Numerical Analysis II

If **B** is a real symmetric $n \times n$ matrix such that $\bar{\mathbf{z}}^T \mathbf{B} \mathbf{z} \ge 0$ for any complex vector \mathbf{z} , prove that any eigenvalue λ of **B** is such that $\lambda \ge 0$. Hence prove that the eigenvalues of $\mathbf{A}^T \mathbf{A}$, where **A** is any real square matrix, are real and non-negative. [3 marks]

Let **P**, **Q** be real $n \times n$ matrices and let $\|\mathbf{P}\|_2^2$ denote the maximum eigenvalue of $\mathbf{P}^T \mathbf{P}$. State Schwarz's inequality for $\|\mathbf{P}\mathbf{Q}\|_2$. Explain how this is modified if **Q** is replaced by a vector of n elements. [3 marks]

Derive the *condition number* K for solution of the equations $\mathbf{A}\mathbf{x} = \mathbf{b}$. Hint: start by setting $\mathbf{e} = \mathbf{x} - \hat{\mathbf{x}}$ where $\hat{\mathbf{x}}$ is an approximate solution. [5 marks]

Describe the singular value decomposition

$$\mathbf{A} = \mathbf{U}\mathbf{W}\mathbf{V}^T$$

and explain how you would use it to solve the *n* equations $\mathbf{Ax} = \mathbf{b}$ when **W** has rank *n*. [5 marks]

How may the singular value decomposition help in solving the equations $\mathbf{A}\mathbf{x} = \mathbf{b}$ when \mathbf{A} has rank < n? Use the case n = 4, $\mathbf{W} = \text{diag}\{1, 10^{-3}, 10^{-20}, 0\}$ to illustrate your answer. (You may assume that machine epsilon $\simeq 10^{-16}$.) [4 marks]