1993 Paper 4 Question 8

Data Structures and Algorithms

A directed graph of n nodes numbered $1,2, \ldots, n$ can be represented by an $n \times n$ adjacency matrix G_{1}, where $G_{1}[i, j]$ is true if there is an edge connecting node i to node j, and $G_{1}[i, j]$ is false otherwise.

By extension, define G_{k} to be that matrix such that $G_{k}[i, j]$ is true if there is a path of length $\leqslant k$ connecting node i to node j, and $G_{k}[i, j]$ is false otherwise.

Describe an algorithm to generate G_{2} from G_{1}.
[12 marks]
How could this algorithm be used to generate the transitive closure of a graph given its adjacency matrix?
[5 marks]
What is the cost of this transitive closure algorithm in terms of n and m, where m is the maximum path length in the transitive closure?
[3 marks]

