1996 Paper 10 Question 11

Numerical Analysis I

Explain how the 32 bits are arranged to store the sign, exponent, and significand in a single precision number under the IEEE binary floating-point standard (IEEE 754). How is the exponent stored?

Explain the terms $e_{\text {max }}, e_{\text {min }}$, normalized number, denormal number, hidden bit, $N a N$.

In terms of the stored bit-pattern, how can each of the following be recognized: ± 0, $\pm \infty$, normalized number, denormal number, NaN?

Suppose the principles of IEEE arithmetic are applied to a floating-point representation with only 6 stored bits. If the precision p is 3 (including the hidden bit) and $e_{\min }$ is -2 , what is $e_{\max }$?
[2 marks]
List the 16 bit-patterns which do not represent normalized numbers, and identify what each represents.

