dots \mid \overline{a}_{n-1} \langle x_n, a_n \rangle \big)$$

(a) Define agents $Server\langle a \rangle$ and $Joiner\langle b \rangle$ to manage the head and tail of the queue, respectively, with the intention that the system $Queue\langle x_1 \dots x_n \rangle$ defined below should be weakly equivalent to $Q\langle x_1 \dots x_n \rangle$:

$$Queue\langle\rangle \stackrel{\text{def}}{=} (\nu a) \big(Server\langle a \rangle \mid Joiner\langle a \rangle \big)$$
$$Queue\langle x_1 \dots x_n \rangle \stackrel{\text{def}}{=} (\nu ab) \big(Server\langle a \rangle \mid Cells\langle x_1 \dots x_n \rangle \langle ab \rangle \mid Joiner\langle b \rangle \big)$$

[7 marks]

(b) In terms of your definition of Server and Joiner, work out the commitments of $Queue\langle x_1 \dots x_n \rangle$ far enough to give an informal argument that it is indeed weakly equivalent to $Q\langle x_1 \dots x_n \rangle$.

[Hint: treat the cases n = 0 and $n \neq 0$ separately.] [7 marks]