1994 Paper 5 Question 10

Foundations of Functional Programming

Describe precisely the meaning and main properties of the equality $M=N$, where M and N are terms of the λ-calculus.

In the following, consider an encoding of lists $\left[a_{1}, a_{2}, \ldots, a_{m}\right]$ as the λ-term

$$
\lambda f x . f a_{1}\left(f a_{2} \ldots\left(f a_{m} x\right) \ldots\right) .
$$

Answers should include a brief justification. You may assume λ-encodings of the booleans and ordered pairs.

Define the λ-term cons such that

$$
\operatorname{cons} a\left[a_{1}, \ldots, a_{m}\right]=\left[a, a_{1}, \ldots, a_{m}\right]
$$

Define the λ-term null such that

$$
\text { null }\left[a_{1}, \ldots, a_{m}\right]= \begin{cases}\text { true } & \text { (if } m=0) \\ \text { false } & (\text { if } m>0)\end{cases}
$$

Define the λ-term append such that

$$
\operatorname{append}\left[a_{1}, \ldots, a_{m}\right]\left[b_{1}, \ldots, b_{n}\right]=\left[a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{n}\right]
$$

Define the λ-terms hd and $\mathbf{t l}$ such that, if $m>0$,

$$
\begin{aligned}
\mathbf{h d}\left[a_{1}, \ldots, a_{m}\right] & =a_{1} \\
\boldsymbol{\operatorname { t l }}\left[a_{1}, \ldots, a_{m}\right] & =\left[a_{2}, \ldots, a_{m}\right]
\end{aligned}
$$

