## 1996 Paper 1 Question 8

## Discrete Mathematics

The fiercely logical inhabitants of planet Volcano use coins whose values are all powers of two, the smallest being the one-pfatz (1pf) coin. Designs for all nonnegative integer powers of two exist, but in practice computers are used instead of physically minting very high value coins.

For entry to the moon-fleet academy a popular question is to enquire as to the number of different ways of representing sums of money (ignoring order of course) of the form $n \mathrm{pf}$. Show that the number of ways $w(n, k)$ of representing $n \mathrm{pf}$ using coins of value up to $2^{k} \mathrm{pf}$ satisfies the recurrence

$$
w(n, k)=w\left(n-2^{k}, k\right)+w(n, k-1)
$$

and add appropriate base case(s).
Show, assuming $n$ is a multiple of 4 , that

$$
w(n, 2)=(n / 4+1)^{2} .
$$

Show also, if $n$ is a multiple of $2^{k}$ with $k>0$, that

$$
w(n, k) \leqslant \frac{n}{2^{k}} w(n, k-1)+1 .
$$

Using the above or otherwise show further that

$$
2^{k} \leqslant w\left(2^{k}, k\right) \leqslant 2^{k^{2}}
$$

[Hint: for the lower bound you might well consider how one can derive one way of representing $2^{k+1}$ from each way of representing $2^{k}$ but only by using coins of even value and use induction.]

