1993 Paper 7 Question 7

Numerical Analysis II

State a recurrence formula suitable for evaluating the sequence of Chebyshev polynomials $\left\{T_{n}(x)\right\}$ for an argument x. What are the starting values? [2 marks] The error in Lagrange interpolation can be expressed in the form

$$
f(x)-L_{n-1}(x)=\frac{f^{(n)}(\zeta)}{n!} \prod_{j=1}^{n}\left(x-x_{j}\right)
$$

for a suitable function $f(x)$. Suggest a choice of the interpolation points $\left\{x_{j}\right\}$ which tends to minimise this error over the interval $[-1,1]$.

Hence justify and explain the method of economisation of a power series.

In what sense is an economised power series a best approximation?
Suppose $P_{n}(x)$ is a polynomial formed by truncating a power series after the term in x^{n}. Perform an economisation of the truncated power series

$$
\begin{equation*}
\cosh x \simeq P_{4}(x)=1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!} \tag{5marks}
\end{equation*}
$$

Given that the maximum error in $P_{4}(x)$ over $[-1,1]$ is approximately 0.0014, compare the error in your economised polynomial with the error in $P_{2}(x)$.

