1995 Paper 12 Question 14

Numerical Analysis II

A cubic spline $\phi(x)$ is defined over $[a, b]$ with knots $x_{1}, x_{2}, \ldots x_{n}$ such that $a<x_{1}$, $x_{n}<b$. The spline takes the values $y_{1}, y_{2}, \ldots y_{n}$ at the knots. What continuity conditions are usually imposed on the cubic spline at each knot? [2 marks]

If $d_{j}=x_{j+1}-x_{j}$ and $\mu_{j}=\phi^{\prime \prime}\left(x_{j}\right)$, the spline has the following formula for $x \in\left[x_{j}, x_{j+1}\right]$

$$
\begin{aligned}
\phi(x)= & \frac{\left(x-x_{j}\right) y_{j+1}+\left(x_{j+1}-x\right) y_{j}}{d_{j}} \\
& -\frac{\left(x-x_{j}\right)\left(x_{j+1}-x\right)\left\{\left(d_{j}+x_{j+1}-x\right) \mu_{j}+\left(d_{j}+x-x_{j}\right) \mu_{j+1}\right\}}{6 d_{j}}
\end{aligned}
$$

By differentiating this formula:
(a) find formulae for $\phi^{\prime}\left(x_{j}\right)$ and $\phi^{\prime}\left(x_{j+1}\right)$ for $x \in\left[x_{j}, x_{j+1}\right]$
(b) verify that $\phi^{\prime \prime}\left(x_{j}\right)=\mu_{j}, \phi^{\prime \prime}\left(x_{j+1}\right)=\mu_{j+1}$
(c) deduce the equation which expresses the continuity condition on $\phi^{\prime}(x)$ at x_{j} [6 marks]

If the equations derived in part (c) are solved as a simultaneous system, what are the unknowns? If the end conditions specify the spline to be linear in $\left[a, x_{1}\right]$ and $\left[x_{n}, b\right]$ how does this simplify the calculation? State the most important properties of the resulting equations.

