1996 Paper 10 Question 1

Continuous Mathematics

We compute the representation of some continuous function f(t) in a space spanned by an orthonormal family $\{\Psi_j(t)\}$ of continuous basis functions by projecting f(t) onto them. We express these projections in bracket notation $\langle f(t), \Psi_j(t) \rangle$ denoting $\int_{-\infty}^{\infty} f(t)\Psi_j(t)dt$, and f(t) is assumed to be square-integrable.

- (a) Give an expression for computing f(t) if we know its projections $\langle f(t), \Psi_j(t) \rangle$ onto this set of basis functions $\{\Psi_j(t)\}$. Explain what is happening. [5 marks]
- (b) Now give an expression for computing $f^{(n)}(t)$, the *n*th derivative of f(t) with respect to *t*, in terms of the same projections and continuous basis set. (You may assume the existence of all derivatives.) Explain your answer. [5 marks]
- (c) Now consider a linear, time-invariant system with impulse-response function h(t), having time-varying input s(t) and time-varying output r(t):

$$s(t) \longrightarrow h(t) \longrightarrow r(t)$$

In the case that the input is the complex exponential $s(t) = \exp(i\mu_j t)$ (where $i = \sqrt{-1}$ and μ_j is a constant), what can you say about the output r(t) of such a system? [5 marks]

(d) If the input s(t) has been represented in terms of a set of complex exponentials $\Psi_j(t) = \exp(i\mu_j t)$ as described at the beginning of this question, is it possible for *different* complex exponentials (not included in this set) to appear in the output r(t) when it too is represented in terms of complex exponentials? Justify your answer. [5 marks]