1993 Paper 9 Question 11

Types

Describe the relation of β -reduction between expressions in the second order lambda calculus $\lambda 2$. Explain the *Church–Rosser* and *strong normalisation* properties of this relation. How do they lead to a procedure for deciding whether two closed, typable $\lambda 2$ expressions are β -convertible? [8 marks]

If α is a type variable and σ is a $\lambda 2$ type, the 'existential type' $\exists \alpha.\sigma$ is defined to be $\forall \beta.((\forall \alpha.\sigma \rightarrow \beta) \rightarrow \beta)$, where β is a new type variable not occurring in σ . Show that there is a closed $\lambda 2$ expression, *Pair*, of type $\forall \alpha.(\sigma \rightarrow \exists \alpha.\sigma)$. [5 marks]

Given valid $\lambda 2$ type assertions

$$\Gamma \vdash E : \exists \alpha. \sigma$$

$$\Gamma, x : \sigma \vdash N : \sigma'$$

where α and β do not occur free in Γ or σ' , show how to construct a $\lambda 2$ expression $Case(E, \alpha, x, N)$ such that

- (a) $\Gamma \vdash Case(E, \alpha, x, N) : \sigma'$, and
- (b) if $\Gamma \vdash M : (\alpha \mapsto \tau)\sigma$ where τ is a type not containing free occurrences of β , then

 $Case(Pair_{\tau}M, \alpha, x, N) \quad \beta$ -reduces to $(x \mapsto M)(\alpha \mapsto \tau)N$.

(Here $(\alpha \mapsto \tau)$ denotes the operation of substituting τ for the type variable α and $(x \mapsto M)$ denotes the operation of substituting the expression M for the identifier x.)

[7 marks]