1994 Paper 2 Question 8

Suppose that take and drop are ML functions such that take (n, s) returns the first n elements of the list s, while $\operatorname{drop}(n, s)$ returns all but the first n elements of s. Let length(s) be the function to compute the length of the list s. Consider the following ML function

```
fun front s = take(length s div 2, s);
fun back s = drop(length s div 2, s);
fun bsum [ ] = 0.0
    | bsum [x] = x
    | bsum s = bsum front s + bsum back s;
fun sum [ ] = 0.0
    | sum (x::s) = x + sum s;
```

Give a formal proof that $\operatorname{sum}($ front $s)+\operatorname{sum}(b a c k s)=\operatorname{sum}(s)$ for all lists s, explaining what properties of arithmetic you are assuming.

Describe a proof of $\operatorname{bsum}(s)=\operatorname{sum}(s)$ for all s using the lemma that you have just established. Do not give a detailed proof but instead outline the main argument. State any additional lemmas required and indicate how they might be proved.

Does proving $\operatorname{bsum}(s)=\operatorname{sum}(s)$ for all s in this way ensure that bsum and sum are completely interchangable in ML programs? Discuss.

