
Technical Report
Number 904

Computer Laboratory

UCAM-CL-TR-904
ISSN 1476-2986

Grammatical error correction
in non-native English

Zheng Yuan

March 2017

15 JJ Thomson Avenue

Cambridge CB3 0FD

United Kingdom

phone +44 1223 763500

http://www.cl.cam.ac.uk/



c© 2017 Zheng Yuan

This technical report is based on a dissertation submitted
September 2016 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, St. Edmund’s
College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986



Grammatical error correction in non-native English

Zheng Yuan

Grammatical error correction (GEC) is the task of automatically correcting
grammatical errors in written text. Previous research has mainly focussed on in-
dividual error types and current commercial proofreading tools only target limited
error types. As sentences produced by learners may contain multiple errors of dif-
ferent types, a practical error correction system should be able to detect and correct
all errors.

In this thesis, we investigate GEC for learners of English as a Second Language
(ESL). Specifically, we treat GEC as a translation task from incorrect into correct
English, explore new models for developing end-to-end GEC systems for all error
types, study system performance for each error type, and examine model generali-
sation to different corpora. First, we apply Statistical Machine Translation (SMT)
to GEC and prove that it can form the basis of a competitive all-errors GEC sys-
tem. We implement an SMT-based GEC system which contributes to our winning
system submitted to a shared task in 2014. Next, we propose a ranking model to
re-rank correction candidates generated by an SMT-based GEC system. This model
introduces new linguistic information and we show that it improves correction qual-
ity. Finally, we present the first study using Neural Machine Translation (NMT)
for GEC. We demonstrate that NMT can be successfully applied to GEC and help
capture new errors missed by an SMT-based GEC system.

While we focus on GEC for English, our methods presented in this thesis can be
easily applied to any language.
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CHAPTER 1

Introduction

Today, from Beijing to Brasilia, millions of people are learning English as a Second
Language (ESL). According to a report published by the British Council in 2013,
English is spoken at a ‘useful level’ by 1.75 billion people worldwide. In fact, non-
native English speakers now outnumber native speakers. Furthermore, the number
of ESL learners keeps on growing and it is estimated that 2 billion people will
be using English - or learning to use it - by 2020. Nevertheless, learning a new
language is never easy. Difficulties in acquiring a new language can be due to the
differences between the new language and the learners’ first languages (L1s) (Lado,
1957). These differences may result in various kinds of errors in learner writing.
Errors made by learners are different from those made by native speakers. Connors
and Lunsford (1988) studied errors made by college students in the United States
and compiled an error list ranked by frequency. Their work was later replicated
by Donahue (2001) with a focus on ESL learners. Results showed that half of the ten
most frequent error types made by native speakers were ‘negligible’ in ESL writings.

There has been a great deal of commercial and academic interest in automatically
correcting these written errors for ESL learners. From a commercial perspective,
there is a great potential for many practical applications, such as proofreading tools
that help second language (L2) speakers identify and correct their writing errors
without human intervention or educational software for automated language learning
and assessment. From a research perspective, correcting errors in learner writing is
an interesting and challenging task as it involves various aspects of Natural Language
Processing (NLP), such as language modelling, syntax and semantics.

Early grammar checkers can be traced back to the 1980s, when hand-coded
grammar rules were mostly used. However, due to the productive nature of language
and the creativity of learners, it is impractical to define rules for every possible
case. With the advent of large-scale annotated corpora in the 1990s, data-driven
approaches made it possible to build systems for specific error types. Nevertheless,
popular commercial proofreading tools only target a few error types that are easy to
correct, such as spelling mistakes (a *baeutiful/beautiful girl) or wrong past participle
forms of irregular verbs (Dave has *runned/run 42 marathons), and do not include
those aspects of English that are harder to learn. At the same time, most research in
the area has focussed on two common error types made by learners, namely articles
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(Mary’s sister is */a hairdresser) and prepositions (the best places to visit *on/in
July), assuming that there is only one error per sentence.

However, errors do not always occur in isolation. Sentences produced by learners
may contain multiple errors which belong to different error types. What is worse,
errors may interact with others so that the correction of one error requires the
correction of the other. See the following example sentences written by ESL learners:

Example 1.1. I am plece to tell the information do you need for the group.
The sentence contains three errors: a spelling mistake (plece → pleased), a wrong verb

(tell → provide) and an unecessary verb (do).

Example 1.2. As you know, it is not suitable to wear a jean.
The sentence contains two interacting errors: ‘a’ should be deleted and ‘jean’ should

be changed to ‘jeans’ at the same time (a jean → jeans).

An error correction system that can only correct one or a few types of errors will
be of limited use to learners. Instead, a good system should be able to correct a
variety of error types and corrections should be performed at a global rather than
local level, including taking interacting errors into account. Our goal in this thesis is
to develop robust error correction systems that can automatically detect and correct
all errors present in learner text, trying to overcome the aforementioned limitations.

The error correction task can be thought of as a type of monolingual ‘translation’,
where the source is a sentence written by a learner and the target is a fluent and ade-
quate sentence in the same language. A corrected sentence should be grammatically
correct and preserve the original meaning of the source.

Rather than building individual components for each error type, we apply the
machine translation (MT) approach of ‘translating’ a grammatically incorrect sen-
tence into a correct one to address all error types simultaneously. The MT approach
takes advantage of large annotated learner data. Systems learn correction mappings
from data and use them to generate a corrected version of the original sentence,
correcting as many errors as possible. Our work investigates MT methods for cor-
recting grammatical errors in non-native English text and addresses issues arising
from applying existing MT techniques to the error correction task. We further iden-
tify new techniques for developing robust error correction systems that outperform
previous approaches.

While English is by far the most spoken foreign language in the world, there is
also a need for grammar checkers for other languages, such as Chinese, Spanish and
Arabic. Although we focus only on English in this thesis, the methods described
here can be applied to any language given appropriate data.

1.1 What is grammatical error correction?

Grammatical error correction (GEC) is the task of automatically correcting gram-
matical errors in written text. More specifically, the task is to build a system that
takes an input text, analyses the context of the text to identify and correct any
grammatical errors, and finally returns a corrected version that retains the origi-
nal meaning. If there is no error in the input text, the system should output the
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text without any modification. In this thesis, we focus on grammatical errors in
non-native English text.

It should be noted that not all errors present in learner text are grammatical
errors, however. Errors were traditionally identified at five levels: 1) a lexical level,
2) a syntactic level, 3) a semantic level, 4) a discourse structure level, and 5) a
pragmatic level (Kukich, 1992). Lexical errors are spelling mistakes that result
in non-existent words, such as misspelling ‘type’ as ‘tipe’, where ‘tipe’ is not a
legitimate word in English. Errors where the syntactic categories of the words do
not fit their contexts are classified as syntactic errors, such as subject-verb agreement
errors (she always *know/knows her place) or verb tense errors (the church *is/was
rebuilt in 1948 ). Errors that cause semantic anomalies are semantic errors, which
involve contextual spelling mistakes that result in legitimate words (we waited for
twenty *minuets/minutes) and collocation/cooccurrence errors (*big conversation)
(Kochmar, 2016). Discourse errors violate the inherent coherence relations in a text
while pragmatic errors reflect some anomalies related to the goals and plans of the
discourse participants. Correcting errors from the last two groups requires further
discourse analysis. In this thesis, we use the broad term ‘grammatical error’ to
refer only to lexical, syntactic and semantic errors, but do not tackle discourse and
pragmatic errors whose ‘span’ goes beyond the sentence.

1.2 Thesis aims

The work presented in this thesis aims to:

1. Develop end-to-end error correction systems that are capable of correcting
grammatical errors present in text written by learners of English. As sentences
produced by ESL learners may contain multiple errors which belong to different
error types, we aim to develop robust systems that can automatically detect
and correct a variety of error types and perform corrections at a global rather
than local level, where interacting errors are covered as well.

2. Explore the use of several statistical NLP approaches for GEC:

(a) Can SMT form the basis of a competitive all-errors GEC sys-

tem? Statistical Machine Translation (SMT) has been successfully used
to correct a limited number of grammatical errors in the past (see Brock-
ett et al., 2006; Yuan and Felice, 2013), so we aim to investigate whether
the same approach can be used to correct multiple grammatical errors at
the same time.

(b) Can candidate re-ranking improve sentence quality in SMT-

based GEC? Since SMT was not originally designed for GEC, many
standard features do not perform well on the error correction task. It is
therefore necessary to add new local and global features to help the SMT
decoder distinguish good from bad corrections. We propose a Support
Vector Machine (SVM) ranking model to re-rank candidates generated
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by an SMT-based GEC system. We aim to determine whether candidate
re-ranking is a viable approach to address the decoding problem in this
scenario and thus improve sentence quality.

(c) Can NMT be applied to GEC? Typical SMT-based GEC systems
suffer from data sparsity. Some errors are not covered by these systems
because the mappings needed for correction have not been seen in the
training data. With the recent advances in neural networks, Neural Ma-
chine Translation (NMT) seems appealing for GEC as it may be possible
to correct erroneous phrases and sentences that have not been seen in the
training set more effectively. We investigate NMT systems and how they
can be applied to GEC in order to capture new errors without the need
for additional training data.

3. Examine and address issues concerning applying existing techniques to GEC.
As we approach GEC as a special translation task, where the source and
target sentences are both in English but the source may contain grammatical
errors, it is inevitable that new problems may arise from adapting existing MT
techniques to GEC. We discuss these problems and propose possible solutions.

4. Investigate system performance for each error type. Type-specific performance
helps understand the strengths and weaknesses of the system, as well as iden-
tify areas for future improvement. However, this is not easy to do for all-errors
GEC systems which propose corrections without error types. We apply a type
estimation strategy and present detailed error analyses.

5. Examine model generalisation to different learner corpora. It is not the aim of
this thesis to beat the state-of-the-art result on one particular dataset (e.g. the
CoNLL-2014 shared task test set - see Section 2.5.2). Instead, we are more
interested in models that can consistently produce competitive results across
different learner corpora without retraining or tuning for new datasets or GEC
tasks. For this reason, we test model generalisation and compare the results
with those from other models which are trained and tuned specifically for each
corpus.

1.3 Thesis structure

The structure of this thesis is as follows. Chapter 2 discusses several related topics in
GEC. It begins with an overview of the automated approaches to detect and correct
errors made by learners and goes on to describe the MT approach to error correction.
Additionally, it gives a description of the learner corpora and automatic evaluation
metrics for GEC, followed by a summary of a series of shared tasks on GEC. It
concludes with a discussion of the datasets and evaluation metrics used in this thesis.

Chapter 3 describes our approach to building a preliminary SMT-based error
correction system. We address the major issues that arise from applying standard
SMT to GEC. We explore different types of translation models (TMs), language
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models (LMs) and alignment methods used in an SMT system. To overcome the lack
of training data, we propose the use of three different types of data and demonstrate
how they can help build robust SMT models. We also investigate phrase table
filtering. We present an SMT system that forms one half of our winning system
submitted to a shared task on grammatical error correction in 2014. A detailed
error analysis of the SMT-based GEC system is also performed.

In Chapter 4, we propose a supervised ranking model to re-rank candidates
generated by an SMT-based GEC system. A range of novel features with respect
to error correction are investigated and implemented in our re-ranker. An in-depth
assessment of the role played by each feature type is carried out, quantifying its
contribution from a statistical perspective. We also investigate the performance of
different re-ranking techniques and find that our proposed model clearly outperforms
the other two, showing its effectiveness in re-ranking candidates for GEC.

Chapter 5 presents the first study on NMT for GEC, in an attempt to ameliorate
the lack of training data for SMT-based GEC systems. Problems from adapting
standard NMT to GEC are addressed. The performance of different NMT models
on the error correction task is investigated. We also propose a two-step approach to
address the ‘rare word’ problem in NMT for GEC and demonstrate how it can help
provide a substantial improvement in system performance.

Finally, Chapter 6 concludes this thesis and discusses some avenues for possible
future research.
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CHAPTER 2

Background

There is a large body of work on grammatical error detection and correction. This
chapter puts the present research in context by offering an overview of latest research
in the field. A more comprehensive survey of automated grammatical error detection
for language learners can be found in the book by Leacock et al. (2014).

2.1 Early approaches to grammatical error cor-

rection

Early attempts at automated error correction employed hand-coded rules. The first
widely used grammar checking tools, such as the Writer’s Workbench (MacDon-
ald et al., 1982), were based on simple pattern matching and string replacement.
Other rule-based systems incorporated syntactic analysis and used manually de-
veloped grammar rules. For example, both Grammatik from Aspen Software and
GramCheck (Bustamante and León, 1996) relied on basic linguistic analysis, while
IBM’s Epistle (Heidorn et al., 1982) and Critique (Richardson and Braden-Harder,
1988) performed full syntactic analysis. Rule-based approaches are generally easy
to implement for some types of errors and can be very effective. This is why they
are still widely used by existing grammar checking systems. However, rules can be-
come impractical for some complex errors and unmanageable with time. The highly
productive nature of language makes it impossible to define rules for every potential
error. So rule-based approaches are often avoided as a general solution.

With the advent of large-scale annotated resources in the 1990s, researchers
moved to data-driven approaches and applied machine learning techniques to build
classifiers for specific error types (Knight and Chander, 1994; Han et al., 2004;
Chodorow et al., 2007; De Felice and Pulman, 2007; Tetreault and Chodorow, 2008;
Rozovskaya and Roth, 2011; Dahlmeier et al., 2012). Most work using machine
learning classifiers has focussed on two error types: articles and prepositions. This
is due to the fact that these errors are some of the most common and challenging ones
for ESL learners, and are also easier to tackle using machine learning approaches
than hand-crafted rules (Felice and Yuan, 2014a). For these closed-class errors, a
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finite confusion set or candidate set including all the possible correction candidates
is defined, such as a list of articles or prepositions in English. Training examples -
native and/or learner data - are represented as vectors of linguistic features that are
considered useful for the error type. Possible features often include neighbouring
words, part-of-speech (POS) tags, grammatical relations (GRs) and dependency
trees. Various machine learning algorithms are used to train classifiers based on these
features. Once a system has been trained, new errors are detected and corrected
by comparing the original word used in the text with the most likely candidate
predicted by the classifier. Since the most useful features often depend on the word
class, it is necessary to build separate classifiers for each error type. Han et al. (2004)
trained a maximum entropy classifier to detect article errors on a large diverse corpus
and achieved an accuracy of 88%. Tetreault and Chodorow (2008) used maximum
entropy models to correct errors for 34 common English prepositions in learner text.

Errors made by ESL learners often depend on their L1s (Lee and Seneff, 2008).
Systems perform much better when information about their L1s is included. Ro-
zovskaya and Roth (2011) compared four linear machine learning classifiers for cor-
recting preposition errors. Results showed that discriminative classifiers perform the
best and adaptation to a writer’s L1 further improves performance. The authors
proposed a way of integrating language-specific priors at decision time using Näıve
Bayes (NB) models instead of training separate classifiers for each L1.

The weakness of approaches based on ‘classification by error type’ is that they
only rely on local context and treat errors independently, assuming that there is only
one error in the context and all the surrounding information is correct. However,
sentences produced by learners may contain a complex combination of several types
of errors which may further interact. An error correction system that only corrects
one type of error is of limited use to language learners in practical applications.

A commonly used solution is to build multiple classifiers and then cascade them
into a pipeline system. A combination of classifier-based and rule-based steps is
often used to build systems that correct multiple errors (Dahlmeier et al., 2012;
Rozovskaya et al., 2013). This kind of solution is complex and laborious: several
pre-processing and post-processing steps are required, and the order of classifiers also
matters. Additionally, it does not solve the problem of interacting errors and pre-
dictions from independent classifiers may be inconsistent. Here is a typical example
taken from Rozovskaya and Roth (2013):

Example 2.1. ... electric cars is still regarded as a great trial innovation ...
Predictions made by a system that combines independently-trained classifiers: cars is

→ car are.

Several approaches have been proposed to address the problem of interacting
errors. Rather than making decisions independently, Dahlmeier and Ng (2012a) de-
veloped a beam-search decoder to iteratively generate sentence-level candidates and
score them using individual classifiers and a general LM. Five proposers were used to
generate new candidates by making five types of changes: spelling, articles, prepo-
sitions, punctuation insertion, and noun number. Results appeared promising and
the decoder outperformed a pipeline system of individual classifiers and rule-based
steps. However, their decoder only provides corrections for five error types and new
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proposers need to be added into the system in order to cover more errors, some of
which might not be easy to design. Furthermore, the number of candidates grows
exponentially with the type of errors being considered (i.e. the number of proposers)
and the sentence length. As it is infeasible to enumerate all candidates, building an
efficient decoder becomes a problem. Wu and Ng (2013) proposed a joint inference
model to resolve inconsistencies produced by individual classifiers. Integer Linear
Programming (ILP) was used to incorporate the output of individual classifiers and
a list of linguistic constraints. These constraints were manually defined and explic-
itly encoded into the system. Any new constraints need to be hand-coded for new
types of interacting errors. Rozovskaya and Roth (2013) built two joint classifiers to
address two linguistic structures: subject-verb and article-NPhead.1 For each of the
structures, rather than using two classifiers independently, a joint classifier simul-
taneously predicts two words that are part of the same structure. Unlike the ILP
model proposed by Wu and Ng (2013), the joint classifier does not need human de-
fined constraints, as it can learn from the training data directly. However, it is more
difficult to collect enough pairs of candidates that form the relevant structures to
use as training data. As one joint classifier only targets one type of interacting error,
new classifiers need to be built for every new type of interaction. These classifier-
based approaches still use scores from individual classifiers, so it becomes infinitely
time-consuming to train individual classifiers for all types of (interacting) errors.

A more general approach for correcting multiple errors in ESL text is to use
n-gram LMs (Gamon et al., 2008; Gamon, 2011). A single model is trained on a
large number of correct sentences and then used to assign probabilities to sequences
of words based on counts from the training data. Within this framework, the target
word sequence is substituted for alternatives from a precompiled candidate set and
the LM scores for the original text as well as the alternatives are computed. The
sequence with the highest probability is chosen as the correct one. Ideally, correct
word sequences will get high probabilities while incorrect or unseen ones will get low
probabilities. Errors are assumed to occur in parts of a sentence where a low score
is assigned. However, no matter how large a training corpus is, it is impossible to
cover all possible correct word sequences in practice. Another problem lies in how
to distinguish low-frequency word combinations from erroneous ones. Therefore,
the LM approach is commonly used in addition to other approaches, especially to
rank correction suggestions proposed by other models. Gamon et al. (2008) used
a LM in addition to machine learning classifiers and combined them using a meta-
classifier. Dahlmeier and Ng (2012a) used a LM in combination with classifiers to
score correction candidates in a beam-search decoder.

Additionally, some efforts have been made to tackle learner errors that are par-
ticularly difficult to detect and correct. Rozovskaya et al. (2014b) proposed a lin-
guistically motivated approach to verb error correction. Their model integrated a
machine learning approach with a rule-based system that first identifies verb can-
didates in noisy learner text and then makes use of verb finiteness information to
identify errors and characterise the type of mistake. Xue and Hwa (2014) developed

1article-NPhead: the interaction between the head of the noun phrase (NP) and the article that
refers to the NP
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a computational model for redundancy detection in ESL writings. They proposed a
measure to assign high scores to words and phrases that are likely to be redundant
within a given sentence by comparing an ESL sentence with the output from off-
the-shelf MT systems. For content word combinations, Kochmar (2016) performed
error detection in adjective-noun and verb-object combinations in learner data using
compositional distributional semantic models.

2.2 Machine translation and error correction

A practical error correction system should be able to correct various types of errors
made by ESL learners. In more recent research, MT techniques have been used to
successfully correct a broader set of errors.

MT algorithms automatically translate text from a source language into a target
language. Error correction thus can be seen as a special translation problem from
grammatically incorrect sentences into correct ones. Unlike in standard MT tasks,
the source and target sentences are both in the same language but the source may
contain grammatical errors. MT-based GEC systems learn correction mappings
from parallel examples and use these mappings to generate a corrected version of
the original (erroneous) sentence, correcting as many errors as possible.

2.2.1 Statistical machine translation

SMT, as the dominant MT approach in the last two decades, employs statistical
models estimated from parallel corpora (i.e. source-target pairs) and monolingual
corpora (i.e. target sentences) to transform text from one language to another.2

Brockett et al. (2006) first proposed the use of an SMT model for correcting mass/-
count noun errors made by learners of English. A list of 14 mass nouns was compiled
using dictionaries and the Chinese Learner English Corpus (Gui and Yang, 2003).
An SMT system requires millions of examples of correct and incorrect usage to learn
reliable translation mappings. Given that examples of correct usage are plentiful in
native data while parallel examples of incorrect usage are much more difficult to
collect, the authors transformed well-formed edited English sentences into mostly
ungrammatical strings by introducing artificial mass noun errors. Hand-constructed
regular expressions were used to make sure the generated strings exhibited charac-
teristics of the learner corpus. A phrase-based SMT system was built using word
alignments produced by GIZA++ (Och and Ney, 2003). Their SMT system suc-
cessfully corrected 61.8% of mass noun errors from a set of 123 examples of incorrect
usage. As noted by Leacock et al. (2014), this was only a first exploration of SMT
techniques for GEC, but with enough training data, such a system could potentially
be powerful enough to detect and correct errors that involve more than just the
insertion, deletion or substitution of single words, as well as being able to provide
stylistic writing assistance to ESL learners.

2SMT algorithms are described in more detail in Chapter 3.
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Mizumoto et al. (2011) applied the same SMT techniques for Japanese error
correction but improved them by considering a wider set of error types and training
on a large-scale real-world dataset. Rather than transforming correct sentences into
grammatically incorrect strings, they extracted real examples from the language
learning social network website Lang-8.3 Moses (Koehn et al., 2007) was used as a
decoder and GIZA++ as an alignment tool. Evaluation was based on a character-
level version of the Bilingual Evaluation Understudy (BLEU) (Papineni et al., 2002),
a popular metric for automatic MT evaluation. Mizumoto et al. (2012) extended
their work to English and investigated the effect of training corpus size on various
types of grammatical errors. Their results showed that a phrase-based SMT system
is effective at correcting errors that can be identified by a local context, but less
effective at correcting errors that need long-range contextual information.

Yuan and Felice (2013) trained a POS-factored SMT system to correct five types
of errors in learner text for the CoNLL-2013 shared task on grammatical error cor-
rection (Ng et al., 2013) (see Section 2.5.2). These five error types involve articles,
prepositions, noun number, verb form, and subject-verb agreement. Since the lim-
ited in-domain training data was insufficient to train an effective SMT system, we
explored alternative ways of generating pairs of incorrect and correct sentences au-
tomatically from other existing learner corpora. We also proposed several modifica-
tions to address issues that affect system performance, like disabling word reordering
and removing incorrect alignment mappings from the phrase table used by the SMT
decoder. Although our SMT approach did not yield particularly high performance
compared to other teams using machine learning classifiers, nevertheless, this re-
vealed the potential of using SMT as a general approach for correcting multiple
error types and interacting errors simultaneously. The version of the corpus used
for the shared task only includes five error types and discards all the remaining cor-
rections, resulting in some broken or partly-corrected sentences. These ill-formed
sentences are particularly harmful for SMT-based systems which, unlike classifiers,
work at a global rather than local level. As a result, many corrections proposed by
our SMT system were considered incorrect because they did not belong to any of
the five target error types. This showed that the SMT approach seems more suitable
for an all-errors task rather than a constrained error correction task.

In the CoNLL-2014 shared task (Ng et al., 2014) (see Section 2.5.2), the top
performing systems demonstrated that the SMT framework can yield state-of-the-art
performance on an all-errors correction task. Our winning system (Felice et al., 2014)
is a pipeline of a rule-based system and a phrase-based SMT system (see Chapter 3).
The SMT system was trained on parallel sentences and short phrase alignments
extracted from fully annotated learner corpora (see Section 2.3). Word alignment
was carried out using Pialign (Neubig et al., 2011). As most words translate into
themselves and some errors are often similar to their correct forms, we introduced
character-level Levenshtein distance (Levenshtein, 1966), which captures the number
of edit operations required to change the source phrase into the target phrase. The
10-best correction candidates produced by the SMT system were then re-ranked
using Microsoft’s Web N-gram Services, which provide access to large smoothed n-

3http://lang-8.com
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gram LMs built from English web documents containing trillions of tokens (Gao
et al., 2010). Corrections were finally filtered by error type. Our work showed that
an SMT-based GEC system can produce state-of-the-art performance on the task
and candidate re-ranking can further improve it.

The SMT framework was also adopted by Junczys-Dowmunt and Grundkiewicz
(2014), who ranked third out of the 13 participating teams. Following the work
of Mizumoto et al. (2012), they constructed a training corpus of more than 3 mil-
lion pairs of parallel sentences from Lang-8. Since the Lang-8 data can be quite
noisy, they performed error selection by keeping errors that resembled mistakes in
a learner corpus and replacing others with their corresponding corrections. Apart
from the LM built from the target side of the training data, a 5-gram LM estimated
from the entire CommonCrawl data (approximately 440 billion tokens, see Buck
et al., 2014) was used during decoding. Similar to our character-level Levenshtein
distance feature, they introduced a word-based version. Feature weights were tuned
for F-score using the k-best Margin Infused Relaxed Algorithm (MIRA) (Cherry
and Foster, 2012) and Minimum Error Rate Tuning (MERT) (Och, 2003). Al-
though they concluded that parameter optimisation was essential, Kunchukuttan
et al. (2014) subsequently found that tuning for F-score to increase precision yielded
worse performance. Grundkiewicz and Junczys-Dowmunt (2014) later introduced
the WikEd Error Corpus, which consists of more than 12 million sentences extracted
from Wikipedia revision histories. A similar error selection process was performed
to only keep errors that resembled those made by ESL learners.

In a following paper, Junczys-Dowmunt and Grundkiewicz (2016) introduced
additional features based on edit operation counts, as well as an operation sequence
model (Durrani et al., 2013) and a 9-gram LM based on word-classes produced
by word2vec (Mikolov et al., 2013). However, the integration of additional model-
s/features seemed to affect the underlying algorithm used in SMT. The authors also
observed erratic behaviour when optimising the new features and therefore proposed
partial solutions to task-specific parameter tuning. Finally, they reported new state-
of-the-art performance on the CoNLL-2014 shared task test set, with an F0.5 score
of 49.49%.

The ‘translation’ approach has also been used to perform automatic post-editing.
Simard et al. (2007) discussed the use of an SMT system to translate erroneous texts
produced by a Rule-Based Machine Translation (RBMT) system into better texts
in the same language. A phrase-based SMT system was used as an automatic post-
editing system and results showed that the SMT system was effective at correcting
repetitive errors made by the RBMT system.

Instead of translating an erroneous English sentence into a correct one directly,
an SMT system could be used as an auxiliary tool for producing ‘round-trip’ trans-
lations (Hermet and Désilets, 2009; Madnani et al., 2012). The idea of round-trip
SMT is to first translate an English sentence into a pivot foreign language, and then
translate the pivot foreign language sentence back into English. By comparing the
original English sentence and the round-trip translation, errors can be detected and
corrected. Hermet and Désilets (2009) focussed on sentences containing preposition
errors and generated a round-trip translation via French. They simply used the
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round-trip translation as the ‘correction’ for the original sentence and their model
was able to correct 66.4% of errors. Madnani et al. (2012) used round-trip transla-
tions obtained from the Google Translate API4 via 8 different pivot languages for
an all-errors task. Their results showed that it is rarely the case that one pivot lan-
guage could offer a round-trip translation that corrected all errors in the sentence;
but that several pivot languages, if combined properly, could. An alignment algo-
rithm was designed to combine multiple round-trip translations generated from the
API into a lattice using TERp, an extension of the Translation Edit Rate evaluation
metric (Snover et al., 2009). The lattice was then used to extract whole-sentence
corrections. Their experiments yielded fairly reasonable results but left significant
room for improvement.

2.2.2 Candidate re-ranking

Despite the success of SMT-based GEC systems, one of the weaknesses is that SMT
features used in the framework might not perform well on the error correction task
given that SMT was not originally intended for GEC. Since the SMT features were
designed to capture translation regularities, they may fail to capture some correction
regularities. As a result, the correction produced by an SMT system is not always the
best. It thus seems necessary to add new features with respect to GEC for building
effective SMT-based GEC systems, although work in this direction is very limited.

Felice et al. (2014) and Junczys-Dowmunt and Grundkiewicz (2014) introduced
Levenshtein distance to their phrase-based SMT systems. Felice et al. (2014) further
used a web-based LM to re-rank the 10-best correction candidates produced by the
SMT system.

Re-ranking, on the contrary, has been widely used in many NLP tasks such as
parsing, tagging and sentence boundary detection (Collins and Duffy, 2002; Collins
and Koo, 2005; Roark et al., 2006; Huang et al., 2007). Various machine learn-
ing algorithms have been adapted to these re-ranking tasks, including boosting,
perceptrons and SVMs. Over the last decade, re-ranking techniques, especially dis-
criminative re-ranking, have shown significant improvement in MT. For each source
sentence, rather than outputting the candidate with the highest probability directly,
an n-best list of candidate translations is collected from an SMT system and later
re-ranked using re-ranking algorithms.5 New global and local features that have
not been used during translation can then be easily added to the re-ranker, without
worrying about fine-grained smoothing issues in the SMT framework. Shen et al.
(2004) successfully applied discriminative re-ranking to MT and observed an im-
provement in BLEU over the original output of the SMT system. As phrase-based
SMT systems make little or no direct use of syntactic information, Och et al. (2004)
proposed to use syntactic features to re-rank the n-best list. A wide range of fea-
tures were systematically evaluated, including word-level features, shallow syntactic
features based on POS tags and chunks, and features from Treebank-based syn-
tactic analyses. However, these syntactic features only gave very small gains and

4https://cloud.google.com/translate
5Re-ranking algorithms are described in more detail in Chapter 4.
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improvements were mostly due to the addition of translation probabilities from IBM
Models (Brown et al., 1993), a non-syntactic feature. Goh et al. (2010) employed an
online training algorithm for SVM-based structured prediction. Various global fea-
tures were investigated for SMT re-ranking, such as the decoder’s scores, source and
target sentences, alignments, POS tags, sentence type probabilities, posterior prob-
abilities and back translation features. Farzi and Faili (2015) proposed a re-ranking
system based on swarm algorithms, where a set of non-syntactic features that can be
easily computed from LMs, TMs, n-best lists of candidates and POS tags were used.

