## 1994 Paper 2 Question 9

Recall that a *binary search tree* is a binary tree whose labels are ordered from left to right, while a *priority queue* is a collection whose elements are inserted in any order but are removed in increasing order. Priority queues can be represented by binary search trees using the normal insert operation; they require additional functions *least* and *del\_least*. Given a binary search tree, *least* returns the node with the smallest label, while *del\_least* returns the binary search tree with that node removed.

Using a suitable datatype for binary trees, code *del\_least* as a recursive (and sideeffect free) ML function. Illustrate its operation using an example. [4 marks]

Consider now the cost of emptying an n-label binary search tree by applying  $del_{least}$  to it n times. The cost will be measured by the number of calls to  $del_{least}$ , including recursive calls.

Which binary search trees constitute the best and worst cases for this operation? State the cost of each as a function of n. [4 marks]

If the tree is perfectly balanced and of depth d then  $n = 2^d - 1$ . Show that the cost of emptying the tree in this case is  $d \times 2^{d-1}$ . [8 marks]

A functional program cannot update the binary tree 'in place' but must do some copying. To what extent does the number of calls to *del\_least* reflect the true cost of emptying the tree? Discuss. [4 marks]