Discrete Mathematics

Let A be a non-empty set, and \prec be a relation on A. What is meant by saying that (A, \prec) is a partially ordered set?

What additional conditions must be satisfied if (A, \prec) is to form:
(a) a totally ordered set
(b) a well-ordered set
(c) a complete partially ordered set?

Suppose now that A is a non-empty set, R a relation on A, and $B \subseteq A$ a non-empty subset. Write $R_{B}=R \cap(B \times B)$ for the relation induced on B by R. Show that if (A, \prec) is a partially ordered set, so also is $\left(B, \prec_{B}\right)$.
[1 mark]
On the set $\mathbb{Z}=\{0, \pm 1, \pm 2, \ldots\}$ of integers define the following relations:
(i) $\leqslant=S^{*}$, the reflexive transitive closure of $S=\{(n, n+1): n \in \mathbb{Z}\}$
(ii) $d=\{(m, n): \exists q \in \mathbb{Z}$ such that $m q=n\}$

For each of the set \mathbb{Z} and its subsets $\mathbb{N}=\{0,1,2,3, \ldots\}, \mathbb{N}^{+}=\{1,2,3, \ldots\}$ say whether the relations \leqslant and d induce a partial ordering. Identify instances in which any of the cases $(a)-(c)$ arises, giving your reasons briefly.

