1993 Paper 11 Question 11

Discrete Mathematics

Let A be a non-empty set, and \prec be a relation on A. What is meant by saying that (A, \prec) is a partially ordered set? [3 marks]

What additional conditions must be satisfied if (A, \prec) is to form:

- (a) a totally ordered set [1 mark]
- (b) a well-ordered set [2 marks]
- (c) a complete partially ordered set? [3 marks]

Suppose now that A is a non-empty set, R a relation on A, and $B \subseteq A$ a non-empty subset. Write $R_B = R \cap (B \times B)$ for the relation induced on B by R. Show that if (A, \prec) is a partially ordered set, so also is (B, \prec_B) . [1 mark]

On the set $\mathbb{Z} = \{0, \pm 1, \pm 2, \ldots\}$ of integers define the following relations:

- $(i) \quad \leqslant = S^*, \, \text{the reflexive transitive closure of} \, S = \{(n,n+1): n \in \mathbb{Z}\}$
- $(ii) \ \ d = \{(m,n): \exists \, q \in \mathbb{Z} \text{ such that } mq = n\}$

For each of the set \mathbb{Z} and its subsets $\mathbb{N} = \{0, 1, 2, 3, ...\}, \mathbb{N}^+ = \{1, 2, 3, ...\}$ say whether the relations \leq and d induce a partial ordering. Identify instances in which any of the cases (a)-(c) arises, giving your reasons briefly. [10 marks]