1993 Paper 5 Question 9

Foundations of Functional Programming

Describe how the λ-calculus models the operations of addition, test for zero and successor, representing the natural numbers by Church numerals.

The Fibonacci sequence is defined by $F_{0}=0, F_{1}=1$ and $F_{k}=F_{k-1}+F_{k-2}$ for $k \geqslant 2$. Present a λ-term fib that computes the Church numeral for F_{k} given the Church numeral for k, for all $k \geqslant 0$. Do not use \mathbf{Y} or any other fixed point combinator. You may take as primitive the λ-calculus encodings of standard data structures.

Describe how to assign Gödel numbers to λ-terms and explain the notation $\ulcorner M\urcorner$. Describe an application of these techniques.

Present a λ-term iszero, such that

$$
\text { iszero }\ulcorner M\urcorner= \begin{cases}\text { true } & \text { if } M=\underline{0} \\ \text { false } & \text { if } M \neq \underline{0}\end{cases}
$$

or prove that no such term exists.

