Introduction to Functional Programming

Recall that $f \circ g$ is the function that maps x to $f(g(x))$. Consider the ML definitions

```
fun I x = x;
fun pair (f,g) (x,y) = (f x, g y);
fun pup (f,g) z = (f z, g z);
fun fst (x,y) = x;
fun snd (x,y) = y;
```

Describe the effect of the following functions:

```
pair(I,I) pair(f1 o f2, g1 o g2)
pup(fst,snd) pup(f o fst, g o snd) [4 marks]
```

Infinite lists can be represented in a functional language by triples. A triple of the form (a, h, t) represents the infinite list whose nth element is $h\left(t^{n}(a)\right)$ for $n \geqslant 0$.
(a) Give a representation for the infinite list $n, n+1, n+2, \ldots$
(b) Code in ML a map functional for this representation; given a function f and the infinite list x_{0}, x_{1}, \ldots, it should yield the representation of $f\left(x_{0}\right), f\left(x_{1}\right), \ldots$
[3 marks]
(c) Code in ML a zip function, which combines the infinite lists x_{0}, x_{1}, \ldots and y_{0}, y_{1}, \ldots to the list of pairs $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots$
[4 marks]
(d) Code in ML an interleave function, which combines the infinite lists x_{0}, x_{1}, \ldots and y_{0}, y_{1}, \ldots to yield $x_{0}, y_{0}, x_{1}, y_{1}, \ldots$
(e) How does this representation compare with the usual representation of infinite lists in ML? Briefly discuss.

