1995 Paper 9 Question 15

Numerical Analysis II

With reference to solution of the differential equation $y^{\prime}=f(x, y)$, explain the conventional notation $x_{n}, y\left(x_{n}\right), y_{n}, f_{n}$.

Derive Euler's method

$$
\begin{equation*}
y_{n+1}=y_{n}+h f\left(x_{n}, y_{n}\right) . \tag{1}
\end{equation*}
$$

Euler's method has local error

$$
\frac{h^{2}}{2} y^{\prime \prime}(\xi)
$$

Explain the terms local error, global error.
The multistep formula

$$
\begin{equation*}
y_{n+1}=y_{n-3}+\frac{4 h}{3}\left(2 f_{n}-f_{n-1}+2 f_{n-2}\right) \tag{2}
\end{equation*}
$$

has local error

$$
\frac{14}{45} h^{5} y^{(5)}(\xi)
$$

Outline the technique for deriving multistep formulae such as (2). (Omit algebraic details.)

Suppose Euler's formula is used as a starting procedure for formula (2). How many initial steps of formula (2) need to be evaluated using Euler?

Estimate very roughly the number N of Euler steps needed to approximate f_{1}. (Assume that $\left|y^{(5)}(x)\right| \simeq 30$, and Euler's method has global error h / N.) [5 marks]

What is the most important requirement for a starting procedure? Suggest a more suitable starting procedure than Euler.

