1996 Paper 6 Question 9

Foundations of Functional Programming

A new form of abstraction on combinators, $\lambda^{\prime} x$, is proposed. It is to have the same defining equations as $\lambda^{T} x$, augmented with equations for the new combinators \mathbf{B}^{\prime}, \mathbf{C}^{\prime} and \mathbf{S}^{\prime}. The new equations should be applied instead of the existing ones if possible:

$$
\begin{array}{lr}
\lambda^{\prime} x . O P Q \equiv \mathbf{B}^{\prime} O P\left(\lambda^{\prime} x . Q\right) & x \text { not free in } O \text { or } P \\
\lambda^{\prime} x . O P Q \equiv \mathbf{C}^{\prime} O\left(\lambda^{\prime} x . P\right) Q & x \text { not free in } O \text { or } Q \\
\lambda^{\prime} x . O P Q \equiv \mathbf{S}^{\prime} O\left(\lambda^{\prime} x . P\right)\left(\lambda^{\prime} x . Q\right) & x \text { not free in } O
\end{array}
$$

The reduction rules for the new combinators are

$$
\begin{aligned}
& \mathbf{B}^{\prime} O P Q R \rightarrow_{w} O P(Q R) \\
& \mathbf{C}^{\prime} O P Q R \rightarrow_{w} O(P R) Q \\
& \mathbf{S}^{\prime} O P Q R \rightarrow_{w} O(P R)(Q R)
\end{aligned}
$$

Here O, P, Q and R stand for combinatory terms.
Compare $\lambda^{\prime} x$ with $\lambda^{T} x$ by applying both abstraction methods to the λ-term $\lambda x y z . z y x$.

Give graph reduction rules for the new combinators.
Prove $\left(\lambda^{\prime} x . P\right) Q \rightarrow_{w} P[Q / x]$ by induction. (You need to discuss only the new combinators.)

The size of the result of translating $\lambda^{\prime} x_{1} \ldots x_{n} . P$ is linear in n. Give a convincing argument that this is true.
[8 marks]

