1996 Paper 11 Question 9

Computation Theory

A bag B of natural numbers is a total function $f_{B}: \mathbb{N} \rightarrow \mathbb{N}$ giving for each natural number x the count $f_{B}(x)$ of occurrences of x in B. If each $f_{B}(x)=0$ or 1 , then f_{B} is the characteristic function χ_{s} of a set S : every set can thus be regarded as a bag.
(a) A bag B is recursive if the function f_{B} is computable. Suppose that the sequence of bags $\left\{B_{n} \mid n \in \mathbb{N}\right\}$ is recursively enumerated by the computable function $e(n, x)=f_{n}(x)$, which gives the count of x in each bag B_{n}. Show that there is a recursive set S that is different from each bag B_{n}. [7 marks]

Hence prove that the set of all recursive bags cannot be recursively enumerated.
[3 marks]
(b) A bag B is finite if there is $X \in \mathbb{N}$ such that $f_{B}(x)=0$ for all $x \geqslant X$. Show that the set of all finite bags is recursively enumerable.
[10 marks]

