1993 Paper 2 Question 5

A single die is repeatedly thrown, and accumulating counts of $1 \mathrm{~s}, 2 \mathrm{~s}, \ldots, 6 \mathrm{~s}$ are recorded. Find the probability that the event 'The accumulated counts of $1 \mathrm{~s}, 2 \mathrm{~s}$, ..., 6s are equal' will ever occur.
[Hint: you will need Stirling's approximation $n!\approx(2 \pi)^{\frac{1}{2}} n^{n+\frac{1}{2}} e^{-n}$]

