1994 Paper 11 Question 10

Discrete Mathematics

Let (\mathbb{N}, \leqslant) be the natural numbers under the usual ordering. Assuming that (\mathbb{N}, \leqslant) is well-ordered, prove that the Cartesian product $(\mathbb{N} \times \mathbb{N})$ is well-ordered under the derived lexicographical ordering.

State the Principle of Well-Ordered Induction.
Define inductively $f:(\mathbb{N} \times \mathbb{N}) \rightarrow \mathbb{N}$ as follows:

$$
\begin{cases}f(0, y) & =y+1 \\ f(x+1,0) & =f(x, 1) \\ f(x+1, y+1) & =f(x, f(x+1, y))\end{cases}
$$

Show that f is defined for all pairs (x, y).
Prove that for all $y \in \mathbb{N}$:

$$
\left\{\begin{array}{l}
f(2, y)=2 y+3 \tag{9marks}\\
f(3, y)=2^{y+3}-3
\end{array}\right.
$$