As candidate re-ranking seems potentially valuable for GEC, we propose an SVM
ranking model to improve SMT output, making it the first work to use discriminative
re-ranking for SMT-based GEC.

2.2.3 Neural machine translation

In the past few years, neural network techniques have found success in a wide range
of NLP tasks, such as language modelling (Mnih and Hinton, 2007; Mikolov and
Zweig, 2012), discriminative parsing (Collobert, 2011), sentiment analysis (Socher
et al., 2011; Glorot et al., 2011) and summarisation (K̊agebäck et al., 2014). Thus,
it is not surprising that neural network models have also been applied to error
detection and correction. Sun et al. (2015), for example, employed a Convolutional
Neural Network (CNN) for article error correction. Instead of building machine
learning classifiers using pre-defined syntactic and/or semantic features, a CNN
model is trained from surrounding words with pre-trained word embeddings. Lee
et al. (2016) used a CNN to predict whether a sentence needs editing. Rei and
Yannakoudakis (2016) looked into various neural network sequence labelling models
for error detection in learner writing.

The tide of neural models has also spread to the field of MT. Unlike SMT, NMT
learns a single large neural network which inputs a source sentence and outputs a
translation. The use of NMT models has shown promising results for several MT
tasks (see Kalchbrenner and Blunsom, 2013; Cho et al., 2014; Sutskever et al., 2014;
Bahdanau et al., 2015). Specifically, NMT systems ranked on par with phrase-based
SMT systems on a couple of language pairs in the 2015 Workshop on Statistical
Machine Translation (WMT) shared translation task (Bojar et al., 2015).6

NMT applies an encoder-decoder framework. An encoder first reads and encodes
an input sentence into a vector representation. A decoder then outputs a trans-
lation for the input sentence from the vector representation.7 Different network
architectures have been proposed for NMT. Kalchbrenner and Blunsom (2013) first
used a CNN to encode source sentences and a Recurrent Neural Network (RNN) to
generate target translations. A similar CNN encoder was then used by Meng et al.
(2015). Sutskever et al. (2014) and Cho et al. (2014) used RNNs for both encoding
and decoding. Sutskever et al. (2014) used a multilayer Long Short-Term Memory
(LSTM) to map a source sentence into a fixed-sized vector, and another LSTM to

6The NMT system from Jean et al. (2015b) ranked 1st on English-German translation task and
3rd on Czech-English, English-Czech and German-English translation tasks (ties were allowed).

7NMT algorithms are described in more detail in Chapter 5.
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decode a target sentence from the vector. Cho et al. (2014) used two Gated Recur-
rent Unit (GRU) models, one as the encoder and another as the decoder. Bahdanau
et al. (2015) introduced an attention mechanism to NMT which helps the decoder
focus on the most relevant information in a source sentence when predicting target
words. Luong et al. (2015a) experimented with two attention mechanisms and com-
pared various alignment functions. Both Bahdanau et al. (2015) and Luong et al.
(2015a) have shown that attention-based models are better than non-attentional
ones in handling long sentences.

Towards the end of this thesis, we explore the potential of NMT for GEC, as we
believe that the distributed representation of words could help correct previously
unseen errors more effectively than SMT. To the best of our knowledge, this is the
first work to use the NMT framework to build end-to-end GEC systems.

2.3 Learner corpora

Unlike native corpora, learner corpora are collections of language data produced
by non-native speakers. Having such learner resources is advantageous for GEC
research: 1) it allows the investigation of real learner errors as well as the contexts
in which they occur; 2) it facilitates the development of statistical models for GEC;
for example, an SMT system requires millions of examples of correct and incorrect
usage to learn reliable correction mappings; and 3) it provides a way of evaluating
GEC system performance in a real world scenario. Recently, error-annotated learner
corpora have become more readily and publicly available. In this section, we describe
the learner corpora used in this thesis.

2.3.1 NUCLE

The National University of Singapore Corpus of Learner English (NUCLE) is an an-
notated corpus of learner text built by the National University of Singapore (NUS)
NLP Group in collaboration with the NUS Centre for English Language Commu-
nication (Dahlmeier et al., 2013). It consists of more than 1,400 essays written by
undergraduate students at NUS who are non-native English speakers. These es-
says were written in response to some prompts that cover a wide range of topics,
such as environmental pollution, healthcare, and technology innovation. Two of the
prompts used for data collection are shown below:

Prompt 1

“Public spending on the aged should be limited so that money can be diverted
to other areas of the country’s development.” Do you agree?

Prompt 2

Surveillance technology such as RFID (radio-frequency identification) should
not be used to track people (e.g. human implants and RFID tags on people or
products). Do you agree? Support your argument with concrete examples.
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Error type Prop. (%) Example

Wrong collocation/idiom/prepo-
sition (Wcip)

15.7 Singapore has invested heavily *on/in
the establishment of Biopolis.

Local redundancies (Rloc) 13.7 Abortion is available to end a life only
*because of/because the fetus or embryo
has the wrong sex.

Article or determiner (Ar-
tOrDet)

12.9 Sex selection technology should not be
used in *non-medical/a non-medical sit-
uation.

Noun number (Nn) 8.5 Sex selection should therefore be used
for medical *reason/reasons.

Mechanics (Mec) 7.1 The *affect/effect of that policy has yet
to be felt.

Verb tense (Vt) 7.1 A university *had conducted/conducted
the survey last year.

Word form (Wform) 4.8 Sex-selection may also result in *addi-
tion/additional stress for the family.

Subject-verb agreement (SVA) 3.4 The boy *play/plays soccer.
Verb form (Vform) 3.0 Will the child blame the parents after

he *growing/grows up?

Table 2.1: Proportion of the most common error types in the NUCLE corpus. Grammat-
ical errors in the examples are printed in italics in the form *incorrect word/corrected word.

The corpus contains over one million words which were manually annotated by
professional English instructors at NUS using a tag set of 27 error categories (see
Appendix A), resulting a total number of 46,597 error annotations. The statistics
of NUCLE show that 57.6% of all sentences have no errors, 20.5% have exactly one
error, 10.7% have exactly two errors, and 11.2% of all sentences have more than
two errors. The highest observed number of error annotations in a single sentence
is 28. The top nine error types in the NUCLE corpus are presented in Table 2.1.
Although wrong word choice (Wcip) and redundancy errors (Rloc) are ranked at the
top, Dahlmeier et al. (2013) reported that most Wcip errors are preposition errors,
and a large percentage of Rloc errors involve articles that should be deleted. This
confirms that articles and prepositions are two of the most common errors in ESL
text. It also shows inconsistency in NUCLE labelling.8

2.3.2 CLC

The Cambridge Learner Corpus (CLC) is the world’s largest learner corpus, devel-
oped by Cambridge University Press and Cambridge English Language Assessment
since 1993. It is a 52.5 million word collection of exam scripts written by learners of
English who took Cambridge English examinations around the world. Currently, it
comprises over 200,000 exam scripts produced by learners at various levels speaking

8The NUCLE corpus was later revised for the CoNLL shared tasks to separate prepositions
from Wcip and articles from Rloc (amongst other things) - see Section 2.5.2.
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148 different L1s living in 217 different countries or territories. A subset of the
corpus (a 25.5 million word collection) has been manually error coded by linguists
using an error-coding system with a taxonomy of approximately 80 error types de-
vised specifically for the CLC (Nicholls, 2003). The majority of the error codes used
in the CLC are two-letter codes with the first letter representing the general type
of error (e.g. spelling, word form) and the second one representing the word class
(i.e. POS) of the required word (see Appendix B). The coding format is explained
with the following examples:

Example 2.2. I am so <NS type=“RJ”><i>exciting</i><c>excited</c></NS> that
I have won the first prize.

Example 2.3. I like playing in <NS type=“MD”><c>a</c></NS> team and deciding
quickly what to do next.

Error information is provided inside the <NS> tag, where the error type is also
specified. Inside the <NS> tag, the original erroneous part is marked by the <i>
tag and its corrected version is marked by the <c> tag. In Example 2.2, “RJ”
stands for Replace adJective, where ‘exciting’ should be corrected to ‘excited’. In
Example 2.3, “MD” stands for Missing Determiner, where the word ‘a’ should be
added. Other error codes include Form, Unnecessary, Spelling and Derivation for the
first letter; and Noun, Verb, preposiTion, Punctuation for the second letter. More
detailed information about the error-coding scheme can be found in Nicholls (2003).

The top nine error types in the error-coded CLC are presented in Table 2.2,
with spelling errors excluded. The most frequent error type in the CLC is choosing
an inappropriate open class word (noun, verb, adjective or adverb), followed by
prepositions and determiners.9 A similar error distribution was observed in the
NUCLE corpus - see Table 2.1.

Each examination script in the CLC contains meta-data about the learner, such
as L1, nationality, age, sex and level of English, as well as the examination. There
are three examination suites in the CLC (Williams, 2008):

• main suite (general purpose qualification):

Certificate of Proficiency in English, Certificate of Advanced English, First
Certificate in English (FCE), Preliminary English Test, and Key English Test;

• Business English Certificates (focuses on the language of business);

• International English Language Testing System (IELTS) (general and aca-
demic modules).

Two subsets of the CLC used in this thesis are described in detail: FCE and
IELTS examination scripts.

9The determiner errors include both determiner and pre-determiner errors, not just the articles
a/an and the.
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Error type Prop. (%) Example

Content word choice error 19.9 We need to deliver the merchandise on
a daily *base/basis.

Preposition error 13.4 Our society is developing *in/at high
speed.

Determiner error 11.7 Wemust try our best to avoid *the/a
shortage of fresh water.

Comma error 9.3 However */, I’ll meet you later.
Inflectional morphology 7.4 The women *weared/wore long dresses.
Wrong verb tense 6.7 I look forward to *see/seeing you.
Derivational morphology 4.9 It has already been *arrangement/ar-

ranged.
Pronoun 4.2 I want to make *me/myself fit.
Agreement error 4.0 I *were/was in my house.

Table 2.2: Proportion of the most common error types in the CLC. Grammatical errors
in the examples are printed in italics in the form *incorrect word/corrected word.

2.3.2.1 FCE examination scripts

The FCE dataset was released into the public domain in 2011 by Yannakoudakis
et al. (2011). It is a set of 1,244 scripts written by learners of English who took
the FCE examination between 2000 and 2001, which assesses English at an upper-
intermediate level. The FCE dataset contains about half a million words and more
than 50k errors. Each exam script contains two essays whose length varies between
120 and 180 words. Essays were written in response to tasks requiring a learner to
write a letter, a report, an article, a composition or a short story. A typical prompt
is shown below:

Your teacher has asked you to write a story for the school’s English language
magazine. The story must begin with the following words: “Unfortunately, Pat
wasn’t very good at keeping secrets”.

The anonymised scripts are annotated using XML and linked to meta-data in-
cluding the question prompts and information about candidates.

2.3.2.2 IELTS examination scripts

The IELTS dataset is another subcorpus of the CLC that comprises exam scripts
written by ESL learners taking the IELTS examination. It consists of 851 scripts
from 2008 and 100 scripts from 2010. Like in the FCE dataset, each exam script in
the IELTS dataset consists of two essays in response to two tasks. The first task asks
a learner to write a descriptive report on the information provided in a diagram,
table or short piece of text, or write a short letter in response to a situation or
problem with a minimum of 150 words. The second task asks a learner to use at
least 250 words to present an argument or discuss a problem.
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2.4 Evaluation metrics

For system development, it is necessary to have internal system evaluation. Auto-
matic evaluation metrics allow fast and inexpensive feedback. When evaluating a
GEC system, the system’s output is compared to gold-standard references provided
by human experts. There is an on-going discussion on how to best evaluate GEC
systems and several metrics have been proposed and used (Dale and Kilgarriff, 2011;
Dale et al., 2012; Papineni et al., 2002; Dahlmeier and Ng, 2012b; Felice and Briscoe,
2015; Bryant and Ng, 2015; Napoles et al., 2015; Grundkiewicz et al., 2015; Sakaguchi
et al., 2016). In this section, we present four evaluation metrics used in this thesis.

2.4.1 BLEU

BLEU was first proposed by Papineni et al. (2002) and is now used as the dominant
method for automatic MT evaluation. It estimates the quality of the text produced
by MT systems so that the closer it is to human translations, the better. BLEU has
been shown to correlate well with human judgments at the corpus level. It uses a
modified n-gram precision (pn) to compare a candidate against multiple references:

pn =

∑

n-gram∈C countclip(n-gram)
∑

n-gram∈C count(n-gram)
(2.1)

where C is a candidate sentence. The count of each n-gram in C is clipped by
its maximum reference count observed in any single reference for that n-gram:

countclip = min(count,max ref count) (2.2)

BLEU is then defined as:

BLEU = BP · exp

(

N
∑

n=1

wn log pn

)

(2.3)

where N is the order of the highest n-gram to be considered (usually N = 4); wn

stands for uniformly distributed weights: wn = 1
N
. BP is a brevity penalty which is

used to prevent very short candidates from receiving very high scores:

BP =







1 if c > r

e(1−
r
c
) if c ≤ r

(2.4)

where c and r are the lengths of the system’s candidate and gold-standard ref-
erence respectively.

BLEU was used by Mizumoto et al. (2011, 2012) to evaluate SMT-based GEC
systems. Unlike metrics which rely on references with explicitly labelled error anno-
tations, BLEU only requires corrected references. On the one hand, it can be used
as a generic evaluation method independent of the annotation scheme, but on the
other hand, it fails to provide detailed error type feedback for GEC. Since both the
original and corrected sentences are in the same language (i.e. English) and most
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words in the sentence do not need changing, BLEU scores for GEC systems are
relatively high compared with standard MT tasks. However, it is not enough to just
compare BLEU scores from different GEC systems, it is also necessary to compare
them with that of the original input. If the system’s ouput yields a higher BLEU
score than the original input, it is assumed that the system improves the quality of
the original input by making some corrections. In addition, BLEU allows multiple
references, which is useful for errors with multiple alternative corrections.

2.4.2 M2 scorer

The M2 scorer, proposed by Dahlmeier and Ng (2012b), is used to evaluate sys-
tem performance by how well its proposed corrections or edits match the gold-
standard edits. It computes the sequence of phrase-level edits between a source
sentence and a system’s candidate that achieves the highest overlap with the gold-
standard annotation. A parameter µ is used to limit the number of unchanged
words (max unchanged words) so that edits including too many words are avoided.
Evaluation is performed by computing precision (P), recall (R) and F-score (van
Rijsbergen, 1979):

P =

∑n

i=1 |ei ∩ gi|
∑n

i=1 |ei|
(2.5)

R =

∑n

i=1 |ei ∩ gi|
∑n

i=1 |gi|
(2.6)

F β = (1 + β2)×
P ×R

(β2 × P ) +R
(2.7)

where ei = {e1, e2, ..., en} is the system’s candidate edit set and gi = {g1, g2, ...,
gn} is the gold-standard edit set. The intersection between ei and gi is defined as:

ei ∩ gi = {e ∈ ei | ∃ g ∈ gi (match (e, g))} (2.8)

Two of the commonly used F-scores are F1, which weights P and R evenly, and
F0.5, which emphasises P twice as much as R:

F 1 = 2×
P ×R

P +R
(2.9)

F0.5 = (1 + 0.52)×
P ×R

(0.52 × P ) +R
(2.10)

The M2 scorer was the official scorer in the CoNLL 2013 and 2014 shared tasks
on grammatical error correction, where F1 was used in CoNLL-2013 and F0.5 was
used in CoNLL-2014 (see Section 2.5.2). When building GEC systems, minimising
the number of unnecessary corrections is often regarded as more important than
covering a large number of errors, which is something users are willing to sacrifice
as long as the system provides accurate corrections. In other words, high P is often
preferred over high R. There is also a strong educational motivation, as flagging
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Source Candidate Reference Classification

a a a TN
a a b FN
a a - FN
a b a FP
a b b TP
a b c FP, FN, FPN
a b - FP, FN, FPN
a - a FP
a - b FP, FN, FPN
a - - TP
- a a TP
- a b FP, FN, FPN
- a - FP
- - a FN

Table 2.3: The extended writer-annotator-system evaluation scheme proposed by Felice
and Briscoe (2015).

correct text as incorrect would cause confusion among learners. This is why F0.5

was much preferred lately when reporting system performance.

However, evaluation methods based on P, R and F-score (e.g. the M2 scorer)
do not provide an indicator of improvement on the original text so there is no way
to compare GEC systems against a ‘do-nothing’ baseline that keeps the input text
unchanged. A ‘do-nothing’ baseline will always yield an F-score of 0 by definition,
and an increase in P, R or F-score does not necessarily mean a reduction in the
actual error rate.

2.4.3 I-measure

The I-measure was designed by Felice and Briscoe (2015) to address problems with
previous evaluation methods and to evaluate real improvement on the original sen-
tence after corrections.

System performance is first evaluated in terms of weighted accuracy (WAcc),
based on a token-level alignment between a source sentence, a system’s candidate,
and a gold-standard reference. An extended version of the writer-annotator-system
evaluation scheme (Chodorow et al., 2012) was adopted where each token alignment
is classified as a true positive (TP), true negative (TN), false positive (FP), false
negative (FN), or both an FP and FN (FPN) - see Table 2.3. WAcc is defined as:

WAcc =
w · TP + TN

w · (TP + FP) + TN + FN− (w + 1) · FPN
2

(2.11)

where w > 1 is a weight factor.
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An Improvement or I-measure (I) score is computed by comparing system per-
formance (WAccsys) with that of a baseline that leaves the original text unchanged
(WAccbase):

I =



































⌊WAccsys⌋ if WAccsys = WAccbase

WAccsys −WAccbase
1−WAccbase

if WAccsys > WAccbase

WAccsys
WAccbase

− 1 otherwise

(2.12)

Values of I lie in the [-1, 1] interval.10 Positive values indicate improvement,
while negative values indicate degradation. A score of 0 indicates no improvement
(i.e. baseline performance), 1 indicates 100% correct text and -1 indicates 100%
incorrect text.

As multiple annotations are taken into account, the I-measure is computed af-
ter maximising WAccsys at the sentence level, so as to ensure all the evaluated
hypotheses are paired with their highest scoring references. Trying to maximise I
score directly can yield suboptimal results, as different combinations of WAccbase
and WAccsys can produce the same final result (but the one with higher WAccsys is
clearly preferred).

2.4.4 GLEU

Generalized Language Evaluation Understanding (GLEU), proposed by Napoles
et al. (2015), is a simple variant of BLEU for GEC which takes the original source
into account. GLEU modifies the n-gram precision in BLEU to assign extra weight
to n-grams present in the candidate that overlap with the reference but not the
source (R\S), and penalise those in the candidate that are in the source but not the
reference (S\R). For a correction candidate C with a corresponding source S and
reference R, the modified n-gram precision (pn

′) for GLEU(C,R, S) is defined as:

pn
′ =

∑

n-gram∈C countR\S(n-gram)− λ(countS\R(n-gram)) + countR(n-gram)
∑

n-gram∈C countS(n-gram) +
∑

n-gram∈R\S countR\S(n-gram)

(2.13)
where the weight λ determines by how much incorrectly changed n-grams are

penalised. Given a bag of n-grams B, the counts in Equation 2.13 are collected as:

countB(n-gram) =
∑

n-gram′∈B

d(n-gram, n-gram′) (2.14)

d(n-gram, n-gram′) =







1 if n-gram = n-gram′

0 otherwise
(2.15)

10I score is often expressed as a percentage.
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By updating the n-gram precision in Equation 2.3, GLEU is defined as:11

GLEU(C,R, S) = BP · exp

(

N
∑

n=1

wn log pn
′

)

(2.16)

Similar to BLEU, GLEU works with multiple references at the corpus level. It
can be used as a generic evaluation method independent of the annotation scheme,
but fails to provide detailed system performance for each error type.

2.5 Shared tasks on grammatical error correction

In the last few years, four GEC shared tasks have provided a forum for participat-
ing teams to compare results on common training and test data. Participants are
provided with a fully annotated training set and encouraged to use any publicly
available data and tools to build their GEC systems in a few months’ time. After
that, new blind test data is used to evaluate system performance for the participat-
ing teams. Systems are expected to detect grammatical errors in text written by
non-native speakers and return corrected versions within a few days after the release
of the test data. The organisers then evaluate each system’s output and release the
final rankings.

2.5.1 HOO 2011 and 2012

The first two shared tasks - Helping Our Own (HOO) 2011 and 2012 - were aimed
to promote the use of NLP tools and techniques for the development of automated
systems that could provide writing assistance to non-native authors in the NLP
community (Dale and Kilgarriff, 2011; Dale et al., 2012). In the HOO-2011 shared
task, participants were provided with a set of documents extracted from the ACL
Anthology12 written by non-native authors. The task was to automatically detect
and correct all errors present in text. Errors were classified into 13 error types based
on the CLC coding system (Nicholls, 2003). Six teams participated in the task, with
some achieving top performance by focussing only on a limited number of error types.

Given the difficulty of HOO-2011, the HOO-2012 shared task focussed only on
article and preposition errors. The FCE dataset was provided as the official training
set. The number of participating teams increased to 14 and most participants built
machine learning classifiers. Evaluation in both HOO shared tasks was performed
by computing P, R and F-score between a system’s edit set and a manually created
gold-standard edit set.

11We notice that there is a new version of GLEU appeared this year (Napoles et al., 2016b).
However, scores reported in this thesis were computed using the original GLEU (Napoles et al.,
2015) described in this section.

12A digital archive of research papers in computational linguistics: https://aclweb.org/

anthology
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2.5.2 CoNLL 2013 and 2014

The next two shared tasks took place in conjunction with the Conference on Com-
putational Natural Language Learning (CoNLL). The CoNLL-2013 shared task (Ng
et al., 2013) expanded the scope of HOO-2012 to include three new error types: noun
number (Nn), verb form (Vform) and subject-verb agreement (SVA). Together with
article (ArtOrDet) and preposition (Prep) errors, this new error list is more compre-
hensive and also introduces interacting errors. NUCLE v2.313 was used as in-domain
training data. The test data consists of 50 new essays, which were written in re-
sponse to two prompts. One prompt was also used in the training set, while the
other was new.

Systems were evaluated using the M2 scorer with the max unchanged words pa-
rameter µ set to 3 as suggested by the organisers (limiting the maximum unchanged
words to three per edit). Rankings were based on F1, weighting P and R equally.
Initially, there was only one set of gold annotations, but since there are often multi-
ple valid corrections for some errors, participating teams were subsequently allowed
to propose alternative answers (gold-standard edits). This practice was adopted
from the HOO 2011 and 2012 shared tasks. Therefore, there were two rounds of
evaluation, the second of which allowed alternative answers. As noted by Ng et al.
(2013), these new scores tended to be biased towards the teams which submitted
alternative answers. Consequently, to reduce bias, they suggested future evaluation
be carried out without alternative answers. In the end, 17 teams participated in
CoNLL-2013. Among these teams, a common approach was to build classifiers for
each error type. Other approaches included LM, MT and heuristic rules.

The CoNLL-2014 shared task (Ng et al., 2014) tried to once again push the
boundaries of GEC by returning to an all-errors correction task. In particular, there
were three major changes compared with CoNLL-2013: 1) participating systems
were expected to correct grammatical errors of all types; 2) two human annotators
annotated the test essays independently; and 3) the evaluation metric was changed
from F1 to F0.5, to prioritise P over R. A newer version of the NUCLE corpus -
NUCLE v3.0 - was used as official training data. Additionally, a new set of 50
essays written by non-native English speakers was used as blind test data. The
CoNLL-2013 test set could be freely used for training and/or development. The M2

scorer was again used as the official scorer.

In total, 13 teams submitted output to CoNLL-2014. Most of them built hybrid
systems that combined different approaches. For non-specific error type correction,
LM and MT approaches were used; whereas for single error types, rule-based ap-
proaches and machine learning classifiers were preferred. We built a phrase-based
SMT system (see Chapter 3) which contributed to our final hybrid system submit-
ted to the shared task. Our system achieved the best F0.5 and R on the original
evaluation.

13In NUCLE v2.3, 17 essays were removed from the first release of NUCLE, and the error types
Wcip and Rloc were mapped to Prep, Wci, ArtOrDet, and Rloc- using POS tags.
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2.6 Use of datasets and evaluation metrics in this

thesis

In the rest of this thesis, different learner corpora and evaluation metrics are used
in different chapters. This is because, according to Chodorow et al. (2012), there
is no single best evaluation metric and the usefulness of a metric depends on the
application and research goals.

The work in Chapter 3 is presented in the context of the CoNLL-2014 shared
task. The NUCLE corpus, as provided by the shared task organisers, is used as
in-domain training data, and results are reported on the CoNLL-2014 development
set (i.e. the CoNLL-2013 test set) and test set. F0.5 as calculated by the M2 scorer
is used as the evaluation measure. Parallel sentences extracted from the publicly
available FCE dataset and the IELTS dataset are used as additional training data.

In Chapter 4 and 5, the publicly available FCE dataset is used and results
are reported on the FCE test set. The reasons for using the FCE dataset rather
than NUCLE are manifold. Firstly, the FCE dataset, as a subcorpus of the CLC,
covers a wide variety of L1s and was used in the HOO-2012 error correction shared
task. Compared with the NUCLE corpus used in the CoNLL 2013 and 2014 shared
tasks, which only contains essays written by undergraduate students at NUS, the
FCE dataset is a more representative test set of learner writing. Secondly, the
error annotations in the NUCLE corpus are sometimes unreliable and inconsistent.
This may introduce noise into final GEC systems and result in underestimations of
performance. Thirdly, as described in Section 2.3.2, the CLC is the world’s largest
learner corpus, and the FCE dataset was annotated using the same annotation
scheme as the CLC. In order to make better use of the CLC and avoid any problems
caused by the inconsistency between different annotation schemes, we use the FCE
dataset in our experiments. Results reported on the publicly available FCE dataset
can be used for cross-system comparisons.

As discussed in Section 2.4, evaluation methods based on P, R and F-score
(e.g. the M2 scorer) do not provide an indicator of improvement on the original text.
Given this, and the fact that an increase in P, R or F-score does not necessarily mean
a reduction in the actual error rate, we opt to use the I-measure and thus gain a
better insight into system performance in terms of improvement on the original text.

We also apply our CLC-trained systems to the CoNLL-2014 shared task devel-
opment and test sets directly, without using or optimising for NUCLE. Results are
reported using BLEU, GLEU, F0.5 (calculated by the M2 scorer) and I-measure for
broader cross-system comparisons.
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CHAPTER 3

Building a preliminary

SMT-based GEC system

In this chapter, we investigate whether SMT can form the basis of a competitive
all-errors GEC system and describe how to build an end-to-end system using the
SMT framework. Our SMT method is evaluated in the context of the CoNLL-
2014 all-errors correction shared task (see Section 2.5.2) and the results presented
in Section 3.5 were previously published in Felice et al. (2014). Additionally, the
work on artificial data described in Section 3.3.4.2 was further developed in Felice
and Yuan (2014b).

3.1 Statistical machine translation

As one of the first applications envisaged for computers, MT is the process of trans-
lating a sentence from one language into another automatically. Several approaches
have been proposed, such as word-for-word translation, interlingual approaches (Mi-
tamura et al., 1991), example-based MT (Nagao, 1984; Sato and Nagao, 1990) and
SMT. In the last two decades, SMT has become the dominant approach both in
the research community and in the commercial sector. The underlying idea is that
language is so complex and productive that it could never be fully analysed and
distilled into a set of rules. Instead, a machine should try to learn translation map-
pings automatically from large parallel corpora by pairing the input and output of
the translation process and learning from the statistics over the data, thus removing
the need for linguists or language experts. SMT stands out for its low cost and rapid
prototyping, which also produces state-of-the-art results for many MT tasks.

GEC can be considered a special case of MT where the task is to translate ‘bad’
English sentences into ‘good’ ones. The SMT approach to GEC has several advan-
tages. First, an SMT system can deal with multiple error types at the same time
without having to (a) classify errors into different types, (b) decide on their bound-
aries, or (c) combine the results of multiple classifiers, which is often the case in
traditional machine learning approaches. Interacting errors are expected to be cor-
rected as well since SMT systems work at a global rather than local level (compared
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Source

P(C)
Noisy channel

P(E|C) Receiver
C E Ĉ

Figure 3.1: A noisy channel model.

with classifiers) and corrections are performed jointly for the entire sentence. As a
result, the SMT approach seems more suitable for an all-errors task. Second, it does
not need expert knowledge but only requires a parallel corpus of grammatically in-
correct sentences as the source and their corrected versions as the target. Following
the principle that ‘more data is better data’ (Church and Mercer, 1993), previous
studies in SMT have shown that the larger the training parallel corpus, the more
reliable the translation mappings that can be learnt and the better the translation
performance that can be achieved (Koehn et al., 2003; Suresh, 2010; Axelrod et al.,
2011). Last but not least, there are well-developed tools for SMT which can be
easily adapted for GEC, so we can benefit from state-of-the-art SMT techniques.

