Numerical Analysis I

For Single Precision in the IEEE binary floating point standard (IEEE 754) the precision is defined as 24, and the exponent requires 8 bits of storage. With reference to IEEE Single Precision, explain the terms exponent, significand, precision, sign bit, normalised number, denormal number, hidden bit.

How many bits are required to store a Single Precision number? How is the exponent stored? What is the value of the hidden bit for (a) normalised, and (b) denormal numbers?

Define the terms absolute error, relative error, machine epsilon.
Suppose $x^{*}=4.0027, y^{*}=4.0047$ are numbers represented on a computer with machine epsilon $=0.5 \times 10^{-4}$. Estimate roughly (i) the maximum absolute error, and (ii) maximum relative error in evaluating $(y-x)$.

Use your results to explain the term loss of significance.

