1993 Paper 7 Question 8

Numerical Analysis II

If \mathbf{B} is a real symmetric $n \times n$ matrix such that $\overline{\mathbf{z}}^{T} \mathbf{B} \mathbf{z} \geqslant 0$ for any complex vector \mathbf{z}, prove that any eigenvalue λ of \mathbf{B} is such that $\lambda \geqslant 0$. Hence prove that the eigenvalues of $\mathbf{A}^{T} \mathbf{A}$, where \mathbf{A} is any real square matrix, are real and non-negative.

Let \mathbf{P}, \mathbf{Q} be real $n \times n$ matrices and let $\|\mathbf{P}\|_{2}^{2}$ denote the maximum eigenvalue of $\mathbf{P}^{T} \mathbf{P}$. State Schwarz's inequality for $\|\mathbf{P Q}\|_{2}$. Explain how this is modified if \mathbf{Q} is replaced by a vector of n elements.

Derive the condition number K for solution of the equations $\mathbf{A x}=\mathbf{b}$. Hint: start by setting $\mathbf{e}=\mathbf{x}-\hat{\mathbf{x}}$ where $\hat{\mathbf{x}}$ is an approximate solution.

Describe the singular value decomposition

$$
\mathbf{A}=\mathbf{U} \mathbf{W} \mathbf{V}^{T}
$$

and explain how you would use it to solve the n equations $\mathbf{A x}=\mathbf{b}$ when \mathbf{W} has rank n.
[5 marks]
How may the singular value decomposition help in solving the equations $\mathbf{A x}=\mathbf{b}$ when \mathbf{A} has rank $<n$? Use the case $n=4, \mathbf{W}=\operatorname{diag}\left\{1,10^{-3}, 10^{-20}, 0\right\}$ to illustrate your answer. (You may assume that machine epsilon $\simeq 10^{-16}$.)
[4 marks]