An SMT-based GEC system can be modelled as a machine translator. Here, the
input (source) is an erroneous English sentence E = e1 e2 ... em, and the output
(target) is a corrected sentence C = c1 c2 ... cl. The erroneous sentence E produced
by ESL learners can be regarded as having passed through a noisy channel (Shannon,
1948) and is hence corrupted by noise, i.e. interference from learners’ L1s - see
Figure 3.1. The goal is to recover the sentence C based on the corrupt sentence E:

Ĉ = argmax
C

P (C|E) = argmax
C

P (E|C)P (C)

P (E)
= argmax

C

P (E|C)P (C) (3.1)

where P (E) in the denominator is ignored since it is a constant across all Cs.
The other three parameters that need to be considered are:

• LM:

estimates the corrected sentence probability P (C) from a target language cor-
pus;

• TM:

estimates the translation (i.e. correction) probability P (E|C) from a parallel
corpus;

• decoder:

searches for the target sentence C that maximises the product of P (C) and
P (E|C).

3.1.1 The language model

One essential component of any SMT system is the LM, which makes sure that the
final system outputs fluent English sentences. A LM is a function that takes an En-
glish sentence as input and returns the probability that it is a valid English sentence.
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3.1.1.1 N-gram language model

Statistical LMs were designed to assign a probability to a sequence of words (or
tokens, which may include punctuations, etc.) based on counts from a training
corpus (Brants et al., 2007). Since most long sequences of words will never occur
in the text at all, the process of predicting a word sequence is broken down into
predicting one word at a time. A sentence C with l words can be decomposed using
the chain rule (Koehn, 2010):

P (C) = P (c1, c2, ..., cl) =
l
∏

i=1

P (ci|c1, c2, ..., ci−1) (3.2)

Following the Markov assumption, Equation 3.2 can be reformulated to only
consider the most recent (n− 1) words when predicting the next word:

P (C) = P (c1, c2, ..., cl) ≈
l
∏

i=1

P (ci|ci−n+1, ..., ci−1) (3.3)

For a unigram LM (n = 1), the probability depends only on the current word:

P (C) = P (c1, c2, ..., cl) ≈
l
∏

i=1

P (ci) (3.4)

where

P (ci) =
count(ci)

N
(3.5)

count(ci) is the number of times ci is seen in the training corpus and N is the
total number of words seen in the same corpus.

For a bigram LM (n = 2), the probability is calculated as:

P (C) = P (c1, c2, ..., cl) ≈
l
∏

i=1

P (ci|ci−1) (3.6)

where

P (ci|ci−1) =
count(cii−1)

count(ci−1)
(3.7)

For a higher-order n-gram LM:

P (C) = P (c1, c2, ..., cl) ≈
l
∏

i=1

P (ci|c
i−1
i−n+1) (3.8)

where

P (ci|c
i−1
i−n+1) =

count(cii−n+1)

count(ci−1
i−n+1)

=
count(cii−n+1)

∑

ci
count(cii−n+1)

(3.9)

Higher-order n-grams can capture information about longer sequences, while the
choice of n typically depends on the size of the training corpus.
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Ideally, correct word sequences will get high probabilities while incorrect or un-
seen sequences will get low probabilities. However, no matter how large a training
corpus is, it is impossible to cover all possible correct word sequences. As we move
towards higher-order n-grams, data sparsity becomes a more serious problem and we
are more likely to encounter unseen n-grams. Equation 3.9 assigns unseen n-grams
a probability of 0 and is undefined when the denominator is 0. N-grams with zero
counts will then result in a zero probability for the whole string. Since we do not
want to give any string zero probability, we need a way to assign some probabilities
to unseen n-grams. In practice, smoothing and back-off techniques are often used.

Smoothing methods are used to assign positive probabilities to unseen n-grams,
e.g. add-one smoothing (Laplace, 1825; Lidstone, 1920; Johnson, 1932; Jeffreys, 1961)
and Good-Turing smoothing (Good, 1953). However, they assign all unseen n-grams
the same probability, making no distinction between them.

Another option is to back off to lower order n-grams with richer and more reliable
statistics. When estimating the probability of an n-gram cii−n+1, if we have seen the
n-gram in the training corpus (i.e. count(cii−n+1) > 0), we use the raw LM probability
P (ci|c

i−1
i−n+1); otherwise we back off to the lower order probability Pbo(ci|c

i−1
i−(n−1)+1):

Pbo(ci|c
i−1
i−n+1) =







d(ci−1
i−n+1)P (ci|c

i−1
i−n+1) if count(cii−n+1) > 0

α(ci−1
i−n+1)Pbo(ci|c

i−1
i−(n−1)+1) otherwise

(3.10)

A discounting function d (0 ≤ d ≤ 1) is introduced to ensure that overall prob-
abilities add up to 1 for a history ci−1

i−n+1. One way to compute d is to first group
histories based on their counts in the corpus. If we have seen the history very fre-
quently, we would trust predictions based on this history more, and therefore set a
fairly high value for d. Otherwise, we give more weight to the back-off probability
through α, resulting in a small d.

3.1.1.2 Kneser-Ney smoothing

Kneser-Ney smoothing introduced new ways of constructing the higher-order and
lower-order models used in the back-off model. For the higher-order model, absolute
discounting (Ney and Essen, 1991; Ney et al., 1994) is used to reduce the proba-
bility mass for observed n-grams. Rather than using the discounting function d in
Equation 3.10, a fixed discount D (0 ≤ D ≤ 1) is subtracted from non-zero counts:

P (ci|c
i−1
i−n+1) =

max
{

count(cii−n+1)−D, 0
}

∑

ci
count(cii−n+1)

(3.11)

Ney et al. (1994) proposed a way to calculate D:

D =
N1

N1 +N2

(3.12)

where N1 and N2 are the total numbers of n-grams with exactly one and two
counts respectively in the training data.
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We notice that the lower-order model is useful only when counts in the higher-
order model are small or zero. Therefore, the lower-order model should be optimised
to perform well in these situations. However, the back-off lower-order model defined
in Equation 3.10 does not distinguish words that are very frequent but only occur
in a restricted set of contexts from those which are less frequent but occur in many
more contexts. In Kneser-Ney smoothing, the lower-order model is modified to take
the diversity of histories into account, where the raw count is replaced with the
count of histories for a word:

PKN(ci|c
i−1
i−(n−1)+1) =

N1+(·c
i
i−(n−1)+1)

N1+(·c
i−1
i−(n−1)+1·)

(3.13)

where

N1+(·c
i
i−(n−1)+1) = |{ci−n+1 : count(c

i
i−n+1) > 0}| (3.14)

N1+(·c
i−1
i−(n−1)+1·) =

∑

ci

N1+(·c
i
i−(n−1)+1) (3.15)

The back-off model is then defined as:

PKN(ci|c
i−1
i−n+1) =















max{count(cii−n+1)−D, 0}
∑

ci
count(cii−n+1)

if count(cii−n+1) > 0

γ(ci−1
i−n+1)PKN(ci|c

i−1
i−(n−1)+1) otherwise

(3.16)

where γ(ci−1
i−n+1) is chosen to make the probabilities sum to 1.

3.1.1.3 Modified Kneser-Ney smoothing

Modified Kneser-Ney smoothing is perhaps the best smoothing method widely used
today. Chen and Goodman (1998) made three main changes to Kneser-Ney smooth-
ing : 1) interpolation is used instead of back-off ; 2) rather than using a single discount
D for all non-zero counts, three different discount parameters, D1, D2, and D3+, are
used for n-grams with one, two, and three or more counts respectively; and 3) esti-
mation for discount Ds is performed on held-out data. Equation 3.16 is modified to:

PMKN(ci|c
i−1
i−n+1) =

count(cii−n+1
)−D(count(cii−n+1

))
∑

ci
count(cii−n+1

)
+ γ(ci−1

i−n+1)PMKN(ci|c
i−1
i−(n−1)+1)

(3.17)

where

D(count) =















0 if count = 0
D1 if count = 1
D2 if count = 2
D3+ if count ≥ 3
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To make the probabilities sum to 1, we take

γ(ci−1
i−n+1) =

D1N1(c
i−1
i−n+1·) +D2N2(c

i−1
i−n+1·) +D3+N3+(c

i−1
i−n+1·)

∑

ci
count(cii−n+1)

(3.18)

where

Nr(c
i−1
i−n+1·) = |{ci : count(c

i
i−n+1) = r}| (3.19)

Optimal discount parameters D can be computed as:

D1 = 1− 2Y
N2

N1

D2 = 2− 3Y
N3

N2

D3+ = 3− 4Y
N4

N3

(3.20)

where

Y =
N1

N1 + 2N2

(3.21)

All these modifications have been proved to improve performance, making mod-
ified Kneser-Ney smoothing the best LM estimator.

3.1.2 The translation model

TMs are learnt from parallel corpora. However, unlike in LMs, it is not feasible
to use simple word counts so a word alignment model must be introduced. An
alignment can be formalised with an alignment function a. This function maps each
output word at position i to an input word at position j:

a : j → i (3.22)

Example 3.1. In this source-target pair of sentences:

S:

T:

Your

Yours

1

1

sincerely

sincerely

2

2

,

,

3

3

the alignment function a provides the following mappings:

a : {1→ 1, 2→ 2, 3→ 3} (3.23)
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The TM probability is then defined using the alignment model as:

P (E|C) =
∑

a

P (a, E|C) (3.24)

A sentence is broken up into chunks:

P (a, E|C) =
m
∏

j=1

t(ej|ci) (3.25)

where ci is the chunk in the corrected sentence corresponding to the chunk ej
in the erroneous sentence and t(ej|ci) is the probability of these two chunks being
aligned. Relative frequency estimates can then be used to estimate the probability
t(ej|ci).

3.1.2.1 IBM Models 1-5

Initially, each chunk is made up of just one word, so the model obtained is based on
word-to-word translation. Since we do not have word-aligned data (only sentence-
aligned data is available in a parallel corpus), the Expectation-Maximisation (EM)
algorithm (Dempster et al., 1977) is used to find the maximum likelihood estimation
at the word level. The EM algorithm works as follows:

1. initialise the model, typically with uniform distributions;

2. apply the model to the data (expectation step);

3. learn the model from the data (maximisation step);

4. iterate steps 2 and 3 until convergence.

IBMModels 1-5 (Brown et al., 1993) and a Hidden Markov Model (HMM) (Vogel
et al., 1996) define different decompositions of the probability P (E|C) with different
alignments a.

In IBM Models 1 and 2:

1. the length of the erroneous string m is first chosen (assuming all lengths have
equal probability);

c0 c1 c2 c3 c4 ... cl

1 2 3 4 5

...

m
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2. each position in the erroneous string is then connected to the word in the
corrected string;

c0 c1 c2 c3 c4 ... cl

1 2 3 4 5

...

m

3. the erroneous word for each position in the erroneous string is finally decided.

c0 c1 c2 c3 c4 ... cl

e1

1

e2

2

e3

3

e4

4

e5

5

... en
m

IBM Model 1 only uses lexical translation and assumes all connections to be
equally likely, therefore the order of the words in C and E has no impact. The EM
algorithm is used to estimate lexical translation probabilities. IBM Model 2 makes
more realistic assumptions and adds an absolute reordering model. It addresses the
issue of alignment with an explicit alignment model which depends on the positions
it connects (j → i) and the lengths of the input and output strings, that are m and
l respectively:

a(i|j,m, l) (3.26)

The HMM assumes that words do not move independently of each other and that
the probability of a connection also depends on the previous connection position.

In Models 3, 4 and 5, a model of fertility (one-to-many mapping) is introduced
so that one source word can be translated into zero or more target words when
computing P (E|C). Thus, a single word in the corrected string C can be aligned
with zero, one or more words in the erroneous string E:

c0 c1 c2 c3 c4 ... cl

e1

1

e2

2

e3

3

e4e5

4

... en
m

where c2 → ∅ and c4 → e4e5.
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A relative reordering model is used in Model 4, where the probability of a con-
nection also depends on previously translated words. Model 5 fixes deficiencies in
Models 3 and 4 by keeping track of available positions, therefore avoiding probability
mass on non-strings (i.e. impossible translations).

IBM Model 1 can be considered a special case of Model 2. Models 1-4 serve as
stepping stones to Model 5. In addition, only Model 1 has a global maximum, which
can be used as an initial estimate for the improved models.

3.1.2.2 Phrase-based models

Word-based models like IBM Models 1-5 and the HMM use words as translation
units and only allow one-to-one and one-to-many mappings, so they fail to repre-
sent many-to-one or many-to-many mappings that are common in translation tasks.
Phrase-based models that allow many-to-many mappings are therefore widely used
in current SMT applications (Koehn et al., 2003). Unlike in word-based models,
phrases are used as translation units, so local contexts can be learnt and used dur-
ing translation.

In phrase-based models, a source sentence E is first segmented into m phrases
ē m

1 , where phrases can be any sequences of words. Each source phrase ēj is then
translated into a target phrase c̄i and target phrases can be further reordered, as in
the following examples:

Example 3.2. Many-to-many mappings:

S:

T:

it

it

was

was

destroyed

destroyed

by

by

the

the

army of Japan

Japanese army

Example 3.3. Reodering:

S:

T:

I

I

pay

play

very well

very well

tennis

tennis

The segmentation process is not modelled explicitly, and each segmentation is
first assumed to be equally likely. A phrase translation table containing phrase
mappings and their translation probabilities is then built and finally used during
translation.
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There are several ways to construct a phrase translation table and one of them
is to build a table from a word alignment as follows:

1. create a word alignment for each sentence pair in the parallel corpus using
IBM Models and the HMM;

2. extract phrase pairs from the word alignment using heuristic rules;

3. estimate phrase translation probabilities using relative frequency.

When extracting phrase pairs, both short and long phrases are collected. Shorter
phrases are more likely to be used to translate previously unseen sentences while
longer phrases capture more contextual information and can be used to translate
large chunks of text at once. However, extracting phrases of any length results in
a huge number of phrase pairs and a large phrase translation table. Even for well-
behaved alignments without reordering, the number of extracted phrases is roughly
quadratic with respect to the number of words (Koehn et al., 2003). Since most
long phrases observed in the training data never occur in the test data, a maximum
phrase length is set to reduce the number of extracted phrases and therefore keep
the final phrase translation table manageable.

To compute conditional probability distributions for the phrase table, a num-
ber of phrase pairs for each sentence pair are first extracted. Then, the number of
sentence pairs that include a particular phrase pair (ē, c̄) is counted (count(ē, c̄)). Fi-
nally, the phrase translation probability φ(ē|c̄) is estimated using relative frequency:

φ(ē|c̄) =
count(ē, c̄)

∑

ēj
count(ēj, c̄)

(3.27)

3.1.3 The reordering model

In phrase-based translation, a reordering or distortion model is used to handle phrase
reorderings. As some phrases are reordered more frequently than others, we may
want to learn a reordering preference for each phrase pair. A lexicalised reordering
model that conditions reordering on the actual phrases can be learnt during phrase
extraction. Three types of orientation (reordering) are defined:

• monotone (m):

if a word alignment point to the top left exists;

• swap (s):

if a word alignment point to the top right exists;

• discontinuous (d):

if no word alignment point exists to the top left or the top right.
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Figure 3.2: Three types of orientation in the lexicalised reordering model.

An example is given in Figure 3.2 to illustrate these three types of orientation.
We count how many times each extracted phrase pair (ē, c̄) is found with each of the
three orientation types. A probability distribution Po that predicts an orientation
type (o) is estimated based on these counts:

Po(o|ē, c̄) =
count(o, ē, c̄)

∑

o count(o, ē, c̄)
(3.28)

where o ∈ {m, s, d}.
Due to sparse statistics of these orientation types, we smooth the counts in

Equation 3.28 with a factor σ, so that:

Po(o|ē, c̄) =
σPo(o) + count(o, ē, c̄)

σ +
∑

o count(o, ē, c̄)
(3.29)

where

Po(o) =

∑

ē

∑

c̄ count(o, ē, c̄)
∑

o

∑

ē

∑

c̄ count(o, ē, c̄)
(3.30)

3.1.4 The decoder

Decoding is the process of choosing the best translation from a pool of all possible
candidate translations. The decoding problem in SMT is solved using beam search.
During decoding, partial translations (i.e. hypotheses) are constructed. The process
starts with an empty hypothesis that has no translations (i.e. corrections) of the
input words. It then generates new hypotheses by extending the current hypothesis
with phrase translations for input words that have not been translated yet. Dif-
ferent untranslated input words can be picked and translated, resulting in many
different hypotheses. This hypothesis expansion is carried out recursively until all
the words in the erroneous input sentence have been covered. Scores are computed
incrementally for these hypotheses using the three models discussed in previous sec-
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tions. Among these complete hypotheses (a.k.a. candidates), the highest scoring one
is selected as the final translation output.

As we might expect for phrase-based translation, the fact that there are multiple
ways to segment the source sentence into phrases and that each phrase can be trans-
lated differently will make the system produce a large number of hypotheses. The
size of the search space grows exponentially with the length of the input sentence.
This makes it computationally prohibitive to translate any long sentences. Likewise,
it is too expensive to exhaustively examine all candidates to select the best. This
complexity problem is addressed by hypothesis recombination and pruning (Koehn,
2010).

Hypothesis recombination takes advantage of the fact that matching hypothe-
ses can be generated through different paths. Hypotheses with the same output
words that cover the same erroneous input words are matching hypotheses. If mul-
tiple paths lead to matching hypotheses, any worse ones (i.e. with lower scores) are
dropped. This process is risk-free as it only drops identical partial translations while
keeping all the different hypotheses. Hypothesis recombination reduces the search
space and avoids considering multiple paths that differ only in internal representa-
tions (i.e. different phrase segmentations).

Pruning is more efficient as it removes bad hypotheses at an early stage. Hy-
potheses are put into stacks according to some criteria (e.g. the number of erroneous
input words being translated) and bad ones are discarded when these stacks get too
big. Beam search is applied and a fixed threshold α is introduced: if a hypothesis is
α times worse than the best hypothesis in the stack, it is pruned out. This is a risky
expansion, however, since hypotheses that are considered ‘bad’ at an old stage may
outperform those which are considered ‘good’ at a new stage. Therefore, a future
cost of untranslated parts should be taken into account (i.e. how expensive it is to
translate the rest of the input sentence).

3.2 Challenges in applying SMT to GEC

Statistical models like SMT benefit from a large amount of high-quality training
data. For some well-defined MT tasks, many resources are available, e.g. parallel
corpora or online bilingual data. In order to build good GEC systems using the SMT
framework, we need a substantial amount of parallel training examples containing
original erroneous sentences written by non-native English writers and their cor-
rected versions, to make sure systems learn reliable corrections. Creating this kind
of annotated learner corpora is a slow and costly process, as we often need linguists
to manually correct all the errors in non-native text. In addition, the quality of the
training data matters. Annotation errors may introduce noise into the final system
and differences between training and test sets may result in low performance. The
first difficulty lies in how to obtain sufficient high-quality training data at a reason-
able cost. In this chapter, we investigate the use of three monolingual datasets for
building LMs (Section 3.3.3) and three different sources of parallel data for building
TMs (Section 3.3.4) using SMT.
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Since phrase-based MT uses only lexical representations, newer advanced TMs
have been proposed to overcome this limitation. Factored models allow the addition
of extra linguistic information by representing each word with its lemma or POS tag.
Hierarchical phrase-based MT and syntax-based MT use a grammar consisting of
synchronous context-free grammar rules. However, in order to use these advanced
models, data needs to be preprocessed to extract the required new information.
Unfortunately, the nature of learner data, where grammatical errors are present, and
its divergences from native English mean that existing NLP tools, such as sentence
splitters, lemmatisers, POS taggers and parsers, do not always perform well. The
majority of NLP tools are developed exclusively from high quality copy-edited text
and not trained to deal with the non-standard language used by learners of English.
Thus, the performance of these NLP tools may be negatively affected by grammatical
errors present in the text. As shown by Napoles et al. (2016a), increasing the number
of errors in a sentence decreases the accuracy of the dependency parser. Therefore,
it is unclear whether using advanced TMs that require more sophisticated linguistic
processing would yield better performance for GEC. We investigate the use of three
different types of TMs in Section 3.3.2.

On the other hand, existing alignment tools used in SMT assume that no detailed
mapping information is provided. Correction mappings (i.e. translation phrase map-
pings) learnt by these alignment models depend only on the size and quality of the
training data. However, we observe that most words on the source side should be
aligned to themselves on the target side as they do not contain any errors (i.e. self-
translation). Additionally, in fully annotated learner corpora, error annotations
contain detailed correction information, e.g. where and how to correct. This infor-
mation is very valuable but not used by any of the alignment tools in standard SMT.
Mapping information extracted directly from error annotations may give better and
more accurate alignments, resulting in better correction. We investigate the use
of extracted mapping information in two ways, using it as additional training data
(Section 3.3.4.3) and to build a new phrase translation table directly (Section 3.3.5).

3.3 Experiments

3.3.1 Experimental set-up

The work presented in this chapter is in the context of the CoNLL-2014 shared task
on grammatical error correction (see Section 2.5.2). NUCLE v3.0 provided by the
shared task organisers is used as in-domain training data and results are reported
on the development set, which contains 50 essays from the CoNLL-2013 shared task
test set (see Section 2.5.2). The sizes of these two datasets are given in Table 3.1.
System performance is evaluated in terms of F0.5 as computed by the M2 scorer with
default settings.

SMT-based GEC systems are built using Moses, an open source toolkit for SMT
developed by Koehn et al. (2007). For word alignment, we use the unsupervised
alignment tool GIZA++, which is an implementation of IBM Models 1-5 and the
HMM. Word alignments learnt by GIZA++ are used to extract phrase-to-phrase
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Type Dataset Sentences Tokens

Training set NUCLE 57,152 1,220,257
Development set CoNLL-2013 test 1,381 29,207

Table 3.1: CoNLL-2014 dataset sizes.

translations using heuristics. Default settings in Moses are used: 5 iterations of IBM
Model 1; 0 iterations of IBM Model 2; 5 iterations of HMM; 3 iterations of IBM
Model 3; 3 iterations of IBM Model 4 and 0 iterations of IBM Model 5. Bidirectional
runs of GIZA++ are performed to make an alignment from erroneous to corrected
sentences and another from corrected to erroneous sentences. Two word alignment
files are created which are then used to derive the final word alignments. These
final word alignments are the intersection of the two unidirectional alignments plus
some additional alignment points from the union of the bidirectional runs. Phrase-
to-phrase translations are extracted and scored based on the final word alignments.
The five scores used in a phrase translation table are:

• direct and inverse phrase translation probability (ϕ(c|e) and ϕ(e|c)):

given a phrase pair (x̃, ỹ), the phrase translation probability ϕ(x̃|ỹ) is com-
puted as

ϕ(x̃|ỹ) =
count(x̃, ỹ)

count(ỹ)
(3.31)

• direct and inverse lexical weighting (lex(c|e) and lex(e|c)):

given a phrase pair (x̃, ỹ) and a word alignment a between x̃ word positions
(j) and ỹ word positions (i), the lexical weighting lex(x̃|ỹ) is computed as

lex(x̃|ỹ, a) =

|x|
∏

j=1

1

|{i|(i, j) ∈ a}|

∑

∀(i,j)∈a

P (x̃j|ỹi) (3.32)

where P (x̃j|ỹi) can be estimated from a statistical word dictionary, usually
IBM Model 4:

P (x̃j|ỹi) =
count(x̃j, ỹi)

count(ỹi)
(3.33)

• phrase penalty:

constant value e, which penalises the introduction of new phrases during de-
coding.

A lexicalised reordering model which allows for phrase reorderings is also created
during the phrase extraction phase. The LMs used during decoding are built from
the corrected sentences in the learner corpus to make sure that the final system
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TM CE ME UE P (%) R (%) F0.5 (%) F1 (%)
Phrase-based 282 3,224 553 33.77 8.04 20.60 12.99
Factored 505 3,001 2,435 17.18 14.40 16.54 15.67

Syntax-based 129 3,377 219 37.07 3.68 13.17 6.69

Table 3.2: Results of using different TMs on the development set. The best results are
marked in bold.

outputs fluent English sentences. The IRSTLM Toolkit (Federico et al., 2008) is
used to build n-gram LM (up to 5-grams) with modified Kneser-Ney smoothing.
The IRSTLM Toolkit is an open source language modelling toolkit for estimating,
storing and accessing very large LMs. LM loading in IRSTLM is fast as it reduces
storage and decoding memory requirements.

Data preprocessing is performed using the Natural Language Toolkit (NLTK)
(Bird et al., 2009), the same toolkit used by the organisers to preprocess the NUCLE
data and the CoNLL 2013 and 2014 test sets.

3.3.2 Translation models

We compare three types of TMs within the context of an all-errors correction task:
phrase-based MT, factored MT and syntax-based MT. In phrase-based MT, a TM is
learnt from the parallel sentences based only on the lexical representation (i.e. surface
forms). Every entry in the translation table is a phrase-to-phrase mapping. Non-
compositional phrases (arbitrary sequences of words) are used as translation units
and local contexts are also encoded.

In factored MT, each word in the training data is represented using not only
its surface form but also its POS tag and lemma. As discussed in Section 3.2,
the source side of the training data may contain grammatical errors so the POS and
lemma information obtained from existing NLP tools (e.g. NLTK) may be unreliable.
Therefore, we only add POS and lemma factors on the target side of the training
data, which consists of corrected, error-free sentences. In addition, new POS-based
and lemma-based LMs are built and used during decoding.

Syntax-based MT operates at the syntax level and extracts hierarchical grammar
rules from the training data. Linguistic information from both the source and target
sides of the training data is needed, so the preprocessing of the erroneous data in
the source cannot be avoided. Compared with phrases used in phrase-based MT
and factored MT, translation grammar rules used in syntax-based MT allow long
distance constraints and encode long-range contextual information.

Results using the aforementioned TMs are presented in Table 3.2. Following
suggestions from Leacock et al. (2014), we report not only F-scores but also P, R
and the counts from which P and R can be calculated (i.e. correct edits (CEs),
missed edits (MEs) and unnecessary edits (UEs)). We can see that the factored MT
system achieves the highest R but the lowest P and it proposes many more changes
than the other two systems when using the small NUCLE training set. The factored
MT system generalises more by learning from higher-level information like POS and
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LM Dataset Data type Sentences Tokens

NUCLE learner data 57,152 1,220,257
CLC learner data 1,965,727 29,219,128
BNC native data 29,096,733 1,010,250,770

Table 3.3: LM dataset sizes.

lemma. It covers more errors at the cost of lower P, which results in many UEs.
It yields the highest F1, which confirmed the choice of a factored MT model for
the CoNLL-2013 shared task as the evaluation was based on F1 (Yuan and Felice,
2013). The syntax-based MT system seems to be the most conservative and the
best for P, as it only makes changes to the source sentence when the probability
of an error is high. The syntax-based MT system does not generalise as well as
the other two systems where phrase mappings are used and only local contexts are
considered. There are more constraints during translation in the syntax-based MT
system, such as long distance constraints and long-range contexts. This reduces the
number of UEs and lowers R. The phrase-based MT system gives the most balanced
performance in terms of P and R as well as showing the best F0.5 overall. We
therefore use it in future experiments where we try to optimise F0.5.

3.3.3 Language models

LMs are used to make sure the final output from an SMT system is fluent English.
Correct and/or error corrected English sentences can be used to build LMs. Previous
work has shown that adding bigger LMs based on larger corpora improves system
performance (Yuan, 2013; Yuan and Felice, 2013). Therefore, apart from the target
side of the parallel training data (i.e. the corrected version of NUCLE), we intro-
duce two new corpora to build bigger LMs: the corrected version of the CLC and
the written part of the British National Corpus (BNC) v1.0, which consists of texts
extracted from a wide range of sources, such as newspapers, academic books, pop-
ular fiction, letters, school and university essays. The sizes of these three datasets
(NUCLE, CLC and BNC) are given in Table 3.3. These new corpora are used in
two ways. First, new data is added to the target side of the parallel training data to
build one larger LM for decoding. Second, new data is used to build a second LM,
which is then used together with the original LM built from the target side of the
parallel training corpus, to ensure the bigger corpus (e.g. CLC or BNC) does not
take over the overall LM and prevent corpus bias.

A set of experiments using different LMs during SMT decoding are reported in
Table 3.4. We can see that all the systems with bigger LMs outperform the one
using only the default NUCLE LM (#0) in terms of F0.5, except NUCLE&CLC
(#4). Using only one LM (#1-3) yields better P and F0.5, while using two separate
LMs (#4-6) yields better R. When building only one LM, NUCLE+CLC (#1)
outperforms NUCLE+BNC (#2) and NUCLE+CLC+BNC (#3), suggesting that
adding the CLC seems more effective than the BNC. One possible reason is that
the CLC is much more similar to the NUCLE corpus than the BNC in many ways,
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# LM CE ME UE P (%) R (%) F0.5 (%)
0 NUCLE (default) 282 3,224 553 33.77 8.04 20.60
1 NUCLE+CLC 359 3,147 673 34.79 10.24 23.51

2 NUCLE+BNC 305 3,201 576 34.62 8.70 21.69
3 NUCLE+CLC+BNC 326 3,180 569 36.42 9.30 23.00
4 NUCLE&CLC 547 2,959 1,918 22.19 15.60 20.46
5 NUCLE&BNC 513 2,993 1,720 22.97 14.63 20.62
6 NUCLE+CLC&BNC 537 2,969 1,844 22.55 15.32 20.61

Table 3.4: Results of using different LMs on the development set. ‘+’ indicates that
data is added together to build a single LM while ‘&’ indicates that two separate LMs are
built and used during decoding. The best results are marked in bold.

e.g. data type, topic, vocabulary, syntax. It seems that the effect of using new data
for LM training in SMT-based GEC systems depends on the quality of the new
data, so that the closer the new data is to the original parallel training data, the
better the performance. Moreover, the quality of the data seems more important
than the quantity, as the BNC is about 35 times the size of the CLC (in terms of
tokens - see Table 3.3). Overall, NUCLE+CLC+BNC (#3) achieves the highest P,
NUCLE&CLC (#4) yields the highest R, and NUCLE+CLC (#1) shows the best
F0.5, so it is used in later experiments.

