1995 Paper 5 Question 10

Foundations of Functional Programming

Let
$$A \equiv \lambda x \ y. \ y \ (x \ x \ y)$$

 $\Theta \equiv A A$
 $suc \equiv \lambda n \ f \ x. \ f \ (n \ f \ x)$
 $true \equiv \lambda x \ y. \ x$
 $false \equiv \lambda x \ y. \ y$

Reduce each of the following λ -terms to normal form (if possible) and to head normal form (hnf) (if possible).

Θ	suc	Θ	$(suc \ x)$
Θ	true	Θ	false
Θ	$(\lambda x. \ x \ x)$	Θ	$(\lambda x. f x x)$

[12 marks]

If M has no hnf then M[N/x] has no hnf, for all N. Use this fact to show the following:

If M has no hnf then M N has no hnf, for all N. [8 marks]