## 1996 Paper 2 Question 5

## Probability

If $n$ coins are tossed, the number of ways in which $r$ can land heads is ${ }^{n} C_{r}$. Given that $n, r \in \mathbb{N}$ and that $0 \leqslant r \leqslant n$, Pascal's Theorem states:

$$
{ }^{n} C_{r}= \begin{cases}1, & \text { if } r=0 \text { or } r=n \\ { }^{n-1} C_{r-1}+{ }^{n-1} C_{r}, & \text { otherwise }\end{cases}
$$

Prove Pascal's Theorem.
Hence prove that:

$$
{ }^{n} C_{r}=\frac{n!}{(n-r)!r!}
$$

Show that:

$$
\sum_{r=0}^{n}{ }^{n} C_{r}=2^{n}
$$