3.3.4 Increasing the size of the training set

The performance of an SMT system depends on the quantity and quality of avail-
able training data (Koehn et al., 2003; Suresh, 2010; Axelrod et al., 2011). The
NUCLE training set is considered too small to build good SMT systems, as pre-
vious work has shown that training on small datasets does not yield particularly
high performance for SMT-based GEC (Mizumoto et al., 2012; Yuan and Felice,
2013). A few strategies have been proposed to overcome this problem. Brockett
et al. (2006) transformed well-formed edited English sentences into mostly ungram-
matical strings by introducing artificial mass noun errors. Similarly, Mizumoto et al.
(2011) and Junczys-Dowmunt and Grundkiewicz (2014) extracted real learner ex-
amples from Lang-8. Grundkiewicz and Junczys-Dowmunt (2014) introduced the
WikEd Error Corpus, which consists of sentences extracted from Wikipedia revision
histories. As data collected from Lang-8 and Wikipedia revision histories may be
too error-prone and noisy, an error selection process is performed (see Section 2.2).

Instead, we propose three ways to increase our training dataset size: 1) extract
parallel sentences from other high-quality learner corpora; 2) generate artificial data
by injecting errors into error-free English sentences; and 3) add short parallel phrases
extracted from error annotations.
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3.3.4.1 Adding learner data

Fully annotated learner corpora are especially valuable for GEC as they contain real
learner errors and corrections made by professional annotators. Parallel sentences
extracted from these annotated learner corpora can be used as SMT training data.
Apart from the NUCLE training set provided by the shared task organisers, two
high-quality learner corpora are used (see Section 2.3.2):

• FCE:

– the FCE subcorpus of the CLC;

– approximately 33,686 pairs of parallel sentences and 538,553 tokens on
the target side;

• IELTS:

– the IELTS subcorpus of the CLC;

– approximately 54,748 pairs of parallel sentences and 1,383,245 tokens on
the target side.

3.3.4.2 Adding artificial data

Fully annotated learner corpora are expensive and limited. Following previous ap-
proaches (Brockett et al., 2006), we increase the size of our training set by introduc-
ing new sentences containing artificial errors. New errors are injected into error-free
English sentences based on some statistics from learner corpora. We first estimate
probabilities in a learner corpus, computing the probability of each error type P (t)
occurring over the total number of relevant instances (e.g. noun phrases are relevant
instances for article errors). During generation, P (t) is uniformly distributed over all
the possible choices for the error type (e.g. for articles, choices are {a/an, the, φ}).
Relevant instances are detected in the base text and changed for an alternative at
random using the estimated probabilities. The probability of leaving relevant in-
stances unchanged is 1 − P (t). When collecting the base text for error injection,
a set of variables need to be considered, namely topic, genre, style/register, text
complexity/language proficiency and L1. Two artificial datasets are created using
this method on two types of base text (Felice and Yuan, 2014b):

• EVP:

– a set of sentences from the English Vocabulary Profile (EVP) website,1 a
publicly available portion of the CLC;

– approximately 18,830 pairs of parallel sentences and 349,343 tokens on
the target side;

1http://www.englishprofile.org/wordlists
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• Wiki:

– a set of 494 Wikipedia articles chosen based on keywords in the NUCLE
corpus, to ensure compatibility of topics;2

– approximately 54,693 pairs of parallel sentences and 1,120,697 tokens on
the target side.

3.3.4.3 Adding short parallel phrases

As noted by Yuan (2013) and Yuan and Felice (2013), we also notice alignment
errors, suggesting that the unsupervised alignment tool used in SMT is not reliable
enough to learn useful mappings from a relatively small parallel corpus. These
alignment errors result in missed or unnecessary corrections in the final SMT system.
As discussed at the beginning of this chapter (see Section 3.2), error annotations
often encode useful alignment information which is not used by any alignment tool
in SMT. In order to exploit it, short phrase alignments that include up to 7 tokens
per side within one sentence boundary and involve corrections for each error are
extracted from learner corpora. Different errors are treated the same regardless of
their type. An example is given below:

Example 3.4. In */the modern digital world , electronic products are widely used in
daily *lives/life such as smart phones , computers and etc .3

We can easily get the following word mappings from the annotation:

NULL → the
lives → life

Short phrases containing the erroneous word (or phrase in some cases) and its neigh-
bouring tokens within a 7-token window are extracted, such as:

modern → the modern
modern digital → the modern digital
modern digital world → the modern digital world
daily lives → daily life
in daily lives → in daily life

A full list of the extracted phrase alignments for the illustrated article and noun number
errors are presented in Figure 3.3.

These extracted short phrases can then be used as new training examples. Phrase
alignments are added into the training set and existing alignment tools are then used
to create a phrase table from the new augmented training set.

We extract these new phrases from NUCLE. To give frequent phrase mappings
higher probability than infrequent ones, we try keeping all their occurrences. Two
versions of the phrase-level training data are created, with and without duplicates:

2We choose an initial set of 50 Wikipedia articles based on keywords in the NUCLE training
data and proceed to collect related articles by following hyperlinks in their ‘See also’ section. We
retrieve a total of 494 articles which are later preprocessed to remove Wikicode tags.

3This sentence is extracted from the NUCLE corpus. The use of ‘and etc’ is wrong, but this
error was not annotated in the original corpus (i.e. it constitutes an annotation error).
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missing determiner ‘the’: NULL → the
modern → the modern
modern digital → the modern digital
modern digital world → the modern digital world
modern digital world , → the modern digital world ,
modern digital world , electronic → the modern digital world , electronic
modern digital world , electronic products → the modern digital world , electronic products
In → In the
In modern → In the modern
In modern digital → In the modern digital
In modern digital world → In the modern digital world
In modern digital world , → In the modern digital world ,
In modern digital world , electronic → In the modern digital world , electronic
noun number error: lives → life
lives → life
lives such → life such
lives such as → life such as
lives such as smart → life such as smart
lives such as smart phones → life such as smart phones
lives such as smart phones , → life such as smart phones ,
lives such as smart phones , computers → life such as smart phones , computers
daily lives → daily life
daily lives such → daily life such
daily lives such as → daily life such as
daily lives such as smart → daily life such as smart
daily lives such as smart phones → daily life such as smart phones
daily lives such as smart phones , → daily life such as smart phones ,
in daily lives → in daily life
in daily lives such → in daily life such
in daily lives such as → in daily life such as
in daily lives such as smart → in daily life such as smart
in daily lives such as smart phones → in daily life such as smart phones
used in daily lives → used in daily life
used in daily lives such → used in daily life such
used in daily lives such as → used in daily life such as
used in daily lives such as smart → used in daily life such as smart
widely used in daily lives → widely used in daily life
widely used in daily lives such → widely used in daily life such
widely used in daily lives such as → widely used in daily life such as
are widely used in daily lives → are widely used in daily life
are widely used in daily lives such → are widely used in daily life such
products are widely used in daily lives → products are widely used in daily life

Figure 3.3: Phrase alignments extracted from the sentence in Example 3.4.

• NUCLEphrase 1:

– NUCLE phrase version 1, where identical phrase pairs are kept;

– approximately 606,679 pairs of parallel phrases and 2,776,181 tokens on
the target side;
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• NUCLEphrase 2:

– NUCLE phrase version 2, where identical phrase pairs are removed;

– approximately 570,798 pairs of parallel phrases and 2,697,919 tokens on
the target side.

3.3.4.4 Results

In our previous experiments, we used heuristics to extract phrases from the word
alignments learnt by GIZA++. Compared with the heuristic phrase extraction
method, Pialign is an unsupervised model for joint phrase alignment and extrac-
tion using non-parametric Bayesian methods and Inversion Transduction Grammars
(ITGs) (Neubig et al., 2011). Alignments are obtained through Bayesian learning
of ITG trees (Wu, 1997), where each pair of parallel sentences is represented as a
tree of aligned phrases and binary reordering operations. We compare phrase ta-
bles constructed using these two phrase extraction methods. New learner datasets
(FCE and IELTS) and artificial datasets (EVP and Wiki) are added to the NUCLE
training set incrementally. We add the two versions of the NUCLE phrase data
(NUCLEphrase 1 and NUCLEphrase 2) to a system trained only on NUCLE as well as
to our best overall system. Results are presented in Table 3.5.

We can see that adding parallel sentences extracted from other annotated learner
corpora (FCE and IELTS) yields a consistent improvement in system performance;
that is, the more learner data, the better. The artificial data generated from learner
text (EVP) seems helpful when building SMT systems with both alignment methods,
but the data generated from native text (Wiki) is only useful when building systems
with GIZA++. Systems using Pialign yield consistently better P while those using
GIZA++ yield consistently better R. Before adding the phrase-level data, the best
systems in terms of F0.5 are the ones trained on NUCLE+FCE+IELTS+EVP+Wiki
(for GIZA++) and NUCLE+FCE+IELTS+EVP (for Pialign).

The advantage of using high-quality learner corpora like FCE and IELTS is that
they contain real examples produced by learners. The parallel data extracted from
them is close enough to NUCLE so it results in improvement. Unfortunately, this
kind of data is limited as new learner corpora are very expensive to build. The use
of artificial data overcomes this problem as we can make use of unlimited native
data. Artificial data is easy to generate and can be tailored to our needs. However,
the effectiveness of genuine and artificial data is not the same. Our results show
that the learner data extracted directly from the FCE and IELTS datasets is more
useful than the artificially generated data. For the artificial data, the choice of the
error-free base text is important. We can see that the artificial data generated from
the error-free learner text (EVP) yields better performance than the one generated
from the native text (Wiki). This suggests that we can exploit error-free text written
by learners if error-annotated text is not available or reliable. It also suggests that
we should choose native base text that resembles learner data for error injection.

Using short parallel phrases extracted from NUCLE as additional training data
yields a consistent improvement in F0.5, while R improves at the cost of P. If
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Alignment Training data CE ME UE P (%) R (%) F0.5 (%)

GIZA++

NUCLE 359 3,147 673 34.79 10.24 23.51
NUCLE+FCE 400 3,106 793 33.53 11.41 24.16
NUCLE+FCE+IELTS 504 3,002 1,106 31.30 14.38 25.34
NUCLE+FCE+IELTS+EVP 494 3,012 981 33.49 14.09 26.26
NUCLE+FCE+IELTS+EVP+Wiki 505 3,001 977 34.08 14.40 26.76
NUCLE+NUCLEphrase 1 541 2,965 1,386 28.07 15.43 24.12
NUCLE+NUCLEphrase 2 524 2,982 1,326 28.32 14.95 24.02
NUCLE+FCE+IELTS+EVP+Wiki+NUCLEphrase 1 607 2,899 1,295 31.91 17.31 27.31

NUCLE+FCE+IELTS+EVP+Wiki+NUCLEphrase 2 604 2,902 1,284 31.99 17.23 27.31

Pialign

NUCLE 160 3,346 183 46.65 4.56 16.40
NUCLE+FCE 201 3,305 243 45.27 5.73 19.03
NUCLE+FCE+IELTS 327 3,179 348 48.44 9.33 26.35
NUCLE+FCE+IELTS+EVP 331 3,175 359 47.97 9.44 26.41
NUCLE+FCE+IELTS+EVP+Wiki 295 3,211 306 49.08 8.41 24.96
NUCLE+NUCLEphrase 1 462 3,044 963 32.42 13.18 25.09
NUCLE+NUCLEphrase 2 383 3,123 794 32.54 10.92 23.31
NUCLE+FCE+IELTS+EVP+NUCLEphrase 1 471 3,035 775 37.80 13.43 27.74
NUCLE+FCE+IELTS+EVP+NUCLEphrase 2 470 3,036 751 38.49 13.41 28.01

Table 3.5: Results of adding more training data on the development set. The best results
using each alignment tool are marked in bold.

we add these phrase pairs to the systems trained only on NUCLE, leaving du-
plicate phrase pairs (NUCLEphrase 1) outperforms removing them (NUCLEphrase 2).
However, when we add them to the current best systems per alignment method,
NUCLE+FCE+IELTS+EVP+Wiki (GIZA++) and NUCLE+FCE+IELTS+EVP
(Pialign), NUCLEphrase 2 seems more helpful than NUCLEphrase 1. This extracted
phrase-level training data is used to boost the probability of phrase alignments that
involve corrections, so as to improve R. Yet, our extracted phrases are more useful
with Pialign than GIZA++. Overall, the best system in terms of F0.5 is the one
trained on NUCLE+FCE+IELTS+EVP+NUCLEphrase 2 and aligned with Pialign.

We also extract phrases from the FCE dataset, but results show that adding
them to the training set is not helpful on NUCLE. This might be caused by the
differences between these two learner corpora, such as the different sources of data
and annotation schemes.

3.3.5 A new method for building a phrase table

In phrase-based MT, a phrase translation table is learnt from the parallel training
data. Phrase mappings in the table are then used by the decoder as translation
units. Rather than learning phrase mappings from the parallel sentences using un-
supervised alignment tools like GIZA++ and Pialign, we propose a new method
to create a new phrase table using phrase pairs extracted from error annotations
directly. By dispensing with unsupervised alignment, our method saves much time
and effort. Phrase pairs extracted from error annotations are used as phrase map-
pings in the new phrase table. The mappings in the new table include the same
phrase translation probabilities, lexical weighting probabilities and phrase penalty
score used by GIZA++ and Pialign (see Equation 3.31 and 3.32).

In error correction, most words translate into themselves as they are usually
correct. We also notice that errors are often similar to their correct forms, such
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as noun number errors (one *years/year ago) or word form errors (the sense of
*guilty/guilt). Therefore, a new type of feature based on Levenshtein distance is
introduced to limit the changes made by the SMT system. Levenshtein distance is
a string metric for measuring the difference between two sequences. It calculates
the minimum number of edits (i.e. insertions, deletions or substitutions) required
to change one sequence into another. Given a phrase pair (x̃, ỹ), the Levenshtein
distance feature scoreLD(x̃, ỹ) is defined as

scoreLD(x̃, ỹ) =
max{N(x̃), N(ỹ)} − LD(x̃, ỹ)

max{N(x̃), N(ỹ)}
(3.34)

where LD(x̃, ỹ) is the Levenshtein distance between x̃ and ỹ, and N(·) is the
sequence length.

Matching can be done at the word or character level, as shown below:

Example 3.5. For the following phrase mapping:
I am so exciting → I am so excited

The word-level Levenshtein distance feature score is:

I am so exciting
I am so excited

M M M S

scoreLDw = 4−1
4 = 0.75

The character-level Levenshtein distance feature score is:

I <s> a m <s> s o <s> e x c i t i n g
I <s> a m <s> s o <s> e x c i t e d

M M M M M M M M M M M M M S S D

scoreLDc =
16−3
16 = 0.8125

where M: match, S: substitution, D: deletion

As we see in this example, character-level Levenshtein distance captures words
with identical stems and unigram paraphrases. Character-level Levenshtein distance
is assumed to work better than the word-level one, as it can provide additional
information for word form errors, noun number errors and contextual spelling errors
(e.g. ‘their’ and ‘there’).

When building a phrase table using our new method, Levenshtein distance is
used to measure the difference between the source and target phrases. A series of
preliminary experiments is first undertaken to compare the word-level and character-
level Levenshtein distance features. Results confirm our hypothesis that the use
of the character-level Levenshtein distance feature yields better performance (see
Table 3.6), which is why we choose it for inclusion in our phrase table.

We want to compare our method with GIZA++ and Pialign for building phrase
translation tables. Two sets of experiments are performed. We first use only the
NUCLE data provided by the shared task organisers, assuming that it is the only
training data available; and then we compare the three methods under their most
favourable conditions allowing them to use any of the sentence-level training data
introduced in Section 3.3.4. Results are presented in Table 3.7. We can see that
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Feature P R F0.5

phrase translation probabilities,
lexical weighting probabilities, 26.57 13.93 22.48
phrase penalty
+ word-level LD 26.94 13.74 22.60
+ character-level LD 27.96 13.61 23.09

Table 3.6: Results of using our new phrase table method with different features (in
percentages). Systems are trained on the NUCLE training set.

Alignment Training data P R F0.5

GIZA++
NUCLE 34.79 10.24 23.51
NUCLE+FCE+IELTS+EVP+Wiki 34.08 14.40 26.76

Pialign
NUCLE 46.65 4.56 16.40
NUCLE+FCE+IELTS+EVP 47.97 9.44 26.41

Our method
NUCLE 27.96 13.61 23.09
NUCLE+FCE+IELTS+EVP 26.79 16.00 23.61

Table 3.7: Results of using different alignment methods on the development set (in
percentages).

the SMT system using our phrase table method is competitive with the one using
GIZA++ in terms of F0.5, and they both outperform the system using Pialign by a
large margin when using only the NUCLE corpus. However, adding more training
data does not help our method as much as GIZA++ and Pialign. Adding additional
training examples and using new phrases extracted from other learner corpora only
yield a 0.52 increase in F0.5 for our method, compared with a 3.25 increase for
GIZA++ and a 10.01 increase for Pialign. One possible explanation is that phrases
extracted from other learner corpora are different from those extracted from NU-
CLE (as we have shown in Section 3.3.4.4), so adding phrase pairs extracted from
the FCE, IELTS and EVP datasets is not helpful for NUCLE. However, using our
method achieves the highest R (at the cost of P, though), which again shows that
phrase pairs extracted from error annotations can help achieve better R (see Sec-
tion 3.3.4.4). In terms of training time, our method is the fastest while Pialign is
the slowest.

Even though our method does not result in the best SMT system, the use of
the character-level Levenshtein distance feature seems beneficial for SMT systems
(see Table 3.6) so we further explore how this interacts with other alignment tools
(e.g. GIZA++ or Pialign) in Section 3.4.1 and 4.4.2.
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3.3.6 Forced decoding for phrase table filtering

As described in Section 3.1.4, an SMT decoder searches the space of possible trans-
lations (candidates) and outputs the highest scoring one. A phrase translation table
learnt from parallel training data is used by the decoder to translate source sentences.
However, not all the phrase mappings in the table are useful or reliable. Only some
of them produce good translations while the rest may result in translation errors.
For this reason, we propose a method for filtering the translation table.

Forced decoding in SMT is used to force the decoder to output only the candidate
that is the same as the gold-standard reference. Phrase alignments that are used
by the decoder to produce the expected translations are considered to be useful and
therefore valuable for phrase table filtering.

In order to collect useful phrase alignments, we adapt the 4-fold cross-validation
scheme used by Yuan and Felice (2013). The training set for each run always in-
cludes the full learner data, artificial data and phrase-level data introduced in Sec-
tion 3.3.4, but only 3/4 of NUCLE (in-domain training data), leaving the remaining
fourth chunk for testing with forced decoding. This training method allows us to
concentrate on the performance of the system on the NUCLE data. After each run,
we collect a list of phrase alignments that are used by the decoder at least once
during forced decoding. Phrase alignments collected from each run are then com-
bined into one big list. Finally, we learn a new phrase translation table from the full
training data and filter it using the list of useful phrase alignments. More specifi-
cally, for every phrase mapping in the translation table, we check whether it is also
in the phrase alignment list. For phrase mappings not in the list, we probably do
not want to simply remove them from the table as they might be useful to translate
some new test examples. Instead, we can either decrease their probabilities with a
‘scale-down’ factor fd, where 0 < fd < 1; or increase the probabilities of the other
phrase mappings with a ‘scale-up’ factor fu, where fu > 1.

We evaluate our filtering method by comparing SMT systems with and without
phrase table filtering. We experiment with tables produced by GIZA++ and Pialign.
In Table 3.8, No filtering is the best SMT system using GIZA++, which is trained on
NUCLE+FCE+IELTS+EVP+Wiki+NUCLEphrase 2 (see Table 3.5). Removing uses
a translation table where phrase mappings that are not in the list are removed. The
rest are systems using different scaling factors. Similarly, in Table 3.9, No filtering is
the best SMT system trained on NUCLE+FCE+IELTS+EVP+NUCLEphrase 2 and
aligned with Pialign. We can see that Removing does not yield good performance.
Decreasing the probabilities for phrases that are not in the list (scaling down) shows
a consistent improvement in P over systems with no filtering, while increasing the
probabilities of phrase mappings that are in the list (scaling up) yields a consistent
improvement in R. As we increase fu, R keeps increasing and P keeps decreasing (see
Figure 3.4 and 3.5). However, not all the filtered systems yield better performance
in terms of F0.5. Filtering with a scale-down factor of fd = 0.5 seems the most
effective, as it outperforms systems with no filtering and achieves the highest F0.5

for both alignment methods.
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Filtering CE ME UE P (%) R (%) F0.5 (%)
No filtering 604 2,902 1,284 31.99 17.23 27.31
Removing 313 3,193 613 33.80 8.93 21.71

Scaling down

fd = 0.1 364 3,142 701 34.18 10.38 23.44
fd = 0.3 479 3,027 894 34.89 13.66 26.62
fd = 0.5 521 2,985 978 34.76 14.86 27.42

fd = 0.7 553 2,953 1,101 33.43 15.77 27.32

fd = 0.9 589 2,917 1,237 32.26 16.80 27.24

Scaling up

fu = 1.1 610 2,896 1,309 31.79 17.40 27.28
fu = 1.5 631 2,875 1,413 30.87 18.00 27.01
fu = 2.0 648 2,858 1,519 29.90 18.48 26.61
fu = 2.5 664 2,842 1,624 29.02 18.94 26.23
fu = 3.0 682 2,824 1,720 28.39 19.45 26.00

Table 3.8: Filtering results on the development set using GIZA++ tables. Improvements
over the No filtering system are marked in bold.

Filtering CE ME UE P (%) R (%) F0.5 (%)
No filtering 470 3,036 751 38.49 13.41 28.01
Removing 273 3,233 419 39.45 7.79 21.76

Scaling down

fd = 0.1 291 3,215 436 40.03 8.30 22.68
fd = 0.3 361 3,145 519 41.02 10.30 25.69
fd = 0.5 420 3,086 560 42.86 11.98 28.28

fd = 0.7 438 3,068 653 40.15 12.49 27.83
fd = 0.9 458 3,048 726 38.68 13.06 27.78

Scaling up

fu = 1.1 476 3,030 773 38.11 13.58 27.99
fu = 1.5 485 3,021 807 37.54 13.83 27.96
fu = 2.0 499 3,007 896 35.77 14.23 27.46
fu = 2.5 509 2,997 1,021 33.27 14.52 26.44
fu = 3.0 521 2,985 1,080 32.54 14.86 26.29

Table 3.9: Filtering results on the development set using Pialign tables. Improvements
over the No filtering system are marked in bold.

3.4 An end-to-end SMT-based GEC system

3.4.1 System performance

The CoNLL-2014 shared task organisers made NUCLE v3.1 available six days before
the release of the CoNLL-2014 test data. Compared with NUCLE v3.0 used in our
experiments, the new version includes some changes, such as the removal of duplicate
annotations, fixed end-of-paragraph annotations and corrected annotation mistakes.
Given these changes, we build a new phrase-based SMT system using NUCLE v3.1
and re-evaluate system performance on the development set. Based on our findings
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Figure 3.4: Phrase table filtering (GIZA++).
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Figure 3.5: Phrase table filtering (Pialign).

in Section 3.3, we use Pialign for word alignment and add several modifications to
the final system:4

• NUCLE:

uses NUCLE v3.1 released by the shared task organisers as in-domain training
data;

• LM:

builds a bigger LM by adding the corrected version of the CLC for decoding -
see Section 3.3.3;

• FCE:

incorporates all sentences in the FCE dataset - see Section 3.3.4.1;

4The phrase table filtering discussed in Section 3.3.6 was not implemented in the final SMT
system because of limited time.
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Setting P R F0.5

NUCLE 46.63 3.04 12.06
NUCLE+LM 46.70 4.61 16.52
NUCLE+LM+FCE 45.32 5.78 19.14
NUCLE+LM+FCE+IELTS 48.50 9.36 26.41
NUCLE+LM+FCE+IELTS+EVP 47.98 9.49 26.49
NUCLE+LM+FCE+IELTS+EVP+NUCLEphrase 2 38.50 13.46 28.06
NUCLE+LM+FCE+IELTS+EVP+NUCLEphrase 2+LD 39.58 13.23 28.30

Table 3.10: Incremental results on the development set (in percentages).

• IELTS:

incorporates all sentences in the IELTS dataset - see Section 3.3.4.1;

• EVP:

adds artificial parallel training data generated from the EVP corpus - see
Section 3.3.4.2;

• NUCLEphrase 2:

uses short phrase alignments extracted from the error annotations in NUCLE
v3.1 - see Section 3.3.4.3;

• LD:

limits edit distance by adding character-level Levenshtein distance as a new
feature - see Section 3.3.5.5

A detailed analysis of individual modifications used in the final SMT system is
presented in Table 3.10. P, R and F0.5 computed by the M2 scorer are reported for
each variation of the SMT system. Compared with results reported in Table 3.5,
systems trained with NUCLE v3.1 achieve higher scores on the development set. All
modifications improve system performance in terms of F0.5. Introducing character-
level Levenshtein distance helps improve F0.5. By adding the development set into
the final training set, a similar SMT system was built and used for the CoNLL-2014
shared task (see Section 3.5).

3.4.2 Error analysis

In order to better understand the performance of the final SMT-based GEC system,
we perform a detailed error analysis. This helps us understand the strengths and
weaknesses of the system, as well as identify new areas for future improvement.

Since our system handles various types of errors, we are interested in studying
performance by type. In order to compute performance by type, we need to know

5As using our phrase table does not result in the best SMT system, we investigate the use of
the Levenshtein distance feature on top of the current best SMT system built using Pialign.
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the error type for every gold-standard and system correction. For the former, error
type information is encoded in the error annotations; however for the latter, error
type information is not available, since the SMT system only outputs the corrected
sentences with no indication of error type. In order to estimate error types for system
corrections, we apply our type estimation strategy proposed in Felice et al. (2014),
where a set of heuristic rules are defined based on common patterns observed in
the NUCLE corpus. Our automatic typing method analyses the differences in word
forms and POS tags between the original phrases and a system’s proposed correc-
tions, and assigns error types using pre-defined rules. The estimation accuracy is
around 70% on the development set, which is considered to be acceptable for our pur-
pose. As noted by Ng et al. (2014), predicting an appropriate error type for a system
edit/correction out of the 28 types used in NUCLE can be error-prone and tricky.

Type-specific performance is reported in Table 3.11. Although per-type UE, P
and F0.5 are estimated and therefore not completely accurate, they can still provide
valuable insights, at least at a coarse level. The following sections discuss our main
findings.

3.4.2.1 Type performance

According to Table 3.11, our SMT system achieves the best performance for types
Wform (word form), Mec (punctuation, capitalisation, spelling, typos), Nn (noun
number) and ArtOrDet (article or determiner), which add up to 43.61% of the errors
in the development set. Some successful corrections made by the system are shown
below:

Example 3.6. ArtOrDet and Nn:

Original sentence I think this application is necessary and provides the society
a lot of benefit.

Smt output I think this application is necessary and provides society a
lot of benefits.

Gold standard I think this application is necessary and provides society a
lot of benefits.

Example 3.7. Mec:

Original sentence In summery, surveillance technology ...

Smt output In summary, surveillance technology ...

Gold standard In summary, surveillance technology ...

Example 3.8. Wform:

Original sentence ... they begin to loss their memory ...

Smt output ... they begin to lose their memory ...

Gold standard ... they begin to lose their memory ...

Example 3.9. ArtOrDet :

Original sentence In such situation, individuals will lose ...

Smt output In such a situation, individuals will lose ...

Gold standard In such a situation, individuals will lose ...
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Error type Description CE

ME

UE P (%) R (%) F0.5 (%)Decoding OOV

No. Prop. No. Prop.

ArtOrDet Article or deter-
miner

145 450 83% 93 17% 148 49.49 21.08 38.98

Cit Citation 0 2 33% 4 67% 0 - 0.00 0.00
Mec Punctuation, capi-

talisation, spelling,
typos

33 90 60% 59 40% 20 62.26 18.13 41.88

Nn Noun number 98 172 58% 124 42% 96 50.52 24.87 41.88
Npos Noun possessive 2 13 48% 14 52% 21 8.70 6.90 8.26
Others Other errors 2 10 30% 23 70% 6 25.00 5.71 14.93
Pform Pronoun form 1 19 76% 6 24% 10 9.09 3.85 7.14
Pref Pronoun reference 1 17 45% 21 55% 2 33.33 2.56 9.80
Prep Preposition 29 169 60% 112 40% 47 38.16 9.35 23.62
Reordering Reordering 0 0 - 0 - 13 0.00 - 0.00
Rloc- Local redundancy 10 25 21% 93 79% 14 41.67 7.81 22.32
SVA Subject-verb agree-

ment
12 93 88% 13 12% 24 33.33 10.17 22.90

Sfrag Fragment 0 0 0% 4 100% 0 - 0.00 0.00
Smod Dangling modifier 0 1 6% 15 94% 0 - 0.00 0.00
Spar Parallelism 2 16 50% 16 50% 0 100.00 5.88 23.81
Srun Runons, comma

splice
0 39 71% 16 29% 8 0.00 0.00 0.00

Ssub Subordinate clause 3 28 41% 40 59% 6 33.33 4.23 14.02
Trans Link words/phrases 5 66 49% 70 51% 18 21.74 3.55 10.73
Um Unclear meaning 0 1 3% 33 97% 0 - 0.00 0.00
V0 Missing verb 1 6 35% 11 65% 3 25.00 5.56 14.71
Vform Verb form 19 63 64% 36 36% 39 32.76 16.10 27.14
Vm Verb modal 8 46 53% 41 47% 8 50.00 8.42 25.16
Vt Verb tense 13 102 72% 40 28% 22 37.14 8.39 22.03
Woadv Adverb/adjective

position
0 0 0% 12 100% 0 - 0.00 0.00

Woinc Incorrect sentence
form

2 3 9% 32 91% 50 3.85 5.41 4.08

Wa Acronyms 0 0 0% 5 100% 1 0.00 0.00 0.00
Wci Wrong colloca-

tion/idiom
15 75 18% 338 82% 98 13.27 3.05 8.52

Wform Word form 51 94 54% 81 46% 36 58.62 22.57 44.43
Wtone Tone 0 8 62% 5 38% 0 - 0.00 0.00
TOTAL - 452 1,608 54% 1,357 46% 690 39.58 13.23 28.30

Table 3.11: Type-specific performance of the SMT system on the development set.

