1993 Paper 5 Question 12

Formal Languages and Automata

Explain what is meant by a regular expression over an alphabet Σ, and by the language $L(\mathrm{r})$ denoted by such a regular expression r .

For any regular expressions $\mathrm{r}, \mathrm{s}, \mathrm{t}$, show that if $L(\mathrm{r})$ contains $L(\mathrm{t} \mid \mathrm{sr})$ then it also contains $L\left(\mathrm{~s}^{*} \mathrm{t}\right)$.

Assuming that the empty string ε is not in $L(\mathrm{~s})$, show that if $L(\mathrm{r})=L(\mathrm{t} \mid \mathrm{sr})$ then $L(\mathrm{r})=L\left(\mathrm{~s}^{*} \mathrm{t}\right)$. Hint: argue by induction on the length of strings in $L(\mathrm{r})$. [5 marks]

Give an example to show that the above assumption $\varepsilon \notin L(\mathrm{~s})$ is necessary.

Deduce that when $\varepsilon \notin L(s), r$ and $t \mid s r$ denote the same language if and only if r and $s^{*} t$ denote the same language.

