1994 Paper 7 Question 13

Semantics of Programming Languages

Dijkstra proposed the language of guarded commands with the following syntax. Commands take the form

$$
c \quad::=\quad \text { skip } \quad \mid \quad \text { abort } \quad|\quad X:=e \quad| \quad c ; c \mid \quad \text { if } g c \mathrm{fi} \quad \mid \quad \text { do } g c \text { od }
$$

where e is an arithmetic expression and $g c$ stands for a guarded command of the form

$$
b_{1} \rightarrow c_{1} \rrbracket b_{2} \rightarrow c_{2}
$$

for boolean expressions b_{1} and b_{2}, called guards, and commands c_{1} and c_{2}. Execution of the command skip does not result in a change of state. Following Dijkstra's intentions, if no guard evaluates to true at a state, then the guarded command is said to fail, in which case, the guarded command does not yield a final state. Otherwise, the guarded command executes as one of the commands c_{i} whose associated guard b_{i} evaluates to true. The execution of the command abort does not yield a final state from any initial state. The command if $g c$ fi executes as the guarded command $g c$, if $g c$ does not fail, otherwise, it acts like abort. The command do $g c$ od executes repeatedly as the guarded command $g c$, while $g c$ continues not to fail, and terminates when $g c$ fails.
(a) Assume that boolean and arithmetic expressions have no side effects and always terminate, and that the rules for their evaluation are given. Write down a collection of rules for an inductively defined evaluation relation of the form

$$
c, S \Rightarrow S^{\prime}
$$

whose sense is "starting from the initial state S, the evaluation of the command c terminates at the final state S^{\prime}."
[10 marks]
(b) Give the commands in Dijkstra's guarded language which simulate the standard imperative programming commands

$$
\text { if } b \text { then } c_{1} \text { else } c_{2} \quad \text { and } \quad \text { while } b \text { do } c
$$

respectively. You may assume that if b is a boolean expression, then so is $\neg b$, the negation of b.
[2 marks]
(c) Give an appropriate definition of semantic equivalence of commands with respect to the evaluation relation defined in (a). Prove that for any boolean expression b and any command c, the command

$$
\text { do } b \rightarrow c \rrbracket b \rightarrow c \text { od }
$$

is semantically equivalent to the command

$$
\begin{equation*}
\text { if } b \rightarrow(c ; \text { do } b \rightarrow c \rrbracket b \rightarrow c \text { od }) \rrbracket \neg b \rightarrow \text { skip fi } \tag{8marks}
\end{equation*}
$$