After an analysis of these four types of errors, we learn that the SMT system is
particularly good at correcting errors that:

1. Have more training examples.

These four types of errors are some of the most frequent errors made by learners
of English: ArtOrDet (ranked 1st in the NUCLE corpus), Nn (4th), Mec
(6th) and Wform (8th). There are many more training examples containing
corrections for these errors than the rest, so the SMT system is more likely to
learn reliable correction mappings. In addition, the relatively large proportions
of repeated corrections in these four error types make it easier for the system
to detect and correct those errors. This frequent repetition is not observed for
other common learner errors like Wci (wrong collocation/idiom, 2nd), Rloc-
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(local redundancy, 3rd) and Vt (verb tense, 5th), partly explaining why the
system does not yield good performance for them.

2. Involve changes of only one or a few words.

Corrections for these four types of errors are mostly insertions, deletions or
replacements of only one or a few words. Several short alignments are learnt
and used effectively by the SMT system, such as internet → Internet, lifes →
lives and over crowded → overcrowded.

3. Depend on local context.

The phrase-based TM (where phrases contain up to 7 tokens) and the n-gram
LM used in the SMT system are more likely to capture short-range context
than long-range context. Therefore, the SMT system is more effective at
correcting errors that require only local context information than those that
depend on long-range contexts.

The SMT system yields poor performance for Wci : an F0.5 score of 8.52%, a
P score of 13.27%, and a R score of 3.05%. A closer inspection of the missed Wci
errors shows that most of them are new to the system and have not been seen in the
training set. Learners of English are so creative that it is not possible to collect all
erroneous collocations, especially for open-class words like adjectives. Nevertheless,
our system makes good changes to some incorrect phrases used by learners. The
following example shows a successful correction:

Example 3.10. Wci :

Original sentence People’s life quality has been better now ...

Smt output People’s quality of life has been better now ...

Gold standard People’s quality of life has been better now ...

In other cases, our system seems to do a good job despite the gold-standard
annotation:

Example 3.11. Wci :

Original sentence ... not only inefficient in improving our life quality ...

Smt output ... not only inefficient in improving our quality of life ...

Gold standard ... not only inefficient in improving our life quality ...

We observe that almost all the corrected Rloc- errors are deletions of only one
word. Those involving deletions of two or more words are not handled well by the
SMT system, as in the following example:

Example 3.12. Rloc-:

Original sentence Tracking people using surveillance technology can offer better
security of people’s life.

Smt output Tracking people using surveillance technology can offer better
security of people’s life.

Gold standard Tracking people using surveillance technology can offer better
security.
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For different types of agreement errors like Vt and SVA, the SMT system does
not perform well when the useful information is far from the error, e.g. if the clue
is not close to the verb in question for Vt or the verb and its subject are far apart
for SVA. Consider the following examples:

Example 3.13. Vt :

Original sentence This could lead to psychological implications and thus caus-
ing many tremendous social effects ...

Smt output This could lead to psychological implications and thus caus-
ing many tremendous social effects ...

Gold standard This could lead to psychological implications and thus cause
many tremendous social effects ...

In this example, the clue to change ‘causing’ to ‘cause’ is ‘could lead’, which is at
the beginning of the sentence. As this information is far from the verb in question,
the SMT system does not detect the error.

Example 3.14. SVA:

Original sentence People needs a safe environment to live in, and also needs

a private environment to stay independent.

Smt output People need a safe environment to live in, and also needs

a private environment to stay independent.

Gold standard People need a safe environment to live in, and also need a
private environment to stay independent.

In this sentence, both verbs ‘needs’ should be changed to ‘need’ because they
share the same subject ‘People’. Our SMT system successfully detects the first error,
as the first ‘needs’ is just next to the subject ‘People’. However, it fails to detect
the second error as the second ‘needs’ is so far from the subject.

Zero scores for P, R and F0.5 are observed for Cit (citation), Reordering, Sfrag
(fragment), Smod (dangling modifier), Srun (runons, comma splice), Um (unclear
meaning), Woadv (adverb/adjective position), Wa (acronyms) and Wtone (tone),
suggesting that the SMT system is unable to correct these types of errors. However,
these results may not be truly representative as some of the error types only account
for small fractions of the development set (e.g. 0.18% for Cit, 0.12% for Sfrag) and
are usually too specific to particular pairs of sentences to extract general correction
mappings.

3.4.2.2 Sequential errors

One of our motivations for using the SMT framework for a general error correction
task is that, SMT-based GEC systems have the potential to correct multiple errors
at the same time. Our analysis reveals a number of cases where the SMT system
corrects two or more errors in one sentence, namely 3 cases where four errors in
one sentence are corrected, 18 cases where three errors are corrected, and 59 cases
where two errors are corrected. These results confirm that the SMT system is able to
correct multiple types of errors as well as interacting errors simultaneously. Consider
the following examples:
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Example 3.15. Multiple errors:

Original sentence Nevertheless, provision of more medicine and better equip-

ments as well as more medical centre is necessary to ac-
commodate these elders.

Smt output Nevertheless, provision of more medicine and better equip-

ment as well as more medical centres is necessary to ac-
commodate the elderly.

Gold standard Nevertheless, provision of more medicine and better equip-

ment as well as more medical centres are necessary to
accommodate the elderly.

The SMT system successfully detects and corrects all the errors in the sentence:
equipments → equipment (Nn), centre → centres (Nn), these → the (ArtOrDet),
and elders→ elderly (Wform). The last two are interacting errors, as the correction
of one requires the correction of the other. The only mismatch between our system’s
output and the gold standard is the missed SVA: is → are. However, we believe
this is an annotation mistake: the verb ‘is’ should not be changed to ‘are’ because
its subject is ‘provision’. This shows that the annotation in the NUCLE corpus is
not always reliable, and therefore true system performance is underestimated.

Example 3.16. Interacting errors:

Original sentence And all the evidences have been collected ...

Smt output And all the evidence has been collected ...

Gold standard And all the evidence has been collected ...

Here, two interacting errors are corrected: the change from ‘evidences’ to ‘evi-
dence’ (Nn) and the change from ‘have’ to ‘has’ (SVA).

When looking at the phrase alignment mappings used by the SMT decoder, we
notice that it generally uses two or more short alignments where each targets one
error, rather than a long alignment containing corrections for all the errors.

3.4.2.3 Missed errors

MEs in Table 3.11 result in low R. We observe that many missed errors are suc-
cessfully corrected in the SMT n-best list. However, the highest-ranked candidate
selected by the decoder is not always the best correction. This suggests that these
missed errors are essentially decoding errors, as the decoder fails to choose better
candidates with more corrections. For example:

Example 3.17. Missed ArtOrDet :

Original sentence The result is increasing size of population.

Smt output

1st The result is increasing size of the population.

3rd The result is the increasing size of the population.

Gold standard The result is the increasing size of the population.

71



Example 3.18. Missed Vt and Nn:

Original sentence Initially, surveillance technology such as RFID is implanted
into the body of animals.

Smt output

1st Initially, surveillance technology such as RFID is implanted
into the body of animals.

3rd Initially, surveillance technology such as RFID was im-
planted into the body of animals.

6th Initially, surveillance technology such as RFID is implanted
into the bodies of animals.

7th Initially, surveillance technology such as RFID was im-
planted into the bodies of animals.

Gold standard Initially, surveillance technology such as RFID was im-
planted into the bodies of animals.

Some errors are new to the system as they have not been seen in the training
data. Since our phrase-based SMT system is trained on surface forms, it is unaware
of syntactic structures and cannot use correction mappings of the form NN→ NNS.6

Instead, it has to have seen the exact lexical pair (e.g. movie → movies) in the
training data. These out-of-vocabulary (OOV) errors are missed by the system
because the required correction mappings are not included in the phrase translation
table learnt from the training data.

We thus categorise errors missed by the SMT system into two groups based on
the cause: 1) decoding errors; and 2) OOV errors. In order to identify the cause
of every missed error, we perform forced decoding. As described in Section 3.3.6,
forced decoding is used to force the SMT decoder to produce only the reference
correction using all possible phrase alignments in the phrase table. This can help
us find out whether the SMT system can correct the errors using the current phrase
table despite decoding. A system using forced decoding will correct decoding errors,
but not OOV errors. Results of forced decoding experiments by error type are also
presented in Table 3.11.

Decoding errors: Contribute to about 54% of all missed errors. We observe that
these errors often involve changes of only one or a few words (especially function
words), where long-range contextual information may be needed for accurate correc-
tion. For example, 83% of missed ArtOrDet errors and 88% of missed SVA errors are
corrected during forced decoding. Since SMT was not originally designed for GEC
and many standard features may not perform well on this task, the highest-ranked
candidate selected by the decoder is not always the best correction. Adding new
local and global features to help the decoder distinguish good from bad corrections
may overcome this problem. For example, the character-level Levenshtein distance
feature has proved to be useful and effective in Section 3.4.1. Additionally, in our
final hybrid system submitted to the CoNLL-2014 shared task, a large-scale LM is
used to re-rank the 10-best candidates from the SMT system to help minimise SMT

6Noun, singular or mass → Noun, plural
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decoding errors (see Section 3.5). Candidate re-ranking will be investigated in detail
in Chapter 4.

OOV errors: Account for the remaining 46% missed errors. Useful phrase map-
pings required to correct these errors could not be learnt from the training data due
to data sparsity. Our analysis reveals that these errors often involve rare words (er-
roneous or not), open-class words (e.g. nouns, verbs) or longer phrases. It is worth
noting that mappings for phrases longer than 7 tokens are not able to be learnt or
extracted by the system because the maximum phrase length is set to 7 during train-
ing. Apart from adding more training data (as discussed in Section 3.3.4), another
solution is to use more generalised models. Neural network models are appealing
for GEC as they may be able to correct errors in previously unseen phrases and
sentences more effectively. We will address this in detail in Chapter 5.

3.5 Results in the CoNLL-2014 shared task

The CoNLL-2014 shared task on grammatical error correction required participating
systems to correct all the errors present in text written by learners of English. Our
submission used a hybrid approach, which includes:

• a rule-based system from the self-assessment and tutoring system developed
at the University of Cambridge for helping intermediate learners of English in
their writing tasks (Andersen et al., 2013) - RBS;7

• the final SMT system from Section 3.4;

• a large-scale Microsoft n-gram LM built from web documents (Gao et al., 2010)
to rank alternative corrections;

• an error type filtering technique to filter out some unnecessary corrections.

Results for the individual systems (i.e. RBS and SMT) and different combinations
of them on the development set are reported in Table 3.12. We can see that our SMT
system (#2) has much better performance than the rule-based system (#1). Using
the rule-based system as the first processing step to perform an initial correction
helps the SMT system (#3), suggesting that some corrections from the rule-based
system and SMT system are complementary. Performance is improved when the
candidates generated from the rule-based system output are ranked by the LM
before applying the SMT system (#4). As we have observed in Section 3.4.2.3, the
candidate with the highest probability from the SMT system is not always the best
correction. Using the LM to re-rank the 10-best candidates from the SMT system
yields better performance (#5). Therefore, candidate re-ranking for SMT-based
GEC systems seems necessary. Filtering out types with zero P (i.e. Reordering,
Srun and Wa - see Table 3.11) improves overall P while preserving R (#6). Our

7The latest version of the system, calledWrite & Improve, is available at https://sat.ilexir.
co.uk.
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# System CE ME UE P (%) R (%) F0.5 (%)
1 RBS 95 3,322 107 47.03 2.78 11.24
2 SMT 452 2,965 690 39.58 13.23 28.30
3 RBS>SMT 476 2,941 738 39.21 13.93 28.77
4 RBSc>LM>SMT 471 2,946 781 39.61 13.78 28.81
5 RBSc>LM>SMT10-best>LM 681 2,736 1366 33.27 19.93 29.34
6 RBSc>LM>SMT10-best>LM>Filter 681 2,736 1350 33.53 19.93 29.50

Table 3.12: Results for different systems on the CoNLL-2014 development set. Sub-
script ‘c’ indicates candidates generated from a system’s individual corrections, subscript
‘10-best’ indicates the 10-best list of candidates produced by the SMT system, and ‘>’
indicates a pipeline where the output of one system is the input to the other.

submission to the CoNLL-2014 shared task is the result of our best hybrid system,
that is RBSc>LM>SMT10-best>LM>Filter (#6).

The official test set comprises 50 new essays (approximately 30,144 tokens in
1,312 sentences) written in response to two prompts, one of which was also included
in the training data. Two official rounds of evaluation were performed. The first
was based on the original gold-standard annotations made by two human annotators
independently, whereas the second was based on a revised version that includes
alternative annotations submitted by the participating teams. The official results
for the 13 submissions in both evaluation rounds are reported in Table 3.13. Our
submitted system (CAMB) achieved first and second place respectively.

A closer observation of the system’s output and the gold-standard annotation
reveals a number of cases where the system introduces changes that are not part
of the gold standard but we consider improve the quality of a sentence, suggesting
that true system performance is underestimated. For example:

Example 3.19. Uncredited correction:

Original sentence Demon is not easily to be defeated and it is required

much of energy and psychological support.

System output Demon is not easily defeated and it requires a lot of en-
ergy and psychological support.

Gold standard The demon is not easily defeated and it requires much

energy and psychological support.

Adding alternative corrections to the gold standard alleviates this problem, al-
though the list of alternatives will inevitably be incomplete.

There are also a number of cases where the sentences are considered incorrect
as part of a longer text but are acceptable when they are evaluated in isolation.
Consider the following example:

Example 3.20. Uncredited correction:

Original sentence It has erased the boundaries of distance and time.

System output It has erased the boundaries of distance and time.

Gold standard They have erased the boundaries of distance and time.
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Team
Original test set Revised test set

P (%) R (%) F0.5 (%) Rank P (%) R (%) F0.5 (%) Rank

CAMB 39.71 30.10 37.33 1 46.70 34.30 43.55 2
CUUI 41.78 24.88 36.79 2 52.44 29.89 45.57 1
AMU 41.62 21.40 35.01 3 45.68 23.78 38.58 3
POST 34.51 21.73 33.88 4 41.28 25.59 36.77 4
NTHU 35.08 18.85 29.92 5 38.34 21.12 32.97 6
RAC 33.14 14.99 26.68 6 35.63 16.73 29.06 8
UMC 31.27 14.46 25.37 7 43.17 19.72 34.88 5
PKU* 32.21 13.65 25.32 8 36.64 15.96 29.10 7
NARA 21.57 29.38 22.78 9 23.83 31.95 25.11 9
SJTU 30.11 5.10 15.19 10 32.95 5.95 17.28 10
UFC* 70.00 1.72 7.84 11 72.00 1.90 8.60 11
IPN* 11.28 2.85 7.09 12 11.66 3.17 7.59 12
IITB* 30.77 1.39 5.90 13 34.07 1.66 6.94 13

Table 3.13: CoNLL-2014 official evaluation results (Ng et al., 2014). The teams that sub-
mitted their system output after the deadline have an asterisk (*) after their team names.

The system candidate is perfectly grammatical on its own (at the sentence level),
but it is considered incorrect when analysed in context (at the script level). Such
mismatch is the result of discrepancies between the annotation and evaluation cri-
teria: while the gold standard is annotated taking discourse into account, system
corrections are proposed in isolation, completely devoid of discursive context.

The shared task results confirm our hypothesis that the SMT approach is suitable
for an all-errors correction task. Our SMT system forms the basis of a state-of-the-
art all-errors GEC system. Another important thing to note is that despite the low
F0.5 scores in Table 3.13, Bryant and Ng (2015) reported that our system, CAMB,
was able to perform 73% as reliably as a human annotator when further alternative
corrections are taken into account.

3.6 Summary

In this chapter, we have investigated SMT for GEC. We have shown that SMT can
form the basis of a competitive all-errors GEC system. We have explored different
TMs, LMs and alignment methods used in the SMT system. To overcome the
lack of training data, we have investigated three alternative sources of data: 1)
parallel sentences extracted from other high-quality learner corpora; 2) artificial data
generated by injecting errors into error-free English sentences; and 3) short parallel
phrases extracted from error annotations. In addition, we have demonstrated that
phrase table filtering can be used to improve system performance. A phrase-based
SMT system has proved to be effective, and it forms one half of our winning system
submitted to the CoNLL-2014 shared task.
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In order to better understand the performance of the SMT-based GEC system,
we have performed a detailed error analysis. The SMT system is particularly good
at correcting errors that have more training examples, involve changes of only one
or a few words and depend on local context. In terms of error types, the system
achieves the best performance for Wform, Mec, Nn and ArtOrDet. We have also
shown that the SMT system can correct sequential errors and interacting errors at
the same time. However, about 54% of missed errors are caused by decoding errors
while the remaining 46% are missed due to OOV errors.
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CHAPTER 4

Candidate re-ranking

We observe that many errors are missed by the system developed in the previous
chapter. Better corrections are in the n-best list of candidates produced by the
system, but the decoder fails to select the best correction. In this chapter, we
develop a supervised ranking model to re-rank candidates generated by an SMT-
based GEC system. A range of novel features with respect to GEC are investigated
and implemented in our re-ranker. We train a rank preference SVM model and
demonstrate that this outperforms two other ranking models for GEC. Experimental
results on the publicly available FCE dataset show that our re-ranker can help
improve sentence quality.

The work presented in this chapter was published in the 11th Workshop on In-
novative Use of NLP for Building Educational Applications, North American Chap-
ter of the Association for Computational Linguistics: Human Language Technolo-
gies (Yuan et al., 2016).

4.1 Introduction

As demonstrated in the previous chapter, SMT can form the basis of a competitive
all-errors GEC system. However, the best candidate produced by an SMT-based
GEC system is not always the best correction, as illustrated in the following exam-
ples:1

Example 4.1. There <NS type=“AGV”><i>are</i><c>is</c></NS> some <NS
type=“CN”><i>informations</i><c>information</c></NS> you have asked me about.

Here, ‘are’ should be changed to ‘is’ (“AGV” stands for Verb AGreement) and ‘infor-
mations’ should be corrected to ‘information’ (“CN” stands for Countability of Noun).

1Sentences are taken from the FCE dataset and annotated using the CLC error-coding scheme.
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Original sentence There are some informations you have asked me about.
Smt output

1st There are some information you have asked me about.
2nd There is some information you have asked me about.
3rd There are some information you asked me about.
4th There are some information you have asked me.
5th There are some information you have asked me for.
6th There are some information you have asked me about it.
7th There is some information you asked me about.
8th There are some information you asked me for.
9th There were some information you have asked me about.

10th There is some information you have asked me.
Gold standard There is some information you have asked me about.

The SMT output is the one with the highest probability (1st), which only corrects the
mass noun error (informations → information), but misses the agreement error (are →
is). However, the 2nd -ranked candidate corrects both errors and matches the reference.

Example 4.2. There will be signs to follow from <NS type=“MD”><c>the</c></NS>
<NS type=“RP”><i>Central</i><c>central</c></NS> train station.

In this case, ‘the’ should be added (“MD” stands for Missing Determiner) and ‘Central’
should be changed to ‘central’ (“RP” stands for Replace Punctuation).

Original sentence There will be signs to follow from Central train station.
Smt output

1st There will be signs to follow from central train station.
2nd There will be signs to follow from Central train station.
3rd There will be signs to follow from the central train station.
4th There will be signs to follow from Central the train station.
5th There will be signs to follow from the Central train station.
6th There will be signs to follow , from central train station.
7th There will be signs to follow , from Central train station.
8th There will be signs to follow from the Central the train sta-

tion.
9th There will be signs to follow from central the train station.

10th There will be a signs to follow from central train station.
Gold standard There will be signs to follow from the central train station.

The 3rd -ranked candidate is better than the SMT output (1st) as it not only corrects
the capitalisation error (Central → central) but also inserts the determiner ‘the’.

Since SMT was not originally designed for GEC, many standard features do not
perform well on this task. Thus, it is necessary to add new local and global features
to help the decoder distinguish good from bad corrections. We used Levenshtein
distance to limit the changes made by our SMT system, given that most words
translate into themselves and errors are often similar to their correct forms (see Sec-
tion 3.3.5 and 3.4.1). Junczys-Dowmunt and Grundkiewicz (2014) also augmented
their SMT system with the word-level Levenshtein distance features.

However, the integration of additional models/features into the decoding process
may affect the dynamic programming algorithm used in SMT, since it does not
support such complex features as those computed from an n-best list. An alternative
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to performing this ‘integrated decoding’ is to re-rank the translation candidates
produced by the SMT system using a rich set of features that are not used by the
SMT decoder, so that better candidates can be selected as ‘optimal’ translations.
This has several advantages: 1) it allows the introduction of new features that are
tailored for GEC; 2) unlike in SMT, we can use various types of features without
worrying about fine-grained smoothing issues and it is easier to use global features;
3) re-ranking is easy to implement and the existing decoder does not need to be
modified; and 4) the decoding process in SMT only needs to be performed once,
which allows for fast experimentation.

Most previous work on GEC has used evaluation methods based on P, R or
F-score, as in the latest shared tasks. However, as discussed in Section 2.4, these
evaluation methods do not provide an indicator of improvement on the original text
so there is no way to compare GEC systems with a ‘do-nothing’ baseline. Since the
aim of GEC is to improve text quality, we use the I-measure, which tells us whether
a system improves the input.

The main contributions of our work are as follows. First, to the best of our
knowledge, we are the first to use a supervised discriminative re-ranking model in
SMT for GEC, showing that n-best list re-ranking can be used to improve sentence
quality. Second, we propose and investigate a range of easily computed features for
GEC re-ranking. Finally, we report results on several well-known publicly available
test sets that can be used for cross-system comparisons.

4.2 Approach

Our re-ranking approach is defined as follows:

1. an SMT system is first used to generate an n-best list of candidates for each
input sentence;

2. features that are potentially useful to discriminate between good and bad
corrections are extracted from the n-best list;

3. these features are then used to determine a new ranking for the n-best list;

4. the new highest-ranked candidate is finally output.

The SMT system is not perfect, so candidates with the highest probability do
not always constitute the best correction. For this reason, an n-best list re-ranker is
trained to find better corrections. We treat n-best list re-ranking as a discriminative
ranking problem. Unlike in standard SMT, the source input sentence is also added
to the candidate pool if it is not in the n-best list, since in many cases the source
sentence has no errors and should be translated as itself.

We use rank preference SVMs (Joachims, 2002) in the SVMrank package (Joachims,
2006), an efficient implementation of the SVM framework (Vapnik, 1995). This
model learns a ranking function from preference training examples and then assigns
a score to each test example, from which a global ordering is derived. The default
linear kernel is used due to training and testing time costs.
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SVMs are widely used for learning classification, regression, or ranking functions.
The basic idea of SVMs is to find a maximum (soft-)margin hyperplane that can sep-
arate two different classes correctly, and simultaneously maximise the (soft-)margin
(or the distance) between that hyperplane and other ‘difficult points’ close to it.
These ‘difficult points’ are called support vectors, and a decision function is fully
specified by these support vectors. Given a set of instance-label pairs (xi, yi), where
xi ∈ Rn, yi ∈ {1,−1} for i = 1, ..., l, any hyperplane can be written as the set of
points x satisfying

wTx+ b = 0 (4.1)

where w is the normal vector to the hyperplane (known as the weight vector)
and b is the bias. Learning the SVM can then be formulated as a constrained
optimisation problem:

min
w,b

1

2
wTw + C

l
∑

i=1

ξ(w, b; xi, yi) (4.2)

subject to

yi(w
Txi + b) ≥ 1− ξ(w, b; xi, yi) for i = 1, ..., l (4.3)

where a penalty parameter C allows a trade-off between the margin size and the
training error, and slack variables ξ(w, b; xi, yi) measure the extent of misclassifica-
tion. As ξ(w, b; xi, yi) ≥ 0, the constraint in Equation 4.3 is equivalent to

ξ(w, b; xi, yi) = max(0, 1− yi(w
Txi + b)) (4.4)

Therefore, the learning problem is equivalent to the unconstrained optimisation
problem:

min
w,b

1

2
wTw + C

l
∑

i=1

max(0, 1− yi(w
Txi + b)) (4.5)

Rank preference SVMs work as follows. Suppose that we are given a set of ranked
instances R containing training samples xi and their target rankings ri:

R = {(x1, r1), (x2, r2), ..., (xl, rl)} (4.6)

such that xi ≻ xj when ri < rj, where ≻ denotes a preference relationship.
A group of ranking functions are defined, where each function f determines the
preference relations between instances:

xi ≻ xj ⇔ f(xi) > f(xj) (4.7)

The aim is to find the best function f that minimises a given loss function ξ with
respect to the given ranked instances. Instead of using the R set directly, a set of
pairwise difference vectors are created and used to train a model. For linear ranking
models, this is equivalent to finding the weight vector w that maximises the number
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of correctly ranked pairs:

∀(xi ≻ xj) : w(xi − xj) > 0 (4.8)

which is, in turn, equivalent to solving the following optimisation problem:

min
w

1

2
wTw + C

∑

ξij (4.9)

subject to

∀(xi ≻ xj) : w(xi − xj) ≥ 1− ξij (4.10)

where ξij ≥ 0.

4.3 Feature space

New features are introduced to identify better corrections in the n-best list produced
by the SMT decoder. These are described briefly below.

4.3.1 SMT feature set

The SMT feature set reuses information extracted from the SMT system. As the
SMT framework has been shown to produce good results for GEC, we reuse these
pre-defined SMT features. This feature set includes:

4.3.1.1 Decoder’s scores

The SMT decoder’s scores include unweighted TM scores, reordering model scores,
LM scores and word penalty scores. We use unweighted scores, as their weights will
be reassigned during training.

4.3.1.2 N-best list ranking information

The n-best list feature set encodes the original ranking information provided by the
SMT decoder. Both linear and non-linear transformations are used.

Note that both the decoder’s features and the n-best list ranking features are
extracted from the SMT system output. If the source sentence is not in the n-best
list, it will not have these two kinds of features and zeros will be used.

4.3.2 Language model feature set

Raw candidates from an SMT system can include many malformed sentences so we
introduce LM features and adaptive language model (ALM) features in an attempt
to identify and discard them.
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4.3.2.1 LM features

LMs are widely used in GEC, especially to rank correction suggestions proposed
by other models. Ideally, correct word sequences will get high probabilities, while
incorrect or unseen ones will get low probabilities. We use Microsoft’s Web N-
gram Services, which provide access to large smoothed n-gram LMs built from web
documents. All our experiments are based on the 5-gram ‘bing-body:apr10’ model,
the same one used in Section 3.5. We also build several n-gram LMs (for n = 3, 4,
and 5) from native and learner corpora, including the corrected version of the CLC,
the written part of the BNC and ukWaC (Ferraresi et al., 2008). UkWaC is a very
large corpus of English (with more than 2 billion tokens) constructed by crawling the
.uk Internet domain. The LM feature set contains unnormalised sentence scores,
normalised scores using arithmetic mean and geometric mean, and the minimum
and maximum n-gram probability scores.

4.3.2.2 ALM features

ALM scores are calculated from the n-best list’s n-gram probabilities. N-gram counts
are collected using the entries in the n-best list for each source sentence. N-grams
repeated more often than others in the n-best list get higher scores, thus ameliorating
incorrect lexical choices and word order. The n-gram probability for a target word
ci given its history ci−1

i−n+1 is defined as:

Pn−best(ci|c
i−1
i−n+1) =

countn−best(c
i
i−n+1)

countn−best(c
i−1
i−n+1)

=
countn−best(c

i
i−n+1)

∑

ci
countn−best(cii−n+1)

(4.11)

For a sentence C with l words:

PALM(C) = log(
l
∏

i=1

Pn−best(ci|c
i−1
i−n+1)) (4.12)

We then normalise the score by the sentence length l to get an average word
log probability, making it comparable for sentences of different lengths. In our re-
ranking system, different values of n are used, from 2 to 6. This feature is taken
from Hildebrand and Vogel (2008).

4.3.3 Statistical word lexicon feature set

We use the word lexicon learnt by IBM Model 4 (see Section 3.1.2.1), which contains
translation probabilities for word-to-word mappings. The statistical word transla-
tion lexicon is used to calculate the translation probability Plex(ci) for each word ci
in the target sentence C. Plex(ci) is the sum of all translation probabilities of ci for
each word ej in the source sentence E. Specifically, this can be defined as:

Plex(ci|E) =
1

m+ 1

m
∑

j=0

P (ci|ej) (4.13)
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where m is the source sentence length. P (ci|ej) is the word-to-word translation
probability of the target word ci from one source word ej.

As noted by Ueffing and Ney (2007), the sum in Equation 4.13 is dominated by
the maximum lexicon probability, which we also use as an additional feature:

Plex−max(ci|E) = max
j=0,...,m

P (ci|ej) (4.14)

For both lexicon scores, we sum over all words ci in the target sentence and nor-
malise by sentence length to get sentence translation scores. Lexicon scores are calcu-
lated in both directions. This feature is also taken from Hildebrand and Vogel (2008).

4.3.4 Levenshtein distance feature set

A close observation reveals that raw candidates from an SMT system can also include
fluent sentences that change the source significantly. In GEC, we want to keep
the original sentences written by learners as much as possible, and make only the
minimum number of necessary corrections. Therefore, we may want to limit the
changes made by the system. As discussed in Section 3.3.5, Levenshtein distance
is a string metric for measuring the difference between two sequences, reflecting
the minimum number of edits (i.e. insertions, deletions or substitutions) required
to change one sequence into another. Both word-level and character-level similarity
scores are calculated using Equation 3.34. The overall scores and breakdowns are
used as features. It is worth noting that character-level Levenshtein distance is also
used as a feature in our SMT system.

