1994 Paper 7 Question 10

Numerical Analysis II

Explain the terms Riemann integral and Riemann sum.
Let \mathbf{R} be a quadrature rule that integrates constants exactly. If a function f is bounded and Riemann-integrable over the interval $[a, b]$ then prove that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}(n \times \mathbf{R}) f=\int_{a}^{b} f(x) d x \tag{6marks}
\end{equation*}
$$

Consider two quadrature rules for the interval $[-\lambda, \lambda]$:

$$
\begin{aligned}
& \mathbf{S} f=\frac{\lambda}{3}\{f(-\lambda)+4 f(0)+f(\lambda)\}-\frac{\lambda^{5}}{90} f^{(4)}(\xi) \\
& \mathbf{T} f=\lambda\{f(-\lambda)+f(\lambda)\}-\frac{2}{3} \lambda^{3} f^{\prime \prime}(\zeta)
\end{aligned}
$$

If \mathbf{S} were used in the composite form $(n \times \mathbf{S}) f$, what order of convergence would you expect?

Suppose the rule

$$
\begin{aligned}
& \frac{1}{3}\{F(-1,-1)+4 F(-1,0)+F(-1,1) \\
& \quad+F(1,-1)+4 F(1,0)+F(1,1)\}
\end{aligned}
$$

is applied to

$$
\int_{-1}^{1} \int_{-1}^{1} F(x, y) d x d y
$$

Describe the 2 -variable polynomials that are integrated exactly by this rule.

Why is the product form of $\mathbf{S} f$ unsuitable for integrating over a hypercube in 20 dimensions? Name a better method for 20 dimensions on a sequential machine, given that high accuracy is not required.

