1996 Paper 10 Question 1

Continuous Mathematics

We compute the representation of some continuous function $f(t)$ in a space spanned by an orthonormal family $\left\{\Psi_{j}(t)\right\}$ of continuous basis functions by projecting $f(t)$ onto them. We express these projections in bracket notation $<f(t), \Psi_{j}(t)>$ denoting $\int_{-\infty}^{\infty} f(t) \Psi_{j}(t) d t$, and $f(t)$ is assumed to be square-integrable.
(a) Give an expression for computing $f(t)$ if we know its projections $<f(t), \Psi_{j}(t)>$ onto this set of basis functions $\left\{\Psi_{j}(t)\right\}$. Explain what is happening.
(b) Now give an expression for computing $f^{(n)}(t)$, the nth derivative of $f(t)$ with respect to t, in terms of the same projections and continuous basis set. (You may assume the existence of all derivatives.) Explain your answer. [5 marks]
(c) Now consider a linear, time-invariant system with impulse-response function $h(t)$, having time-varying input $s(t)$ and time-varying output $r(t)$:

$$
s(t) \longrightarrow h(t) \longrightarrow r(t)
$$

In the case that the input is the complex exponential $s(t)=\exp \left(i \mu_{j} t\right)$ (where $i=\sqrt{-1}$ and μ_{j} is a constant), what can you say about the output $r(t)$ of such a system?
(d) If the input $s(t)$ has been represented in terms of a set of complex exponentials $\Psi_{j}(t)=\exp \left(i \mu_{j} t\right)$ as described at the beginning of this question, is it possible for different complex exponentials (not included in this set) to appear in the output $r(t)$ when it too is represented in terms of complex exponentials? Justify your answer.

