1994 Paper 10 Question 7

Data Structures and Algorithms

For the following, n is a positive integer and G is a graph of N nodes (vertices) and E arcs (edges) each with a given weight (or cost). For *seven* of the following indicate, with a short justification, whether the statement is true or false.

- (a) All functions f of the form $f(n) = An^k$ (with A and k being constants) are in the class $O(2^n)$.
- (b) All sorting methods for an array of n elements take time $O(n^5)$.
- (c) It is possible to sort an array of n elements using binary comparisons in $\Theta(n \log n)$ time.
- (d) It is possible to sort an array of n elements using binary comparisons using O(1) (i.e. constant independent of n) additional space.
- (e) Radix sorting can sort any set of integers in linear time.
- (f) All straight lines from the inside of a polygon to the outside intersect the points on the edges forming its boundary an odd number of times.
- (g) It is always cheaper to find the shortest distance between two given nodes u, v of G than to find all N shortest distances from u to every other node.
- (h) It is possible to find the shortest paths between all N^2 pairs of nodes of G in $O(N^3)$ time.
- (i) If G is connected then the minimal spanning subtree of G contains the N-1 edges whose weights are smallest.
- (j) Given n points (x_i, y_i) , $1 \le i \le n$ in a plane, then the four points (x_a, y_a) , (x_b, y_b) , (x_c, y_c) , (x_d, y_d) such that x_a is minimal of the x_i , x_b is maximal of the x_i , y_c is minimal of the y_i , y_d is maximal of the y_i form a quadrilateral Q which can be used to speed up a convex hull algorithm by preprocessing to remove points which lie inside Q.

Marks will be awarded for overall succinctness, attention to detail and absence of random guesses lacking justification.

[20 marks]