1994 Paper 9 Question 10

Numerical Analysis II

Apply the Newton-Raphson formula

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

for solving the equation $f(x)=0$ using $f(x)=x-\frac{1}{2} e^{1-x^{2}}$. Simplify your formula so that the exponential function need be called only once per iteration. [4 marks]

This function has a zero at approximately 0.76 . Use $x_{0}=1$ and perform one Newton-Raphson iteration to calculate x_{1} and verify that this is a good starting value. Now use $x_{0}=-1 / \sqrt{2}$ and re-calculate x_{1}. (You may assume for this purpose: $\sqrt{2} \simeq 1.4,1 / \sqrt{2} \simeq 0.71, \sqrt{e} \simeq 1.6,1 / \sqrt{e} \simeq 0.61$.)

By sketching the graph of $f(x)$, or otherwise, explain these results.
Perform two Newton-Raphson iterations (in exact arithmetic) for the function $f(x)=x-1 /(x+1)$, with $x_{0}=1$. Suppose that the second iteration is modified as follows:

$$
\tilde{x}_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{0}\right)} .
$$

Examine $\left|x_{2}-\tilde{x}_{2}\right| /\left|x_{2}\right|$ to estimate the relative loss of accuracy if the modified method is used.

Although \tilde{x}_{2} is obviously less accurate than x_{2} in general, explain briefly why this modified Newton method is more useful for an n-dimensional problem. [4 marks]