4.3.5 Length feature set

These features are used to make sure that the final system does not make unnecessary
deletions or insertions. This set contains four length ratios:

score(Hs, E) =
N(Hs)

N(E)
(4.15)

score(Hs, H1) =
N(Hs)

N(H1)
(4.16)

score(Hs, Hmax) =
N(Hs)

N(Hmax)
(4.17)

score(Hs, Hmin) =
N(Hs)

N(Hmin)
(4.18)

where Hs is the sth candidate, E is the source (erroneous) sentence, H1 is the 1-
best candidate (the candidate ranked 1st by the SMT system), N(·) is the sentence’s
length, N(Hmax) is the maximum candidate length in the n-best list for that source
sentence and N(Hmin) is the minimum candidate length.
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4.3.6 Syntactic vs. non-syntactic

We decide to use only non-syntactic features for a number of reasons. Firstly, non-
syntactic features are easier to compute, while syntactic features depend on syntactic
analysis. In addition, non-syntactic features extracted for the candidates in the n-
best list are more reliable than syntactic features (e.g. features based on parser
output) as most existing NLP tools do not perform well with sentences containing
errors (see Section 3.2). Last but not least, previous work has shown that non-
syntactic features seem more effective than syntactic features when re-ranking SMT
n-best lists (see Section 2.2.2).

4.4 Experiments

4.4.1 Experimental set-up

We use the publicly available FCE dataset, which is a part of the CLC. As dis-
cussed in Section 2.3.2.1, the FCE dataset is a set of 1,244 scripts written by learn-
ers of English who took the FCE examination between 2000 and 2001. The texts
have been manually error-annotated with a taxonomy of approximately 80 error
types (Nicholls, 2003). As discussed in Section 2.6, the reasons for using the FCE
dataset instead of the NUCLE corpus are: 1) the FCE dataset is a more represen-
tative test set of learner writing as it covers a wide variety of L1s; 2) the error
annotations in the NUCLE corpus are sometimes unreliable and inconsistent; 3) the
FCE dataset was annotated using the same annotation scheme as the CLC; and 4)
results reported on the publicly available FCE dataset can be used for cross-system
comparisons.

Following Yannakoudakis et al. (2011), we split the publicly available FCE
dataset into training and test sets: we use the 1,147 scripts from the year 2000
for training and the 97 scripts from the year 2001 for testing. The sizes of the FCE
training and test sets are given in Table 4.1. Both the FCE and NUCLE training
sets are too small to build good SMT systems, considering that previous work has
shown that training on small datasets does not work well for SMT-based GEC and
adding more training data helps (e.g. see Section 3.3.4; Yuan and Felice (2013); Fe-
lice et al. (2014); Junczys-Dowmunt and Grundkiewicz (2014)). To overcome this
problem, we use examples extracted from the fully error-coded CLC (approximately
1,934,732 pairs of parallel sentences and 28,722,561 tokens on the target side).

Segmentation and tokenisation are performed using the Robust Accurate Statis-
tical Parsing (RASP) system (Briscoe et al., 2006), which is expected to perform
better in the noisy domain of learner text than systems developed from high quality
copy-edited text.

System performance is evaluated in terms of I-measure, which is designed to
address problems with previous evaluation methods and reflect any improvement on
the original sentence after applying a system’s corrections.
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Dataset Scripts Sentences Tokens

Training set 1,147 30,995 496,567
Test set 97 2,691 41,986

Table 4.1: The FCE dataset sizes.

4.4.2 SMT system

We train several new SMT systems based on the FCE dataset and select the best
one for our re-ranking experiments. These systems use different configurations and
improved methods proposed in the previous chapter, defined as follows:

• alignment methods:

– GIZA++:

uses GIZA++ for word alignment;

– Pialign:

uses Pialign to learn a phrase table;

– our method:

uses our method to build a phrase table directly - see Section 3.3.5;

• training data:2

– FCE:

uses the publicly available FCE dataset as training data;

– CLC:

incorporates sentence-level training data extracted from the CLC;

– phrase:

uses short phrase alignments extracted from error annotations, where
identical phrase pairs are removed - see Section 3.3.4.3;

• LD:

limits edit distance by adding character-level Levenshtein distance as a new
feature;

• LM:

builds a bigger LM by adding the corrected version of the CLC for decoding.

2The artificial datasets used in Section 3.3.4.2 are not used here as they are generated for the
NUCLE data (i.e. the error patterns and error distributions used to inject errors into error-free
text are learnt from the NUCLE corpus) and so are not expected to perform well on the FCE data.
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System performance is shown in Table 4.2. We also report results using other
evaluation metrics for comparisons: F0.5 and F1 from the M2 scorer, GLEU and
BLEU. Baseline is a baseline system which makes no corrections. As mentioned
earlier in Section 2.4, it always gets a zero F-score. We see that not all the systems
make the source text better (i.e. they do not have positive I scores). In addition,
not all the improved methods that were useful in the previous chapter yield better I
scores on the FCE test set. Pialign outperforms GIZA++ and our method. Adding
more learner examples improves system performance (+CLC ), as does a bigger LM
for decoding (+LM ) and the Levenshtein distance feature (+LD). However, adding
short parallel phrases extracted from error annotations into the training set yields
lower I scores (+phrase). As discussed in Section 3.3.4.4, these extracted short
phrases are mainly used to boost the probability of phrase alignments that involve
corrections, so as to improve R (at the cost of P, though). Adding these parallel
phrases consistently yields better R and F1. The best system in terms of I-measure is
the one that uses the whole CLC, Pialign, a bigger in-domain LM for decoding, and
edit distance as an additional feature (Pialign+FCE+CLC+LM+LD). The positive
I score of 2.87% shows a real improvement in sentence quality. This system is also
the best in terms of BLEU (80.52%), GLEU (70.15%) and F0.5 (52.90%).3 Therefore,
we use the n-best list from this system to perform re-ranking.

4.4.3 SVM re-ranker

The input to the re-ranking model is the 10-best list output from an SMT system.
The original source sentence is used to collect a 10-best list of candidates generated
by the SMT decoder, which is then used to build a supervised re-ranking model.

4.4.3.1 Assigning gold labels

In order to train SVM re-rankers, we need a gold ranking of correction candidates
for each source sentence. Since we do not have human judgements for n-best lists,
we approximate two versions of the sentence-level rankings using WAcc and I scores
as the ranking metric respectively. We then build two SVM re-rankers using all the
features defined in Section 4.3:

• SVMWAcc:

uses sentence-level WAcc scores as gold labels;

• SVMI:

uses sentence-level I scores as gold labels.

Re-ranking results for the two SVM systems on the FCE test set are presented
in Table 4.3. The effectiveness of our SVM re-rankers is evident, as performing a
10-best list re-ranking yields a substantial improvement in performance over the top-
ranked output from our best SMT system from Section 4.4.2 (SMT in Table 4.3).
Using sentence-level I scores (SVMI) outperforms WAcc (SVMWAcc). Therefore, in
the experiments reported hereafter, we use sentence-level I scores as gold labels.

3The best system in terms of F1 is Pialign+FCE+CLC+LM+phrase, with an F1 score of 43.50%.
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Alignment Setting BLEU GLEU
M2 I-measure

P R F0.5 F1 WAcc I

Baseline 75.24 60.39 - 0 0 0 86.83 0

GIZA++

FCE 73.46 61.42 36.66 16.97 29.76 23.20 83.24 -4.14
FCE+LM 74.89 64.16 43.48 24.37 37.58 31.23 83.99 -3.27
FCE+LD 73.88 61.64 37.70 16.40 29.92 22.86 83.64 -3.68
FCE+LM+LD 75.27 64.36 45.01 23.71 38.16 31.06 84.41 -2.79
FCE+CLC+LM 76.47 67.70 48.67 37.64 45.97 42.45 83.94 -3.33
FCE+CLC+LM+LD 76.91 67.98 49.87 37.16 46.67 42.59 84.42 -2.78

FCE+phrase 70.54 59.30 30.76 19.84 27.71 24.12 80.64 -7.13
FCE+LM+phrase 73.40 63.49 40.44 27.50 36.96 32.74 82.64 -4.82
FCE+LD+phrase 71.44 59.93 32.09 19.16 28.27 23.99 81.41 -6.24
FCE+LM+LD+phrase 74.07 63.92 41.87 26.63 37.57 32.55 83.31 -4.05
FCE+CLC+LM+phrase 74.64 66.74 44.91 40.53 43.96 42.61 82.37 -5.13
FCE+CLC+LM+LD+phrase 75.35 67.19 46.14 39.74 44.70 42.70 83.00 -4.42

Pialign

FCE 75.10 62.22 43.13 11.34 27.64 17.96 84.94 -2.17
FCE+LM 75.69 63.40 45.19 15.24 32.44 22.79 83.10 -4.29
FCE+LD 75.09 62.19 43.07 11.17 27.41 17.74 85.00 -2.11
FCE+LM+LD 75.58 63.20 44.59 14.45 31.47 21.83 83.10 -4.30
FCE+CLC+LM 80.39 70.07 62.37 32.19 52.52 42.46 87.01 1.38
FCE+CLC+LM+LD 80.52 70.15 63.27 31.95 52.90 42.46 87.21 2.87

FCE+phrase 72.04 60.38 31.89 17.36 27.32 22.48 80.66 -7.11
FCE+LM+phrase 74.33 63.50 40.54 22.29 34.84 28.76 80.86 -6.88
FCE+LD+phrase 72.38 60.63 32.26 16.93 27.31 22.21 80.99 -6.73
FCE+LM+LD+phrase 74.46 63.57 40.92 22.01 34.92 28.62 81.03 -6.68
FCE+CLC+LM+phrase 78.17 69.16 51.08 37.88 47.75 43.50 84.65 -2.52
FCE+CLC+LM+LD+phrase 78.31 69.21 51.58 37.51 47.98 43.43 84.83 -2.30

Our method

FCE 69.70 58.59 29.49 18.83 26.49 22.98 80.54 -7.25
FCE+LM 72.66 62.61 38.56 26.17 35.22 31.18 82.35 -5.16
FCE+LD 71.54 59.91 31.78 17.36 27.26 22.45 82.02 -5.54
FCE+LM+LD 73.56 63.15 40.26 24.72 35.77 30.63 83.17 -4.22

FCE+CLC+LM 72.74 64.30 40.80 36.90 39.95 38.75 81.14 -6.55
FCE+CLC+LM+LD 74.15 65.37 43.01 36.11 41.43 39.26 82.43 -5.07

Table 4.2: SMT system performance on the FCE test set (in percentages). The best
results for each alignment method are marked in bold.

Model WAcc I

SMT 87.21 2.87
SVMWAcc 87.90 8.10
SVMI 88.05 9.15

Table 4.3: 10-best list re-ranking using different gold labels on the FCE test set (in
percentages). The best results are marked in bold.

4.4.3.2 The feature set impact

In order to measure the contribution of each feature set to the overall improvement
in sentence quality, a number of ablation tests are performed, where new models
are built by removing one feature type at a time. If a decrease in performance is
observed after removing a feature type, we then know that the feature type that
has been removed has a positive effect on the overall performance. The bigger the
difference in performance, the more important the feature type. However, if an
increase in performance is observed, it suggests that the feature type has a negative
effect and should not be used to build the re-ranking model.
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# Feature WAcc I

0 SMT 87.21 2.87
1 FullFeat 88.05 9.15
2 -SMT(decoder) 87.28 3.40
3 -SMT(rank) 87.82 7.47
4 -LM 87.93 8.33
5 -ALM 87.90 8.12
6 -word lexicon 87.75 6.98
7 -LD 88.12 9.78

8 -length 87.92 8.25
9 -LD-SMT(decoder) 87.25 3.20
10 -LD-SMT(rank) 87.93 8.32
11 -LD-LM 88.09 9.56
12 -LD-ALM 87.93 8.35
13 -LD-word lexicon 87.84 7.65
14 -LD-length 88.02 9.03
15 SMT(decoder) 87.15 2.40

Table 4.4: 10-best list re-ranking using different features on the FCE test set (in per-
centages). The best results are marked in bold.

In Table 4.4, SMT is the best SMT system output without re-ranking. FullFeat
combines all feature types described in Section 4.3. The rest are FullFeat minus the
indicated feature types. The first round of ablation tests (#2-8) tells us that not all
the features in the FullFeat set have positive effects on the overall performance. A
new model built using all but the Levenshtein distance features achieves an I score
of 9.78% (#7), outperforming the one built using FullFeat (#1). This indicates that
the Levenshtein distance features are detrimental and bring performance down. The
removal of all the other types of features yields worse performance, suggesting that
they all contribute to the overall improvement in sentence quality.

Therefore, we perform another round of ablation tests on the system without the
Levenshtein distance features (-LD #7). Results (#9-14) confirm our finding that
all the other feature types have positive effects on overall performance. Among them,
the SMT decoder’s scores are the most effective, as their absence is responsible for a
6.58 decrease in I score (#9). The removal of the word lexicon features also accounts
for a 2.13 decrease (#13), followed by the SMT n-best list ranking information (1.46
#10), the ALM features (1.43 #12), the length features (0.75 #14) and the LM
features (0.22 #11).

In order to test the performance of the SMT decoder’s scores on their own, we
built a new re-ranking model using only these features, which we report in Table 4.4
#15. We can see that using only the SMT decoder’s scores as features yields worse
performance than no re-ranking (#0), suggesting that the existing features used
by the SMT decoder are not optimal when used outside the SMT ecosystem. We
hypothesise that this might be caused by the lack of scores for the source sentences
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Model WAcc I

SMT 87.21 2.87
SVM 88.12 9.78
Oracle 92.67 44.35

Table 4.5: Performance of SMT best, SVM re-ranker and oracle best (in percentages).

that are not included in the n-best list of the original SMT system. Therefore, the
introduction of other types of features is necessary.

Overall, the best SVM re-ranker is built using all but the Levenshtein distance
features, achieving an I score of 9.78% (#7).

4.4.4 Oracle score

In order to estimate a realistic upper bound on the task, we calculate an oracle
score from the same 10-best list generated by our best SMT model. The oracle set
is created by selecting the candidate which has the highest sentence-level WAcc for
each source sentence in the test set.4

Table 4.5 compares the results of the SMT system (i.e. the best SMT model from
Section 4.4.2), the SVM re-ranker (i.e. the best re-ranking model from Section 4.4.3)
and the approximated oracle. We see that the oracle score is about 41 points higher
than the standard SMT score in terms of I-measure, and about 5 points higher in
terms of WAcc, confirming that there are alternative candidates in the 10-best list
that are not chosen by the SMT model. Our re-ranker improves the I score from
2.87% to 9.78%, and the WAcc score from 87.21% to 88.12%, a substantial improve-
ment over the best SMT model. However, there is still much room for improvement.

The oracle score tells us that, under the most favourable conditions, our re-
ranking models could only improve the original text by 44.35% at most. This also
reveals that, in many cases, the correct translation is not in the 10-best list. There-
fore, it would be impossible to retrieve the correct translation even if the re-ranking
model was perfect.

4.4.5 Benchmark results

We also compare our proposed re-ranking method with two other methods: Mini-
mum Bayes-risk (MBR) re-ranking and Multi-Engine Machine Translation (MEMT)
candidate combination.

4.4.5.1 MBR re-ranking

MBR was first proposed by Kumar and Byrne (2004) to minimise the expected loss
of translation errors under loss functions that measure translation performance. A
set of loss functions that incorporate different levels of linguistic information can be

4Since the I-measure is computed after maximising system WAcc at the sentence level, we use
WAcc to select candidates that can be used to create the oracle set.
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N WAcc I

1 87.21 2.87
10 87.32 3.71
100 87.31 3.63
200 87.31 3.62
1,000 87.34 3.83

Table 4.6: Results of MBR re-ranking on the FCE test set (in percentages).

defined. Instead of using the model’s best output, the one that is most similar to
the most likely translations is selected.

To translate a source sentence E into a target sentence C, given a loss function L
and a true distribution P , the decision rule that minimises Bayes Risk is defined as:

Ĉ = argmin
C′∈Cc

∑

C∈Ce

L(C,C ′)P (C|E) (4.19)

where Cc is the candidate space and Ce is the evidence space. Typically, the same
n-best list is used as the candidate space Cc and the evidence space Ce. Therefore,
Equation 4.19 can be modified to:

î = argmin
i∈{1,2,...,n}

n
∑

j=1

L(Cj, Ci)P (Cj|E) (4.20)

MBR re-ranking can then be considered selecting a consensus candidate, the
least ‘risky’ candidate which is closest on average to all the likely candidates.

In our experiments, we use the same n-best list from our best SMT model as the
candidate set and the evidence set. A loss function based on WAcc is used during
MBR re-ranking. Results of using n-best lists with n ranging from 10 to 1,000 are
reported in Table 4.6. In the table, n = 1 is the best SMT system output (i.e. SMT ).
We can see that performing MBR re-ranking yields better I scores than the SMT
model without re-ranking, suggesting that candidates selected by the SMT system
are not always the best corrections and MBR re-ranking can be used effectively
to re-rank candidates for GEC. However, increasing the n-best list size does not
produce a consistent improvement. Re-ranking the top 1,000 candidates yields the
best performance, followed by 10, 100 and 200. As we use the same n-best list
for the candidate space and the evidence space, we notice that some unreliable
candidates are used as evidence (i.e. most likely translations) when we increase the
n-best list size. In addition, using a bigger n-best list size enlarges the search space
and therefore increases the searching time.

4.4.5.2 MEMT candidate combination

The MEMT system combination technique was first proposed by Heafield and Lavie
(2010) and was successfully applied to GEC by Susanto et al. (2014). MEMT system
combination is the process of combining the output of multiple systems to produce
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a version that is better than each of its individual components. After combining the
output of two classification-based GEC systems and two SMT-based GEC systems,
Susanto et al. (2014) reported an F0.5 score of 39.39% on the CoNLL-2014 shared
task test set.

Following the work of Susanto et al. (2014), we decide to use the MEMT tech-
nique to combine the candidates in the n-best list from our best SMT system with
the source sentence. During candidate combination, it is important to find the right
alignments from the candidates, as alignment errors may result in ungrammatical
sentences. We use METEOR (Banerjee and Lavie, 2005) to perform word align-
ment. Unlike GIZA++ and Pialign, METEOR aligns two sentences in the same
language. The latest METEOR 1.5 only supports a few languages, and English
is one of them. METEOR identifies not only words with exact matches, but also
words with identical stems, synonyms, and unigram paraphrases. This is helpful for
GEC as it can deal with word form, noun number, and verb form corrections that
share identical stems, as well as word choice corrections with synonyms or unigram
paraphrases. A confusion network is then constructed using the alignment informa-
tion from METEOR. A beam search is later performed to find the best candidate.
Features used by MEMT during beam search are:

• length:

the candidate’s length, which is used to normalise the impact of sentence
length;

• LM:

the LM score computed by the LM built from the corrected version of the CLC;

• back-off:

the average n-gram length found in the LM;

• match:

the number of n-gram matches between the compared sentences.

Results of combining the source sentence and the n-best candidates (n = 1, 2, ...,
10) are presented in Table 4.7. 1-best is the best SMT system output (i.e. SMT ).
Combining the source sentence and the best SMT output (source+1-best) yields
an improvement in I score over 1-best (from 2.87% to 3.25%), suggesting that
the SMT system sometimes fails to distinguish good sentences that do not need
any correction from erroneous ones, or correct parts from erroneous parts. Adding
more candidates further improves performance although the improvement is not con-
sistent (e.g. source+2-best outperforms source+3-best, source+7-best outperforms
source+8-best). The best I score is achieved by combining the source and the 10-best
candidates (source+10-best).

91



Candidates WAcc I

1-best 87.21 2.87
source+1-best 87.48 3.25
source+2-best 87.65 4.49
source+3-best 87.57 3.94
source+4-best 87.61 4.22
source+5-best 87.58 4.02
source+6-best 87.59 4.09
source+7-best 87.65 4.56
source+8-best 87.61 4.18
source+9-best 87.71 4.97
source+10-best 87.75 5.34

Table 4.7: Results of MEMT candidate combination on the FCE test set (in percent-
ages).

Model WAcc I

SMT 87.21 2.87
SVM 88.12 9.78

MBR 87.32 3.71
MEMT 87.75 5.34

Table 4.8: Performance of SMT best, SVM re-ranker, MBR re-ranking and MEMT
candidate combination (in percentages). The best results are marked in bold.

4.4.5.3 Results

In order to compare SVM re-ranking, MBR re-ranking and MEMT candidate com-
bination for SMT-based GEC, the same 10-best list from our best SMT model is
used for our re-ranking experiments and results are presented in Table 4.8. SMT
is the best SMT model from Section 4.4.2, SVM is the best re-ranking model from
Section 4.4.3 (which uses all but the Levenshtein distance features), MBR is the
MBR re-ranking model from Section 4.4.5.1, and MEMT is the MEMT candidate
combination model from Section 4.4.5.2. We observe that our supervised ranking
model achieves the best I score, followed by MEMT candidate combination and
MBR re-ranking. Our method clearly outperforms the other two methods, showing
its effectiveness in re-ranking candidates for SMT-based GEC.

4.5 Analysis and discussion

Looking at the SVM re-ranker’s output reveals that there are some learner errors
which are missed by the SMT system but are captured by the re-ranker:5

5Example sentences are taken from the FCE dataset and annotated using the CLC error-coding
scheme.

92



Example 4.3. Missed RP (Replace Punctuation) and AGV (Verb AGreement
error):

Original sentence I meet a lot of people on internet and it really interest me.

Smt output I meet a lot of people on the internet and it really interest

me.

Svm output I meet a lot of people on the Internet and it really inter-

ests me.

Gold standard I meet a lot of people on the Internet and it really inter-

ests me.

Example 4.4. Missed RV (Replace Verb):

Original sentence And they effect everyone’s life directly or indirectly.

Smt output And they effect everyone’s life directly or indirectly.

Svm output And they affect everyone’s life directly or indirectly.

Gold standard And they affect everyone’s life directly or indirectly.

Example 4.5. Missed AGN (Noun AGreement error):

Original sentence Of course I will give you some more detail about the student
conference.

Smt output Of course I will give you some more detail about the student
conference.

Svm output Of course I will give you some more details about the stu-
dent conference.

Gold standard Of course I will give you some more details about the stu-
dent conference.

4.5.1 Results on the CoNLL-2014 shared task development

set

We have only tested our SVM re-ranker on the FCE dataset so far. In order to
test how well it generalises, we apply our best SVM re-ranker to the CoNLL-2014
shared task development set (i.e. the CoNLL-2013 test set). We re-rank the 10-best
correction candidates from the final SMT-based GEC system from Section 3.4.

System performance is evaluated in terms of I-measure. GLEU and F0.5 scores
are reported as well in Table 4.9 for future cross-system comparisons. The SMT sys-
tem used in our winning system submitted to the CoNLL-2014 shared task yields
a negative I score of -2.60%. However, this result is likely to be affected by the
fact that the SMT system was optimised for F0.5 during development (as explained
in Chapter 3), as it was the official evaluation metric for the shared task. Similar
results were reported by Felice and Briscoe (2015) where only one out of 13 par-
ticipating systems (namely, UFC in Table 3.13) produced a positive I score. Our
SVM re-ranker helps improve sentence quality as using it to re-rank the 10-best
candidates from the SMT system yields an improvement in I score (from -2.60% to
-1.65%). We also observe an increase in GLEU from 60.90% to 61.12%. The F0.5

score for the SVM re-ranker is slightly lower than that for the SMT system. This
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System GLEU F0.5 I

Baseline 59.14 0 0
SMT 60.90 28.30 -2.60
SMT + SVM 61.12 27.86 -1.65

Table 4.9: Results of the baseline, the SMT system and the best SVM re-ranker on the
CoNLL-2014 development set (in percentages).

is probably because the SVM re-ranker was optimised for WAcc (not F0.5) during
development (see Section 4.4). Our results show that our SVM re-ranker gener-
alises well when trained on one dataset (i.e. CLC) and tested on a different one
(i.e. NUCLE). However, the CLC training data was tokenised with RASP, whereas
the NUCLE data was preprocessed using NLTK. We expect these results might be
further improved by retokenising the CoNLL-2014 development set to be consistent
with the tokenisation of the CLC.

We also study the performance of our SVM re-ranker by error type by computing
P, R and F-score using our type estimation strategy described in Section 3.4.2.
Results for the SMT system and the SVM re-ranker are reported in Table 4.10. We
can see that the SVM re-ranker generally produces higher P but lower R. Moreover,
it yields higher P than the SMT system for the following error types: ArtOrDet,
Mec, Nn, Npos, Others, Pform, Prep, Rloc-, SVA, Vform, Vm, Vt, Woinc and Wci
(both P and R increase). Better F0.5 scores are observed for Npos, Others, Pform,
Vform, Vm, Woinc and Wci. We observe that the SVM re-ranker helps the SMT
decoder select better corrections as it can not only capture missed errors, but also
avoid unnecessary changes made by the SMT system, as in the following examples:6

Example 4.6. Wci :

Original sentence Besides, the elderly with less salary also have to lower their
living standard; both the consequences can cause a de-
crease in social happiness level and drive the whole society
in to a less stable situation.

Smt output Besides, the elderly with less salary also have to lower their
quality of life; both the consequences can cause a decrease
in social happiness level and drive the whole society in a less
stable situation.

Svm output Besides, the elderly with less salary also have to lower their
standard of living; both the consequences can cause a de-
crease in social happiness level and drive the whole society
in a less stable situation.

Gold standard Besides, the elderly with less salary also have to lower their
standard of living; both the consequences can cause a de-
crease in social happiness level and drive the whole society
in a less stable situation.

6Sentences are taken from the NUCLE corpus and annotated using the NUCLE error-coding
scheme.
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Example 4.7. Unnecessary change:

Original sentence How can it be guaranteed that our information will not be
abused?

Smt output How can it be assured that our information will not be
abused?

Svm output How can it be guaranteed that our information will not be
abused?

Gold standard How can it be guaranteed that our information will not be
abused?

4.5.2 Results on the CoNLL-2014 shared task test set

We also apply our best SVM re-ranker trained on the CLC to the CoNLL-2014
shared task test set. We re-rank the 10-best candidates from our winning system
in the shared task (i.e. CAMB in Table 3.13). Our re-ranker is evaluated using
GLEU, F0.5 and I-measure on the original test set, which only includes the gold-
standard annotations independently made by two annotators. In order to ensure a
fairer and more reliable evaluation, alternative answers proposed by participating
teams based on their system output are ignored.7 Our proposed re-ranking model
(SVM ) is compared with five other systems: the baseline, the top three systems in
the shared task and the MEMT system from Susanto et al. (2014), which combined
the output of two classification-based and two SMT-based systems using MEMT,
and achieved a better F0.5 score of 39.39% - see Table 4.11. We see that our best
SVM re-ranker outperforms the top three systems on all evaluation metrics. It also
achieves a comparable F0.5 score to the MEMT system from Susanto et al. (2014)
although our SVM re-ranker is not trained on the NUCLE data or optimised for F0.5.
This result shows that our model generalises well to other datasets. As discussed in
Section 4.5.1, we also expect these results might be further improved by retokenising
the test data with RASP.

4.6 Recent work

Following the same line of research, Mizumoto and Matsumoto (2016) have recently
proposed a similar discriminative re-ranking approach to re-score the 10-best can-
didates from an SMT system. Differences between our work and theirs are: 1) we
focussed on non-syntactic features, while they mainly used syntactic features; 2) we
applied rank preference SVMs, while they employed an averaged perceptron; and
3) our re-ranker was optimised for I-measure, while their system was tuned for F0.5.
The authors showed that re-ranking systems that use features extracted from POS
and shallow parse tags improve performance and reported an F0.5 score of 40.00%
on the CoNLL-2014 shared task test set.

7Ng et al. (2014) observed that new scores tended to be biased towards the teams which sub-
mitted alternative answers.
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Error type
SMT SMT + SVM

P R F0.5 P R F0.5

ArtOrDet 49.49 21.08 38.98 51.15 19.36 38.51
Cit - 0.00 0.00 - 0.00 0.00
Mec 62.26 18.13 41.88 66.67 16.48 41.44
Nn 50.52 24.87 41.88 51.72 19.04 38.50
Npos 8.70 6.90 8.26 18.18 6.90 13.70

Others 25.00 5.71 14.93 33.33 5.71 16.95

Pform 9.09 3.85 7.14 14.29 3.85 9.26

Pref 33.33 2.56 9.80 0.00 - 0.00
Prep 38.16 9.35 23.62 41.67 8.06 22.73
Reordering 0.00 - 0.00 0.00 - 0.00
Rloc- 41.67 7.81 22.32 46.15 4.69 16.67
SVA 33.33 10.17 22.90 36.00 7.63 20.64
Sfrag - 0.00 0.00 - 0.00 0.00
Smod - 0.00 0.00 - 0.00 0.00
Spar 100.00 5.88 23.81 100.00 5.88 23.81
Srun 0.00 0.00 0.00 0.00 0.00 0.00
Ssub 33.33 4.23 14.02 25.00 2.82 9.71
Trans 21.74 3.55 10.73 20.00 2.13 7.46
Um - 0.00 0.00 - 0.00 0.00
V0 25.00 5.56 14.71 20.00 5.56 13.16
Vform 32.76 16.10 27.14 39.13 15.25 29.80

Vm 50.00 8.42 25.16 66.67 8.42 27.97

Vt 37.14 8.39 22.03 42.31 7.10 21.24
Woadv - 0.00 0.00 - 0.00 0.00
Woinc 3.85 5.41 4.08 7.69 5.41 7.09

Wa 0.00 0.00 0.00 0.00 0.00 0.00
Wci 13.27 3.05 8.52 17.07 3.27 9.26

Wform 58.62 22.57 44.43 57.32 20.80 42.42
Wtone - 0.00 0.00 - 0.00 0.00
TOTAL 39.58 13.23 28.30 43.44 11.44 27.86

Table 4.10: Type-specific M2 performance of the SMT system and the SVM re-ranker
on the CoNLL-2014 development set (in percentages). Re-ranking improvements over the
SMT system are marked in bold.

Instead of building a re-ranker, Hoang et al. (2016) trained a classifier to filter
edits in the n-best list of candidates generated by an SMT system. Similar n-best
list ranking information from the original SMT system, LM and POS features were
used to train an edit classifier, which was later used to classify edits as valid or in-
valid. Final corrections were generated by discarding all invalid edits. Their method
achieved an F0.5 score of 41.19% by selecting edits from the 5-best candidates.
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System GLEU F0.5 I

Baseline 64.19 0 0
CAMB + SVM 65.68 38.08 -1.71
MEMT (Susanto et al., 2014) n/a 39.39 n/a
Top 3 systems in CoNLL-2014

CAMB (Felice et al., 2014) 64.32 37.33 -5.58
CUUI (Rozovskaya et al., 2014a) 64.64 36.79 -3.91
AMU (Junczys-Dowmunt and Grundkiewicz, 2014) 64.56 35.01 -3.31

Table 4.11: System performance on the CoNLL-2014 test set without alternative answers
(in percentages).

4.7 Summary

In this chapter, we have investigated n-best list re-ranking for SMT-based GEC.
We have shown that n-best list re-ranking can improve correction quality. A su-
pervised machine learning model has been developed and shown to be effective and
generalise well. We have defined a range of novel features with respect to GEC
and systematically compared the contribution of different feature types to GEC re-
ranking. We have trained a rank preference SVM model and demonstrated that it
outperforms both MBR and MEMT based re-ranking for GEC. Our best re-ranking
model achieves an I score of 9.78% on the publicly available FCE test set, compared
to an I score of 2.87% for our best SMT system without re-ranking. The oracle
score (upper bound) for re-ranking the 10-best list achieves over 40% I-measure per-
formance, suggesting that further improvements may be possible. When testing on
the official CoNLL-2014 shared task test set without alternative answers, our model
achieves an F0.5 score of 38.08%, an I score of -1.71%, and a GLEU score of 65.68%,
outperforming the top three teams on all metrics.
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CHAPTER 5

Neural machine translation for

GEC

Our SMT-based GEC system suffers from data sparsity and many errors are not
captured because useful phrase mappings could not be learnt from the training data
(i.e. OOV errors). The recent success of neural network models provides the moti-
vation for using NMT for GEC. In this chapter, we present the first tentative study
using NMT for GEC. A two-step approach is proposed to handle the rare word
problem in NMT, which has been proved to be useful and effective for GEC. Ex-
perimental results on publicly available datasets show that our NMT-based system
can outperform our best SMT-based system.

Parts of the results presented in this chapter were published in the 2016 Confer-
ence of the North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies (Yuan and Briscoe, 2016).

5.1 Introduction

As discussed in Chapter 3, our phrase-based SMT system is trained on surface
forms and makes little or no direct use of syntactic information. In order to make
a correction, the exact phrase-level correction mapping (i.e. lexical pair) has to be
seen in the training data. Consider the following example:1

Example 5.1. Missed FN (wrong Noun Form):

Original sentence ... the automotive business: tyres recycling ...

Smt output ... the automotive business: tyres recycling ...

Gold standard ... the automotive business: tyre recycling ...

Our SMT system is unaware of the underlying syntactic structure and cannot
use the correction mapping NNS → NN.2 Since the exact lexical pair tyres → tyre

1This and the following examples are taken from the FCE dataset and annotated using the
CLC error-coding scheme.

2Noun, plural → Noun, singular or mass
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is not in the phrase translation table learnt from the training data, our SMT system
fails to correct the FN error.

NMT, as a recently proposed approach to MT, has shown promising results (see
Kalchbrenner and Blunsom, 2013; Cho et al., 2014; Sutskever et al., 2014; Bahdanau
et al., 2015). Compared with conventional SMT, NMT has several advantages. First,
unlike SMT which consists of components that are trained separately and combined
during decoding (see Section 3.1), NMT learns a single large neural network which
inputs a source sentence and outputs a translation. As a result, training NMT sys-
tems for end-to-end translation tasks is much simpler than building SMT systems,
which requires multiple processing steps. Second, an NMT system can learn trans-
lation regularities directly from the training data, without the need to explicitly
design features to capture them, which is quite difficult in SMT. Last but not least,
the use of distributed representations for words in NMT helps alleviate the curse of
dimensionality3 by grouping similar words.

NMT is therefore appealing for the error correction task. When building GEC
systems using the NMT framework, we no longer need to design new features with
respect to GEC. In addition, NMT-based systems are able to correct unseen erro-
neous phrases and sentences more effectively. The individual erroneous words and
their correct forms still need to be seen in the training data somewhere, but they
do not need to be paired. For errors whose correction mappings could not be learnt
from the training data (e.g. SMT OOV errors), NMT systems may have a chance to
correct them if all the words involved are in the training data, as NMT does not rely
on any correction mappings. NMT-based systems may thus help ameliorate the lack
of large error-annotated learner corpora for GEC. However, like SMT-based systems,
NMT-based systems are not capable of correcting errors involving rare words that
have not been seen in the training data. For example:

Example 5.2. Missed S (Spelling):

Original sentence ... some remains from the Estruscans’ neoropolis.

Gold standard ... some remains from the Estruscans’ necropolis.

As the word ‘necropolis’ has not been seen in the training data, we believe that
neither SMT-based systems nor NMT-based systems can correct this error.

One of the limitations of NMT is that systems typically limit vocabulary size
on both source and target sides due to the complexity of training (Sutskever et al.,
2014; Bahdanau et al., 2015; Luong et al., 2015b; Jean et al., 2015a). Therefore,
they are unable to translate rare words, and unknown words are replaced with the
UNK symbol. This problem is more serious for GEC, as non-native text contains
not only rare words (e.g. proper nouns) but also misspelt words (i.e. spelling errors).
By replacing all the unknown words with the same UNK symbol, useful information
is discarded, resulting in systems that are not able to correct misspelt words or even
keep some of the error-free original words. This is shown in the following examples,
where words unknown to the NMT-based GEC system are underlined:

3A word sequence on which the model will be tested is likely to be different from all the word
sequences seen during training (Bengio et al., 2003).
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Example 5.3. Missed S (Spelling):

Original sentence ... I am goign to make a plan ...

Nmt output ... I am [UNK] to make a plan ...

Gold standard ... I am going to make a plan ...

Example 5.4. Unnecessary changes:

Original sentence I suggest you visit first the cathedral of “Le Seu d’Mrgell”
because it is the most emblematic building in the area.

Nmt output I suggest you visit first the cathedral of “Le [UNK] [UNK]”
because it is the most [UNK] building in the area.

Gold standard I suggest you visit first the cathedral of “Le Seu d’Mrgell”
because it is the most emblematic building in the area.

Inspired by the work of Luong et al. (2015b), we propose a similar but much sim-
pler two-step approach to address the rare word problem: rather than annotating the
training data with alignment information, we use unsupervised alignment models to
find the sources of the unknown words in the target sentence. Once we know the
source words that are responsible for the unknown target words, a word-level transla-
tion model learnt from the parallel sentences is used to translate these source words.

Our work makes the following contributions. First, we present the first study
using NMT for GEC and develop a competitive NMT-based GEC system. Second,
we propose a two-step approach to address the rare word problem in NMT for
GEC, which we show yields a substantial improvement. Finally, we report results
on several well-known publicly available test sets that can be used for cross-system
comparisons.

5.2 Neural machine translation

Given a source sentence X, X = x1 x2 ... xT , and a target sentence Y , Y = y1 y2 ...
yT ′ , where T and T ′ are not fixed and may be different, NMT models the conditional
probability of translating the source sentence X to the target sentence Y as:

P (y1, y2, ..., yT ′ |x1, x2, ..., xT ) (5.1)

5.2.1 Recurrent neural networks

To map a variable-length input sentence to another variable-length output sentence,
we use an RNN. An RNN uses a recurrent hidden state to learn sequential informa-
tion and has an optional output - see Figure 5.1.

At each time step t, the recurrent hidden state ht is calculated based on the
current input xt and the hidden state at the previous time step ht−1:

ht = f(xt, ht−1) (5.2)
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Figure 5.1: An RNN unit. The blue rectangles are the input vectors x, the red rectangles
are the optional output vectors o, and the green rectangles are the hidden states h.

where f is a non-linear activation function. Traditionally, a simple sigmoid
activation function is used to update the recurrent hidden state ht:

ht = σ(Wxt + Uht−1) (5.3)

where W and U are weight matrices.

Given the current state ht, an RNN can be trained to predict a probability
distribution over the next word of the sentence:

P (xt|x1, x2, ..., xt−1) = g(ht) (5.4)

where g is a non-linear function which outputs the probability of xt (e.g. a soft-
max function - see Section 5.3).

Previous work has shown that it is difficult to train an effective RNN to cap-
ture long-distance dependencies due to the vanishing or exploding gradient prob-
lem (Bengio et al., 1994). More advanced activation functions, or recurrent units,
have been proposed to better capture long-term dependencies. Two widely used
ones are LSTM (Hochreiter and Schmidhuber, 1997) and GRU (Cho et al., 2014).

LSTM

The LSTM was first proposed by Hochreiter and Schmidhuber (1997), where a
memory cell and three sets of gating units were introduced - see Figure 5.2.

The activation function ht at the time step t is defined as:

ht = ot tanh(ct) (5.5)

where ct is an internal memory state and ot is an output gate that determines
the degree to which the internal memory state will output.
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Figure 5.2: An illustration of an LSTM unit.

The output gate ot is computed as:

ot = σ(Woxt + Uoht−1 + Voct + bo) (5.6)

where σ is a logistic sigmoid function, Vo is a diagonal matrix and bo is a bias.

The internal memory state ct is updated by partially keeping the previous mem-
ory state ct−1 and adding a new temporary memory state c̃t:

ct = ftct−1 + itc̃t (5.7)

where ft is a forget gate that determines the extent to which the previous mem-
ory state ct−1 should be preserved and it is an input gate that decides the degree to
which the new temporary memory state c̃t should be added. These two gates are
computed as:

ft = σ(Wfxt + Ufht−1 + Vfct−1 + bf ) (5.8)

it = σ(Wixt + Uiht−1 + Vict−1 + bi) (5.9)

The new temporary memory state c̃t is defined as:

c̃t = tanh(Wcxt + Ucht−1) (5.10)

Unlike the traditional recurrent unit whose content is overwritten at every time
step (e.g. a sigmoid activation function - see Equation 5.3), the newly introduced
gates enable the LSTM unit to decide whether to keep the previous memory state.
Therefore, useful information collected at an early stage is more likely to be carried
over a long distance, so as to capture potential long-distance dependencies.

GRU

GRU, a simplified version of LSTM, has been successfully applied to NMT (Cho
et al., 2014; Bahdanau et al., 2015). Comparable results of using both GRU and

103



h h̃

Out

In

z

r

Figure 5.3: An illustration of a GRU.

LSTM on sequence modelling have been reported by Chung et al. (2014). Similar
to LSTM, two new sets of gating units are introduced in GRU to modulate the flow
of internal information - see Figure 5.3.

The hidden state ht at the time step t is defined as a linear interpolation between
the previous hidden state ht−1 and the new temporary hidden state h̃t:

ht = ztht−1 + (1− zt)h̃t (5.11)

where zt is an update gate that decides the extent to which the recurrent hidden
state updates itself.

The update gate zt is defined as:

zt = σ(Wzxt + Uzht−1) (5.12)

where σ is a logistic sigmoid function.

The new temporary hidden state h̃t is defined as:

h̃t = tanh(Whxt + Uhrtht−1) (5.13)

where rt is a reset gate that decides whether to forget the previous state and
reset the new temporary state with the current input.

Similar to the update gate zt defined is Equation 5.12, the reset gate rt can be
computed as:

rt = σ(Wrxt + Urht−1) (5.14)

5.2.2 Encoder-decoder

NMT applies an encoder-decoder framework. An encoder first reads a variable-
length input sentence and encodes all (or parts) of the input sentence into a vector
representation. A decoder then outputs a translation for the input sentence from the
vector representation. We experiment with three different NMT models for GEC:
RNN-seq2seq, BiRNN-seq2seq and Attention-seq2seq.
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Figure 5.4: RNN-seq2seq. The blue rectangles are the input vectors x, the red rectangles
are the output vectors y, the green rectangles are the encoder hidden states h, the yellow
rectangles are the decoder hidden states s, and the grey rectangle is the intermediate
vector c.

RNN-seq2seq

The RNN-seq2seq model was first proposed by Cho et al. (2014) and Sutskever et al.
(2014) and uses two different RNNs: one as the encoder and another as the decoder
- see Figure 5.4.

The RNN encoder reads an entire source sentence X into a single intermediate
vector c:

c = q(hT ) (5.15)

where q is a non-linear function. hT is the final hidden state of the encoder that
can be computed using Equation 5.2.

The RNN decoder then outputs a translation Y by predicting the next word yt
based on the intermediate vector c and all the previously predicted words {y1, y2, ...,
yt−1}:

P (Y ) =
T ′

∏

t=1

P (yt|{y1, y2, ..., yt−1}, c) (5.16)
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and the conditional probability P (yt|{y1, y2, ..., yt−1}, c) is defined as:

P (yt|{y1, y2, ..., yt−1}, c) = g(st) (5.17)

where g is a non-linear function that outputs the probability of yt as in Equa-
tion 5.4.

The decoder hidden state st at the time step t is defined as:

st = f(st−1, yt−1, c) (5.18)

As we can see, unlike the encoder hidden state ht, the decoder hidden state st
depends on the previous hidden state st−1, the previous output word yt−1 and the
intermediate vector c.

BiRNN-seq2seq

In theory, an RNN is able to deal with information from any arbitrarily long sentence.
However, it is more likely to capture the most recent input in practice. Sutskever
et al. (2014) reported that better performance was achieved by reversing the order
of the words in the input sentence. Instead of mapping (x1, x2, ..., xT−1, xT ) to (y1,
y2, ..., yT ′−1, yT ′), a reversed input sentence (xT , xT−1, ..., x2, x1) is mapped to (y1,
y2, ..., yT ′−1, yT ′). As a result, the first few words of the output are in the immediate
proximity of their original input words, for example, y1 is in close proximity to x1

and y2 is close to x2. This is equivalent to using a backward RNN encoder that
reads the input sequence from the last word xT to the first word x1.

We propose a BiRNN-seq2seq model which consists of a new Bidirectional Recur-
rent Neural Network (BiRNN) (Schuster and Paliwal, 1997) encoder and the same
RNN decoder used in the RNN-seq2seq model. Figure 5.5 presents the new model
architecture.

The BiRNN encoder uses a forward RNN and a backward RNN. The forward
RNN reads the input sentence from the first word to the last word (from x1 to xT ),
and the backward RNN reads the input sentence in reverse order (from xT to x1).

The forward hidden state
−→
ht and the backward hidden state

←−
ht are calculated as:

−→
ht = f(xt,

−−→
ht−1) (5.19)

←−
ht = f(xt,

←−−
ht+1) (5.20)

A new intermediate vector c encodes both forward and backward information:

c = q(
−→
hT ,
←−
h1) (5.21)

where q is a non-linear function as in Equation 5.15.

Attention-seq2seq

In sequence-to-sequence problems like MT and GEC, there are some correspond-
ing relations between the source words and the target words. Some words in the
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Figure 5.5: BiRNN-seq2seq. The blue rectangles are the input vectors x, the red
rectangles are the output vectors y, the green rectangles are the encoder hidden states h

(forward hidden states
−→
h and backward hidden states

←−
h ), the yellow rectangles are the

decoder hidden states s, and the grey rectangle is the intermediate vector c.

input sentence might be more useful than others when predicting an output word.
However, this kind of information is not used by the RNN-seq2seq model or the
BiRNN-seq2seq model described above. The hidden vectors of the input words
{h1, h2, ..., hT} are not directly used by the decoder; instead, the same intermediate
vector c is used every time, no matter which output word the decoder attempts to
predict. An attention mechanism is therefore introduced to help the decoder focus
on the most relevant information in the input sentence, instead of remembering the
entire input sentence. Various techniques have been proposed (Bahdanau et al.,
2015; Xu et al., 2015; Luong et al., 2015a; Hermann et al., 2015). We use the soft
attention mechanism described in Bahdanau et al. (2015).

Instead of using the same intermediate vector c for predicting every output word,
a new vector ct for the output word yt at the decoding time step t is defined as:

ct =
T
∑

j=1

atjhj (5.22)

where hj is the hidden state of word xj in the input sentence, and atj is the
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weight of hj for predicting yt.
By using a BiRNN encoder, hj of word xj can be defined by concatenating the

forward hidden state
−→
hj and the backward hidden state

←−
hj :

hj = [
−→
hj

T ;
←−
hj

T ]T (5.23)

Therefore, both historical and future information is captured.
The weight atj is calculated with a softmax function:

atj =
exp(etj)

∑T

k=1 exp(etk)
(5.24)

and

etj = f(st−1, hj) (5.25)

where f is a feedforward neural network that calculates the score etj. The nor-
malised weight atj can then be interpreted as the probability of the jth input word
xj being relevant to the output word yt.

The decoder hidden state st is then defined using the new intermediate vector ct:

st = f(st−1, yt−1, ct) (5.26)

The RNN decoder outputs a translation Y:

P (Y ) =
T ′

∏

t=1

P (yt|{y1, y2, ..., yt−1}, ct) =
T ′

∏

t=1

g(st) (5.27)

An illustration of the Attention-seq2seq model at decoding time step t is pre-
sented in Figure 5.6.

The Attention-seq2seq model can then assign different weights to different words
in the input sentence, thus capturing the inherent corresponding relations between
words in the input and output sentences.

5.2.3 Training an NMT system

Given a corpus of parallel sentences, an NMT system is trained to maximise log-
likelihood:

max
θ

N
∑

n=1

logP (Y n|Xn, θ) = max
θ

N
∑

n=1

T ′

∑

t=1

logP (ynt |{y
n
1 , y

n
2 , ..., y

n
t−1}, X

n, θ) (5.28)

where θ = [θenc, θdec] represents all the parameters, N is the total number of
training examples in the corpus and (Xn, Y n) is the nth pair.

Since both the encoder and decoder networks are differentiable with respect to
their parameters θenc and θdec respectively, we maximise the log-likelihood using
Stochastic Gradient Descent (SGD).
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Figure 5.6: The Attention-seq2seq model at decoding time step t. The blue rectangles
are the input vectors x, the red rectangles are the output vectors y, the green rectangles
are the encoder hidden states h, and the yellow rectangles are the decoder hidden states s.

5.3 Handling rare words

NMT suffers from the rare word problem. When predicting a target word, we use a
multilayer network (Pascanu et al., 2014) with a single maxout hidden layer (Good-
fellow et al., 2013) and normalise the output probabilities of every target word with
a softmax function:

P (yt|{y1, y2, ..., yt−1}, X) =
exp(wT

t st + bt)
∑

k:yk∈V
exp(wT

k st + bk)
(5.29)

where w and b are the target word vector and bias respectively, and V is the set
of all the target words.

Due to the computational complexity of the softmax function in Equation 5.29,
NMT systems often use a shortlist of 30,000 to 80,000 most frequent words. Any
word not included in the shortlist is replaced by the UNK symbol. Therefore,
NMT systems are not capable of translating rare words that are not included in the
shortlist. This harms translation quality, and Sutskever et al. (2014) and Bahdanau
et al. (2015) have shown that their NMT systems produced much worse BLEU scores
on sentences with rare words.
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Phrase-based SMT systems, like the one we developed in Chapter 3, do not
have the same rare word problem. Our phrase-based SMT system uses a phrase
translation table, which contains all the phrase alignments learnt from the training
data. Phrase alignments in the table are then used directly by the SMT decoder
during translation. Unlike NMT, SMT systems do not need to limit their vocabulary
sizes during training, and all the words present in the training data are used to learn
phrase alignments. During testing, new words that have not been seen in the training
data remain unchanged.

Two different approaches have been proposed to address the rare word problem in
NMT. Luong et al. (2015b) introduced three new annotation strategies to annotate
the training data, so that unknown words in the output can be traced back to their
origins. They used word alignment algorithms to re-annotate the training data and
built NMT systems based on the re-annotated data. Information about the unknown
words in the target sentence and their corresponding words in the source sentence
were extracted. In a post-processing step, the unknown words were translated using
a dictionary. Jean et al. (2015a) proposed an approximate training algorithm based
on importance sampling, which approximates softmax functions by selecting only
a small subset of the target vocabulary. They have shown that an NMT system
can be trained with a very large target vocabulary without increasing the training
complexity. These two approaches are complementary and can be combined together
to yield further improvements.

We propose a similar but much simpler two-step approach to perform UNK
replacement: 1) align the unknown words (i.e. UNK tokens) in the target sentence
to their origins in the source sentence using unsupervised aligners directly; 2) build
a word-level translation model to translate those words in a post-processing step.
Due to the nature of error correction (i.e. both source and target sentences are in
the same language), most words translate as themselves, and errors are often similar
to their correct forms. Therefore, we hypothesise that unsupervised aligners can be
used effectively to align the unknown target words. Our UNK replacement approach
is different from the one proposed in Luong et al. (2015b) in that: 1) we avoid re-
annotating any training data; 2) we use only the NMT system output; and 3) we
apply unsupervised aligners directly to locate the source words that are responsible
for the unknown target words. Our approach is also different from the one proposed
in Jean et al. (2015a) as we treat the NMT system as a black box, therefore our
approach can be used with any NMT system.

We use two automatic alignment tools: GIZA++ and METEOR, which have
already been used in Chapter 3 (Section 3.3.1) and Chapter 4 (Section 4.4.5.2).
GIZA++ is an implementation of IBM Models 1-5 and the HMM, which aligns
two sentences from any pair of languages. Unlike GIZA++, METEOR aligns two
sentences from the same language by identifying not only words with exact matches,
but also words with identical stems, synonyms, and unigram paraphrases. To build
a word-level translation model for translating the source words that are responsible
for the target unknown words, we need word-aligned data. IBM Models are used
to learn word alignments from the parallel training data. For words that have not
been seen in the training data, we keep the source words unchanged.
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5.4 Experiments

5.4.1 Experimental set-up

We follow the experimental set-up described in Section 4.4.1. We use the publicly
available FCE dataset, and extract additional training examples from the CLC.
Training and test data is pre-processed using RASP. System performance is evalu-
ated using the I-measure.

5.4.2 Training details

We use GroundHog,4 a python framework on top of Theano5 that provides a flexible
and efficient way of implementing complex RNN models. All our models are trained
using graphics processing units (GPUs).6

The GRU is used as the activation function in RNNs. The initial parameter
settings follow previous work (see Cho et al., 2014; Bahdanau et al., 2015; Jean et al.,
2015a). We use a hidden size of 1,000 for the RNN layer and the feedforward neural
network layer. We set the size of the maxout hidden layer to 500. The dimensionality
of word embeddings is 620. We limit the source and target vocabulary to the most
frequent 30,000 words and replace any rare word with the UNK token.

Our models are trained with mini-batch SGD using the Adadelta algorithm
(Zeiler, 2012) with hyper-parameters ǫ = 10−6 and ρ = 0.95. Gradients are clipped
at 1 to alleviate the exploding gradient problem as suggested by Pascanu et al.
(2013). We apply dropout (Srivastava et al., 2014) at a rate of 0.5 to feed-forward
connections in RNNs. As the mini-batch size is subject to a memory limit, we
reduce the mini-batch size when training large models (e.g. with a larger vocab-
ulary, using longer sentences or having more hidden units). For example, when
training models with the sentences of length up to 30, 50, 80 and 100 tokens, we
use a mini-batch of 80, 40, 30 and 30 sentences respectively. However, having a
small mini-batch size may result in a noisy update because the gradient is averaged
over the mini-batch. We therefore allow the models using a small mini-batch size
to train for more iterations. Weight parameters are initialised by sampling from a
white Gaussian distribution (µ = 0 and σ = 0.01) and biases are initialised to zero.

We use a beam search to find a correction that approximately maximises the
conditional probability. During beam search, we keep a beam size of 10 and discard
all other hypotheses.

For our experiments, we first compare three different NMT models; then vary
the sentence length, the beam size and the vocabulary size; finally, replace UNK
tokens using our proposed two-step approach.

4https://github.com/lisa-groundhog/GroundHog
5http://deeplearning.net/software/theano
6Tesla K20 and Titan X
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Model Sentence length Training time WAcc (%) I (%)
Baseline - - 86.83 0
SMT - - 87.21 2.87

RNN-seq2seq

30 19 hours 72.37 -16.66
50 28 hours 77.07 -11.24
80 44 hours 77.46 -10.79
100 121 hours 78.08 -10.08

BiRNN-seq2seq

30 25 hours 76.43 -11.98
50 42 hours 78.56 -9.83
80 51 hours 79.05 -9.05
100 76 hours 79.46 -8.49

Attention-seq2seq

30 30 hours 85.06 -2.04
50 52 hours 85.34 -1.72
80 64 hours 85.49 -1.54
100 82 hours 85.71 -1.30

Table 5.1: Performance of three NMT models with different sentence lengths on the
FCE test set.

5.4.3 NMT models

We build NMT systems using the RNN-seq2seq, BiRNN-seq2seq and Attention-
seq2seq models. For each model, we train four systems with sentences of length up
to 30, 50, 80 and 100 tokens. System training time and results are presented in
Table 5.1. Baseline is a baseline system which makes no corrections and SMT is the
best SMT system from Section 4.4.2. We can see that NMT systems are not able
to achieve comparable results to the SMT system. Negative I scores suggest that
NMT systems seem to make the source sentences worse. Among three NMT mod-
els, systems built using the RNN-seq2seq model yield the worst I scores. A closer
observation of the system output reveals a large number of unnecessary changes
introduced by the systems. Adding a backward RNN layer helps, as systems using
the BiRNN-seq2seq model outperform those using the RNN-seq2seq model. Sys-
tems trained with the Attention-seq2seq model achieve much better I scores. As
discussed earlier in Section 5.2.2, the RNN-seq2seq and BiRNN-seq2seq models are
unable to use the corresponding relations between the source words and the target
words. This kind of information is used by the Attention-seq2seq model, there-
fore, systems using the Attention-seq2seq model are more likely to keep error-free
source words untouched and only make necessary changes. As the Attention-seq2seq
model produces scores that are close to the SMT system, we believe there is room
for improvement and decide to use it in later experiments.

5.4.4 Sentence length

In Table 5.1, we can also see that systems trained with longer sentences outperform
systems trained with shorter sentences for all three NMT models. Systems trained
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Sentence length No. Prop.

30 1,815,051 92.33%
50 1,947,350 99.07%
80 1,963,685 99.90%
100 1.964,992 99.96%
All 1,965,727 100.00%

Table 5.2: Data coverage for different sentence lengths on the training set.

with sentences of length up to 100 tokens yield the best performance, followed by
80, 50 and 30. This is probably because increasing the sentence length limit from 30
to 100 causes more examples to be added to our training set (see Table 5.2). When
we limit the sentence length to 30 tokens, 92.33% of all the training examples are
used, while increasing it to 100 tokens pushes the percentage up to 99.96%. During
training, we also reduce the mini-batch size accordingly as discussed in Section 5.4.2.
We can see that it takes more time to train models with longer sentences and smaller
mini-batch sizes.

5.4.5 Beam size

For the four NMT systems built using the Attention-seq2seq model (i.e. with sen-
tence lengths at 30, 50, 80 and 100), we vary the beam size between 5 and 100
for decoding. Results are presented in Table 5.3. We can see that increasing the
decoder’s beam size does not yield a consistent improvement in system performance,
but increases the decoding time. Using a beam size of 10 yields the best I scores for
sentence lengths 30, 80 and 100, so we keep the beam size at 10 for all models.

5.4.6 Vocabulary size

The source side of our training data contains 28,823,615 words in total with 248,028
unique words while the target side contains a total of 29,219,128 words with 143,852
unique words. As we can see, the source side vocabulary size is much larger than
that of the target side as there are many incorrect words in the source (e.g. spelling
mistakes and word form errors). We thus aim to investigate the effect of vocabulary
by experimenting with different source and target vocabulary sizes. The source vo-
cabulary size is selected from {30k, 50k, 80k, 100k, 150k} and the target vocabulary
size is selected from {30k, 50k, 80k}. Table 5.4 presents data coverage for different
vocabulary sizes on the source and target sides. All refers to all the tokens in the
source side of the training data. As we can see that there are still unknown test
words even if we cover all the words in the training set.

Results of using different source and target vocabulary sizes are presented in
Table 5.5. Our experiments show that using a large vocabulary size helps and that
increasing the source side vocabulary size is more useful than target side. In particu-
lar, increasing the source vocabulary size yields a consistent improvement in system
performance. When we limit the target vocabulary size to 30k, systems trained with
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Sentence length Beam size Decoding speed WAcc (%) I (%)

30

5 0.23s/sentence 85.05 -2.05
10 0.34s/sentence 85.06 -2.04

20 0.50s/sentence 85.05 -2.05
30 0.66s/sentence 85.04 -2.06
40 0.86s/sentence 85.04 -2.06
50 1.10s/sentence 85.02 -2.08
100 1.91s/sentence 85.01 -2.10

50

5 0.23s/sentence 85.33 -1.73
10 0.34s/sentence 85.34 -1.72
20 0.50s/sentence 85.36 -1.70
30 0.66s/sentence 85.36 -1.69
40 0.86s/sentence 85.37 -1.69

50 1.10s/sentence 85.37 -1.69

100 1.91s/sentence 85.37 -1.69

80

5 0.23s/sentence 85.47 -1.57
10 0.34s/sentence 85.49 -1.54

20 0.50s/sentence 85.49 -1.55
30 0.66s/sentence 85.48 -1.55
40 0.86s/sentence 85.48 -1.56
50 1.10s/sentence 85.47 -1.56
100 1.91s/sentence 85.47 -1.56

100

5 0.23s/sentence 85.71 -1.30

10 0.34s/sentence 85.71 -1.30

20 0.50s/sentence 85.67 -1.34
30 0.66s/sentence 85.60 -1.42
40 0.86s/sentence 85.56 -1.47
50 1.10s/sentence 85.56 -1.47
100 1.91s/sentence 85.56 -1.47

Table 5.3: Results of the Attention-seq2seq model with different decoder beam sizes
and sentence lengths on the FCE test set. The best results for each sentence length are
marked in bold.

a source vocabulary size of 150k perform the best (150k-30k 7 in Table 5.5), followed
by 100k (100k-30k), 80k (80k-30k), 50k (50k-30k) and 30k (30k-30k). For systems
with a target vocabulary size of 50k, the 80k-50k group outperforms the 50k-50k
group (except for systems with sentence length at 100). However, we do not ob-
serve a similar consistent improvement when increasing the target vocabulary size
since, for example, systems trained on 80k-80k produce worse I scores than those
trained on 80k-50k. As we can see, the performance of the current best NMT system
(i.e. NMT 150k-30k with sentence length at 100) is still worse than a ‘do-nothing’
baseline and our best SMT system.

7[source vocabulary size] - [target vocabulary size]
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Vocabulary size
Source side Target side

Train Test Train Test

30k 98.6 98.4 99.4 99.3
50k 99.1 98.7 99.6 99.5
80k 99.3 99.0 99.8 99.5
100k 99.5 99.1 99.8 99.6
150k 99.7 99.1 100.0 99.6
All 100.0 99.3 - -

Table 5.4: Data coverage for different vocabulary sizes on the source and target side (in
percentages).
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Figure 5.7: Results of using different thresholds on the FCE test set for NMT 30k-30k.

5.4.7 UNK replacement

We have observed that systems trained with longer sentences outperform those
trained with shorter sentences. Therefore, we select systems trained with sentences
of length up to 100 tokens and replace all the UNK tokens in their output. GIZA++
and METEOR are used to align the UNK tokens to their source words. We build an
additional word-level TM from all the parallel examples in our training set.8 UNK
tokens in the NMT output are replaced by the translations of their source words
from the new TM.

During translation, we set a threshold θ and only apply translation mappings
with probability scores above the threshold. For words with translation probability
scores lower than θ or with no translations in the TM, we keep the source words
unchanged. We first experiment with the NMT 30k-30k model and find out that
setting the threshold θ to 0.4 yields the best performance, as shown in Figure 5.7.

8There is no need to limit the source and target vocabulary when training the new word-level
TM (as in SMT).
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Vocabulary size
Sentence length Training time WAcc (%) I (%)

Source Target

30k 30k

30 30 hours 85.06 -2.04
50 52 hours 85.34 -1.72
80 64 hours 85.49 -1.54
100 82 hours 85.71 -1.30

50k 30k

30 45 hours 85.43 -1.62
50 79 hours 85.66 -1.35
80 52 hours 85.83 -1.15
100 69 hours 85.84 -1.14

80k 30k

30 38 hours 85.13 -1.96
50 65 hours 85.70 -1.30
80 89 hours 85.87 -1.11
100 105 hours 85.93 -1.04

100k 30k

30 29 hours 85.15 -1.94
50 53 hours 85.82 -1.16
80 91 hours 85.90 -1.07
100 118 hours 85.96 -1.01

150k 30k

30 46 hours 85.21 -1.87
50 58 hours 85.97 -1.00
80 89 hours 85.98 -0.98
100 95 hours 86.15 -0.79

50k 50k

30 53 hours 84.88 -2.24
50 44 hours 85.44 -1.60
80 73 hours 85.73 -1.27
100 57 hours 85.80 -1.18

80k 50k

30 53 hours 85.42 -1.63
50 60 hours 85.66 -1.34
80 119 hours 85.76 -1.23
100 120 hours 85.72 -1.28

80k 80k

30 54 hours 85.05 -2.05
50 105 hours 85.10 -1.99
80 107 hours 85.15 -1.94
100 121 hours 85.62 -1.40

Table 5.5: Results of the Attention-seq2seq model using different source and target
vocabulary sizes and sentence lengths on the FCE test set. The best results are marked
in bold.

Results of NMT systems with UNK replacement are presented in Table 5.6.
When we replace the UNK tokens in the NMT output, using GIZA++ for unknown
word alignment improves the system performance for all NMT systems. The intro-
duction of the METEOR alignment information to GIZA++ yields further improve-
ments. We can see that our UNK replacement approach is effective and provides a
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Model
Vocabulary size

UNK replacement WAcc (%) I (%)
Source Target

Baseline - - - 86.83 0
SMT - - - 87.21 2.87

NMT

30k 30k
None 85.71 -1.30
GIZA++ 87.34 3.89

GIZA++ & METEOR 87.36 4.02

50k 30k
None 85.84 -1.14
GIZA++ 87.21 2.87
GIZA++ & METEOR 87.22 2.89

80k 30k
None 85.93 -1.04
GIZA++ 87.14 2.37
GIZA++ & METEOR 87.15 2.40

100k 30k
None 85.96 -1.01
GIZA++ 87.18 2.63
GIZA++ & METEOR 87.19 2.70

150k 30k
None 86.15 -0.79
GIZA++ 87.49 5.00

GIZA++ & METEOR 87.50 5.06

50k 50k
None 85.80 -1.18
GIZA++ 87.02 0.96
GIZA++ & METEOR 87.03 0.99

80k 50k
None 85.72 -1.28
GIZA++ 86.77 -0.07
GIZA++ & METEOR 86.78 -0.03

80k 80k
None 85.62 -1.40
GIZA++ 86.66 -0.19
GIZA++ & METEOR 86.67 -0.15

Table 5.6: Results of UNK replacement on the FCE test set. Improvements over the
SMT system are marked in bold.

substantial improvement. All NMT systems produce positive I scores - improving
the original sentence quality - after UNK replacement except NMT 80k-50k and
NMT 80k-80k. Three NMT systems even outperform our best SMT system after
UNK replacement: NMT 150k-30k (achieves an I score of 5.06% using GIZA++ &
METEOR and an I score of 5.00% using GIZA++), NMT 30k-30k (achieves an I
score of 4.02% using GIZA++ & METEOR and an I score of 3.89% using GIZA++)
and NMT 50k-30k (achieves an I score of 2.89% using GIZA++ & METEOR).

5.5 Analysis and discussion

Comparing the output of our best SMT system with that of our best NMT system
reveals that some errors that are missed by the SMT system are captured by the

117



System GLEU F0.5 I

Baseline 59.14 0 0
SMT 60.90 28.30 -2.60
SMT + SVM 61.12 27.86 -1.65
Our NMT systems

NMT 150k-30k 60.49 26.94 -3.94
NMT 30k-30k 60.65 29.13 -4.11
NMT 50k-30k 60.53 29.15 -4.33

Table 5.7: Results of the baseline, the SMT system, the best SVM re-ranker and our
NMT systems on the CoNLL-2014 development set (in percentages).

NMT system. As discussed before, our phrase-based SMT system is trained on
surface forms and it has to have seen the exact correction mapping in the training
data in order to make a correction. Since the NMT system does not rely on any
correction mappings, in theory, it should be able to make any changes as long as it
has seen the words in the training data. For example:

Example 5.5. Missed RN (Replace Noun):

Original sentence You can find a lot of documentary about it and you have
several competitors personal objects.

Smt output You can find a lot of documentary about it and you have
several competitors personal objects.

Nmt output You can find a lot of documents about it and you have
several competitors personal objects.

Gold standard You can find a lot of documents about it and you have
several competitors personal objects.

The SMT system fails to correct the noun error as the correction mapping docu-
mentary→ documents is not in the SMT phrase table learnt from the training data.
However, as these two words ‘documentary’ and ‘documents’ have been seen in the
training data, the NMT system is able to successfully detect and correct the error.

5.5.1 Results on the CoNLL-2014 shared task development

set

As in Section 4.5.1, we apply our NMT-based GEC systems trained on the CLC to
the CoNLL-2014 shared task development set. We select three NMT systems that
outperform the SMT system in Section 5.4.7: NMT 150k-30k, NMT 30k-30k and
NMT 50k-30k. System performance is evaluated using GLEU, F0.5 and I-measure
(see Table 5.7). Baseline is a baseline system which makes no corrections, SMT
is the final SMT system from Chapter 3 (i.e. the one used in our winning system
submitted to the CoNLL-2014 shared task) and SVM is the best SVM re-ranker
from Chapter 4. Results show that our NMT systems produce worse GLEU and I
scores, but better F0.5 scores. The NMT 50k-30k system yields the best F0.5 score.
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Type performance for the NMT 50k-30k system and the SMT system is given
in Table 5.8. We can see that the NMT system is better at correcting ArtOrDet,
Nn, Pform, Pref, Prep, SVA, Spar, Srun, Um, Vform and Wtone errors than the
SMT system. While the NMT system is able to correct some types of errors that are
completely missed by the SMT system (e.g. Srun, Um and Wtone), it is incapable
of correcting certain types of errors that can be corrected by the SMT system (such
as Others and Woinc). Both our SMT and NMT systems fail to correct Cit, Sfrag,
Smod, Woadv and Wa errors. Our analysis reveals that corrections from the SMT
and NMT systems are complementary.

In the following examples, we show some cases where the NMT system corrects
errors that are missed by the SMT system:

Example 5.6. Wtone:

Original sentence Thus, let ’s us discuss the pros and cons ...

Smt output Thus, let ’s us discuss the pros and cons ...

Nmt output Thus, let us discuss the pros and cons ...

Gold standard Thus, let us discuss the pros and cons ...

Example 5.7. Wform:

Original sentence There are kidnaps everywhere and not all of the family

can afford the ransom ...

Smt output There are kidnaps everywhere and not all of the families

can afford the ransom ...

Nmt output There are kidnappings everywhere and not all of the fam-

ilies can afford the ransom ...

Gold standard There are kidnappings everywhere and not all of the fam-

ilies can afford the ransom ...

5.5.2 Results on the CoNLL-2014 shared task test set

Similar to Section 4.5.2 and in order to test how well our system generalises, we
apply our NMT systems trained on the CLC to the CoNLL-2014 shared task test
data directly without adding the NUCLE data or tuning for F0.5.

We compare our NMT systems with the top three systems in the shared task.
Evaluation is performed using GLEU, F0.5 and I-measure on the original test set
and presented in Table 5.9. As we can see, our NMT 150k-30k and NMT 30k-30k
systems outperform the top three teams on all evaluation metrics even though our
systems are not trained on the NUCLE data. The NMT 150k-30k system achieves
the best I score (-2.88%), while the NMT 30k-30k system achieves the best GLEU
(65.59%) and the best F0.5 (39.90%). These results show that our NMT-based GEC
systems generalise well.
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Error type
SMT NMT

P R F0.5 P R F0.5

ArtOrDet 49.49 21.08 38.98 53.69 26.49 44.54

Cit - 0.00 0.00 - 0.00 0.00
Mec 62.26 18.13 41.88 71.05 14.84 40.42
Nn 50.52 24.87 41.88 67.29 36.55 57.60

Npos 8.70 6.90 8.26 7.14 6.90 7.09
Others 25.00 5.71 14.93 0.00 0.00 0.00
Pform 9.09 3.85 7.14 22.22 7.69 16.13

Pref 33.33 2.56 9.80 100.00 2.56 11.63

Prep 38.16 9.35 23.62 31.82 13.55 25.06

Reordering 0.00 - 0.00 0.00 - 0.00
Rloc- 41.67 7.81 22.32 33.33 1.56 6.58
SVA 33.33 10.17 22.90 59.26 27.12 47.90

Sfrag - 0.00 0.00 - 0.00 0.00
Smod - 0.00 0.00 - 0.00 0.00
Spar 100.00 5.88 23.81 100.00 11.76 40.00

Srun 0.00 0.00 0.00 44.44 7.27 21.98

Ssub 33.33 4.23 14.02 22.22 2.82 9.35
Trans 21.74 3.55 10.73 20.83 3.55 10.55
Um - 0.00 0.00 50.00 2.94 11.90

V0 25.00 5.56 14.71 20.00 5.56 13.16
Vform 32.76 16.10 27.14 42.31 18.64 33.74

Vm 50.00 8.42 25.16 11.76 4.21 8.66
Vt 37.14 8.39 22.03 15.09 5.16 10.90
Woadv - 0.00 0.00 - 0.00 0.00
Woinc 3.85 5.41 4.08 0.00 0.00 0.00
Wa 0.00 0.00 0.00 0.00 0.00 0.00
Wci 13.27 3.05 8.52 4.03 2.80 3.70
Wform 58.62 22.57 44.43 43.31 24.34 37.47
Wtone - 0.00 0.00 100.00 7.69 29.41

TOTAL 39.58 13.23 28.30 36.45 16.18 29.15

Table 5.8: Type-specific M2 performance of the SMT system and the NMT system on
the CoNLL-2014 development set (in percentages). NMT improvements over the SMT
system are marked in bold.

5.6 Recent work

To address the rare word problem in NMT, apart from the two approaches based on
word-based NMT models (Luong et al., 2015b; Jean et al., 2015a), it is possible to
use models that work with smaller units. Based on the intuition that various word
classes are translatable via units that are smaller than words, Sennrich et al. (2016)
introduced subword models that encode rare and unknown words as sequences of
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System GLEU F0.5 I

Baseline 64.19 0 0
Our NMT systems

NMT 150k-30k 65.47 38.25 -2.88
NMT 30k-30k 65.59 39.90 -3.11
NMT 50k-30k 63.92 34.53 -4.11
Top 3 systems in CoNLL-2014

CAMB (Felice et al., 2014) 64.32 37.33 -5.58
CUUI (Rozovskaya et al., 2014a) 64.64 36.79 -3.91
AMU (Junczys-Dowmunt and Grundkiewicz, 2014) 64.56 35.01 -3.31

Table 5.9: System performance on the CoNLL-2014 test set without alternative answers
(in percentages).

subword units. Ling et al. (2015) and Costa-Jussà and Fonollosa (2016) proposed
the use of character-based NMT models where the source and target sentences are
seen as sequences of characters rather than words. Instead of using word embed-
dings in word-based NMT models, Ling et al. (2015) introduced a character-to-word
compositional model while Costa-Jussà and Fonollosa (2016) used character-based
embeddings in combination with convolutional and highway layers.

We notice that similar work on using NMT for error detection and correction has
recently been done by Xie et al. (2016) and Schmaltz et al. (2016). Xie et al. (2016)
employed a similar RNN encoder-decoder framework to build a GEC system. Unlike
in our UNK replacement approach, they used a character-based model to handle
rare words and spelling mistakes. An additional LM was used during decoding and
a multilayer perceptron binary classifier was built to filter out unnecessary changes
made by the NMT model (similar to the one developed by Hoang et al. (2016)).
Their final system achieved an F0.5 score of 40.56% on the CoNLL-2014 test set.

Schmaltz et al. (2016) used NMT models for sentence-level grammatical error
identification. By combining three character-based encoder-decoder models, one
word-based model and a sentence-level CNN, they produced the best performing
system on the 2016 Automated Evaluation of Scientific Writing binary prediction
shared task (Daudaravicius et al., 2016). Instead of mapping a source sentence to
its corrected version, the authors paired it with its literal annotation, e.g.

Example 5.8. In the training data:

Input The models works .

Output The models <del> works </del> <ins> work </ins> .

Chollampatt et al. (2016) made use of continuous vector representations in a
different way. They investigated the effectiveness of two neural network TMs: a
neural network global lexicon model (Ha et al., 2014) and a neural network joint
model (Devlin et al., 2014), showing that they can improve the performance of an
SMT-based GEC system. Their system achieved an F0.5 score of 41.75% on the
CoNLL-2014 test set.
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5.7 Summary

In this chapter, we have investigated NMT for GEC. We have proved that NMT
can be successfully applied to GEC once we address the rare word problem. We
have compared three different NMT models (RNN-seq2seq, BiRNN-seq2seq and
Attention-seq2seq) and shown that a BiRNN is effective while an attention mech-
anism is crucial to help the system keep error-free source words unchanged and
only make necessary changes. We have also shown that systems trained on longer
sentences (and/or probably a larger number of sentences) perform better. Using a
large vocabulary size is also helpful, particularly on the source side. Our proposed
two-step approach for UNK replacement has been proved to be effective and provide
a substantial improvement. We have developed an NMT-based GEC system that
generalises well to other datasets. Our NMT system achieves an I score of 5.06% on
the publicly available FCE test set, outperforming our best SMT system with an I
score of 2.87%. When testing on the official CoNLL-2014 test set without alternative
answers, our system outperforms the top three teams in the shared task.
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CHAPTER 6

Conclusion

This thesis has focussed on GEC for non-native English text. We have treated it as a
translation task from incorrect into correct English, developed three main variants of
end-to-end all-errors GEC systems and explored many contrasting parameterisations
of these models.

In Chapter 3, we investigated SMT for building an all-errors GEC system. We
first identified issues that arise from applying existing SMT to GEC, and then pro-
posed solutions to address some of the issues. We presented the development of an
SMT-based GEC system, which forms one half of our winning system submitted
to the CoNLL-2014 shared task. The winning system, according to Bryant and Ng
(2015), was able to perform 73% as reliably as a human annotator when further
alternative corrections are taken into account.

Results from our SMT-based GEC system were analysed and discussed in depth.
A detailed analysis of system performance by type was also presented. This kind of
analysis is valuable as it helps us better understand the strengths and weaknesses
of the system, as well as diagnose problems and identify areas for future improve-
ment. Our findings suggest that an SMT-based GEC system is particularly good at
correcting errors that have more training examples, involve changes of only one or
a few words and depend on local context. When looking at error types, the system
achieves the best performance for Wform, Mec, Nn and ArtOrDet. Our results also
confirm that the SMT-based GEC system is able to correct sequential errors and
interacting errors in one go. Forced decoding experiments reveal that about 54% of
all missed errors are due to SMT decoding errors, as better corrections were observed
in the candidate pool produced by the SMT system but the decoder failed to select
them. The remaining 46% missed errors are OOV errors, since the needed correc-
tion mappings could not be learnt from the training data. The next two chapters
described attempts to solve these problems.

Chapter 4 addressed SMT decoding errors via candidate re-ranking. Since SMT
was not originally designed for error correction, we argued that it is necessary to add
new features that are tailored for GEC to help the SMT decoder better distinguish
good from bad corrections. We proposed a supervised ranking model to re-rank
candidates generated by an SMT-based GEC system. To the best of our knowledge,
we are the first to use a supervised discriminative re-ranking model in SMT for
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GEC, showing that n-best list re-ranking can improve sentence quality. A range of
novel linguistic features were investigated and implemented in our re-ranker. We
developed an SVM re-ranker which was proved to be effective in re-ranking correction
candidates for GEC and generalise well to different corpora.

Future work includes the optimisation of the n-best list size, which is one of the
most effective parameters in re-ranking. Additionally, we would like to explore more
discriminative features. Syntactic features may provide useful information to correct
potentially long-distance errors, such as those involving agreement. Mizumoto and
Matsumoto (2016) showed that shallow syntactic features based on POS and parse
tags are effective. Future work includes investigating other types of syntactic features
and comparing them with the non-syntactic features used in our current re-ranker.
We may also need features to capture the semantic similarity between the source
and target sentences as retaining the meaning of the source sentence after correction
is important. Neural LMs and TMs may additionally help capture syntactic and se-
mantic information. It is also worth trying GEC re-ranking jointly for larger context,
as corrections for some errors may require a signal outside the sentence boundaries,
for example by adding new features computed from surrounding sentences.

Chapter 5 addressed data sparsity and SMT OOV errors using more general
neural network models. This constitutes the first study on NMT for GEC. For errors
whose correction mappings have not been seen in the training data, we hypothesised
that NMT-based GEC systems may have a chance to correct them, given the fact
that NMT does not rely on any correction mappings and the use of distributed
representations for words helps alleviate the curse of dimensionality. We addressed
problems from adapting the existing NMT framework to GEC. In particular, we
proposed a two-step UNK replacement approach to handle the rare word problem,
which has been proved to be effective and provide a substantial improvement. The
results of our experiments confirm that NMT can be successfully applied to GEC
and that an NMT-based GEC system is able to correct some of the errors that are
missed by an SMT-based system.

Due to time limitations, we have only presented a tentative study on NMT for
GEC and so have not yet been able to exploit its full potential. However, we hope the
positive results we have demonstrated in this thesis will encourage further research
on the adaptation of NMT to GEC. In the future, we would like to explore other
ways of addressing the rare word problem in NMT-based GEC, such as incorporating
the alignment information generated by the attention-based decoder or using models
that work with smaller units. For example, a character-based model was used by Xie
et al. (2016) and Schmaltz et al. (2016) to handle rare words and spelling mistakes.
We expect further improvement by combining the character-based model with our
UNK replacement approach. Li and Jurafsky (2016) showed that re-ranking the
n-best list from an NMT system with additional information (e.g. maximum mutual
information and sentence length) yielded consistent improvements for MT tasks,
while Xie et al. (2016) observed an increase in system performance after adding a
LM to their NMT-based GEC system. Therefore, it is worth investigating ways to
help our NMT system output better correction candidates, for example by using
the candidate re-ranking techniques developed in Chapter 4. In addition to building
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stand-alone NMT systems, previous work on MT has shown that NMT models help
SMT re-ranking. Improvements over state-of-the-art SMT systems were observed
when using NMT to re-rank the output of phrase-based SMT systems (Neubig et al.,
2015). Another area for further research is to use NMT features to help candidate
re-ranking for SMT-based GEC. Our analysis reveals that the NMT system is ca-
pable of capturing some of the errors that are missed by the SMT system, and that
corrections made by the two systems are complementary. How to effectively combine
the corrections from the SMT and NMT systems remains a problem.

With reference to the aims of this thesis described in Section 1.2, we can now
answer the three research questions: we have shown that SMT can form the basis of
a competitive all-errors GEC system, SVM re-ranking can improve sentence quality
in SMT-based GEC and NMT can be successfully applied to GEC to capture errors
missed by SMT-based GEC.

Due to the success of our early work, more people have started to use SMT
for GEC and claimed better results. Among them, Junczys-Dowmunt and Grund-
kiewicz (2016) developed an SMT-based GEC system and reported state-of-the-art
M2 performance on the CoNLL-2014 shared task test set. After introducing new
features and models, they tuned the system on the NUCLE data towards the M2

metric. Despite their promising result, we believe it largely depends on the train-
ing/tuning data, newly introduced features and tuning metrics. There is no doubt
that parameter tuning can be very effective, but we have focused on building more
appropriate and generalised models for GEC in this thesis. As these two research
directions are complementary to each other, we could replicate their experiments
and expect better results.

Given the time and computational constraints, we did not retrain our SVM re-
ranker and NMT-based GEC system on the NUCLE data or tune them for F0.5 on
the CoNLL-2014 test set, making our results incomparable to those trained and opti-
mised for NUCLE. However, our CLC-trained systems are still able to achieve com-
petitive F0.5 scores on the CoNLL-2014 test set without retraining. As our aim was
to examine model generalisation and develop robust systems that are less likely to
need retraining or tuning for new datasets or GEC tasks, we conclude that our GEC
systems generalise well and can be used as generic systems across different tasks.

We also notice that almost all published GEC systems were trained using dif-
ferent datasets (e.g. NUCLE, CLC, Lang-8, WikEd Error Corpus, CommonCrawl
or Web1T1) and optimised for different metrics (e.g. BLEU, M2 or I-measure) on
different test sets. It is necessary to compare all the systems under the same setting
before we can draw any conclusion about the best GEC system and the true state-
of-the-art performance. Thus, we propose a closed track error correction shared
task, where participating teams are constrained to use only the provided training
data, so that comparisons will be more likely focused on the methods, rather than
the training data used.

Meanwhile, we strongly believe that a more representative test set is needed in
order to better evaluate GEC system performance. Most published research has
only reported system performance on the CoNLL-2014 test set. However, we argue

1https://catalog.ldc.upenn.edu/ldc2006t13
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that it is not a representative test set of learner writing. The CoNLL-2014 test
set consists of 50 essays written by 25 NUS students in response to two prompts.
Similar to NUCLE, which contains essays produced by undergraduate students at
NUS, the CoNLL-2014 test set is more likely to cover errors made by ESL learners
whose L1s are Asian Languages (e.g. Chinese, Korean or Japanese) but less likely to
contain errors from learners with other L1s. In addition, the topics discussed in the
CoNLL-2014 test set are very limited, as essays collected in the test set were written
in response to two prompts. Therefore, prompt-specific models are very likely to
perform well on the test set. We also expect frequent repetition of some learner
errors in the CoNLL-2014 test set given the fact that only 25 learners were recruited
to write essays for the test data. The sample size might be too small to construct a
representative test set. Compared with the CoNLL-2014 test set, the FCE dataset,
which covers a wide variety of L1s and topics, seems to be a better option. This
is why we decided to use the FCE dataset in our experiments in Chapter 4 and
5. However, the FCE dataset has its own limitations, as it only contains essays
written by learners at an upper-intermediate level. Therefore, more efforts should
be devoted to constructing a more representative test set of learner writing, on which
different GEC systems should be tested.

During this work, there is an on-going discussion on how to evaluate GEC sys-
tems, and several methods have been proposed. So far there is no universally agreed
evaluation measure for GEC, and the choice of a metric mainly depends on the ap-
plication and research goals. For example, we used F0.5 calculated by the M2 scorer
in Chapter 3 for participating in the CoNLL-2014 shared task, and the I-measure
in Chapter 4 and 5 when we focussed on the improvement of the original text. It
seems that most work on GEC has only reported F0.5 lately, although as argued in
this thesis, an increase in F-score in conjunction with the M2 scorer does not nec-
essarily mean a reduction in the actual error rate. Even when the increase in F0.5

for recently published systems looks encouraging, we still do not know whether they
will produce better corrections. Before we can agree on the best evaluation measure,
we encourage future work to report system results using multiple evaluation metrics
for better comparisons.

Evaluating system performance for each error type is very useful. As the error
type information in all-errors GEC systems is missing, it comes as no surprise that
there are very few published results. The type estimation strategy used in this
thesis relied heavily on the heuristic rules extracted from NUCLE. Since datasets
often use different annotation schemes, it would fail to generalise to new datasets so
future work should continue to explore better ways to evaluate system performance
by error type.

Finally, we would like to see the techniques developed in this thesis facilitate the
development of GEC, as well as being used in real-world applications, like proof-
reading tools or educational software. We believe GEC techniques can help make
language learning more accessible and interactive than ever before.
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APPENDIX A

NUCLE error codes

Vt Verb Tense
Vm Verb modal
V0 Missing verb
Vform Verb form
SVA Subject-verb-agreement
ArtOrDet Article or Determiner
Nn Noun Number
Npos Noun possessive
Pform Pronoun form
Pref Pronoun reference
Wcip Wrong collocation/idiom/preposition
Wa Acronyms
Wform Word form
Wtone Tone
Srun Runons, comma splice
Smod Dangling modifier
Spar Parallelism
Sfrag Fragment
Ssub Subordinate clause
WOinc Incorrect sentence form
WOadv Adverb/adjective position
Trans Link words/phrases
Mec Punctuation, capitalization, spelling, typos
Rloc Local redundancy
Cit Citation
Others Other errors
Um Unclear meaning
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APPENDIX B

CLC error taxonomy

The letters which appear as the first letter of a bipartite error code indicate the type
of error:

F Form
M Missing
R Replace
U Unnecessary
I Inflection
D Derivation
AG Agreement
C Countability

The letters which appear as the second letter of a bipartite error code indicate
the POS that the error affects:

A Pronoun (anaphora)
N Noun
V Verb
J Adjective
T Preposition
D Determiner
C Conjunction
Q Quantifier
Y Adverb
P Punctuation
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AG Agreement error M Missing error
AGA Anaphora agreement error MA Missing anaphor
AGD Determiner agreement error MC Missing link word
AGN Noun agreement error MD Missing determiner
AGV Verb agreement error MJ Missing adjective
AGQ Quantifier agreement error MN Missing noun
AS Agreement structure error MP Missing punctuation
C Countability error MQ Missing quantifier
CD Wrong determiner because of noun countability MT Missing preposition
CE Complex error MV Missing verb
CL Collocation or tautology error MY Missing adverb
CN Countability of noun error NE No error
CQ Wrong quantifier because of noun countability R replace error
DA Derivation of anaphor error RA Replace anaphor
DC Derivation of link word error RC Replace link word
DD Derivation of determiner error RD Replace determiner
DI Incorrect determiner inflection RJ Replace adjective
DJ Derivation of adjective error RN Replace noun
DN Derivation of noun error RP Replace punctuation
DQ Derivation of quantifier error RQ Replace quantifier
DT Derivation of preposition error RT Replace preposition
DV Derivation of verb error RV Replace verb
DY Derivation of adverb error RY Replace adverb
FA Wrong anaphor form S Spelling error
FC Wrong link word form SA Spelling American
FD Incorrect determiner form SX Spelling confusion
FJ Wrong adjective form TV Incorrect tense of verb
FN Wrong noun form U Unnecessary error
FQ Wrong quantifier form UA Unnecessary anaphor
FT Wrong preposition form UC Unnecessary link word
FV Wrong verb form UD Unnecessary determiner
FY Wrong adverb form UJ Unnecessary adjective
IA Incorrect anaphor inflection UN Unnecessary noun
ID Idiom wrong UP Unnecessary punctuation
IJ Incorrect adjective inflection UQ Unnecessary quantifier
IN Incorrect noun inflection UT Unnecessary preposition
IQ Incorrect quantifier inflection UV Unnecessary verb
IV Incorrect verb inflection UY Unnecessary adverb
IY Incorrect adverb inflection W Word order error
L Inappropriate register X Incorrect negative formation

Table B.1: CLC error taxonomy
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