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A framework to build bespoke auto-tuners

with structured Bayesian optimisation

Valentin Dalibard

Summary

Due to their complexity, modern computer systems expose many configuration parameters
which users must manually tune to maximise the performance of their applications. To
relieve users of this burden, auto-tuning has emerged as an alternative in which a black-
box optimiser iteratively evaluates configurations to find efficient ones. A popular auto-
tuning technique is Bayesian optimisation, which uses the results to incrementally build
a probabilistic model of the impact of the parameters on performance. This allows the
optimisation to quickly focus on efficient regions of the configuration space. Unfortunately,
for many computer systems, either the configuration space is too large to develop a good

model, or the time to evaluate performance is too long to be executed many times.

In this dissertation, I argue that by extracting a small amount of domain specific knowl-
edge about a system, it is possible to build a bespoke auto-tuner with significantly better
performance than its off-the-shelf counterparts. This could be performed, for example, by
a system engineer who has a good understanding of the underlying system behaviour and
wants to provide performance portability. This dissertation presents BOAT, a framework
to build BespOke Auto-Tuners. BOAT offers a novel set of abstractions designed to

make the exposition of domain knowledge easy and intuitive.

First, I introduce Structured Bayesian Optimisation (SBO), an extension of the Bayesian
optimisation algorithm. SBO can leverage a bespoke probabilistic model of the system’s
behaviour, provided by the system engineer, to rapidly converge to high performance
configurations. The model can benefit from observing many runtime measurements per

evaluation of the system, akin to the use of profilers.

Second, I present Probabilistic-C++ a lightweight, high performance probabilistic pro-
gramming library. It allows users to declare a probabilistic models of their system’s
behaviour and expose it to an SBO. Probabilistic programming is a recent tool from the
Machine Learning community making the declaration of structured probabilistic models
intuitive.

Third, I present a new optimisation scheduling abstraction which offers a structured way
to express optimisations which themselves execute other optimisations. For example,
this is useful to express Bayesian optimisations, which each iteration execute a numerical
optimisation. Furthermore, it allows users to easily implement decompositions which
exploit the loose coupling of subsets of the configuration parameters to optimise them

almost independently.
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CHAPTER 1

INTRODUCTION

Auto-tuners are a class of tools designed to optimise the configuration parameters of com-
puter systems in order to maximise their performance in a given context. This dissertation
focuses on the construction of bespoke auto-tuners, specialised for a single system, which
perform this optimisation in a short time compared to their off-the-shelf counterparts.
In this introduction, I first discuss the growing demand for efficient auto-tuners due to
the increase in complexity of modern systems. I then present my thesis, the contribution

offered by this dissertation and outline the structure in which they will be presented.

Computer systems have become a key part of modern data processing pipelines. The
role of a computer system is to provide an abstraction: users interact with the system
in a way that is more declarative than the infrastructure that the system is built on top
of. For example, this can mean abstracting a storage device to provide a file system, or
a cluster of machines to expose a single computation engine. Over the years, systems
have evolved to provide increasingly general abstractions, both in terms of the types of
workloads they can execute and the hardware they can run on top of. While traditional
databases were limited to performing simple relational queries, modern data processing
systems can leverage distributed heterogeneous machines to execute complex iterative
tasks.

This flexibility comes at a cost. Ideally, systems should provide performance portability
and execute their assigned tasks efficiently, independently of the context in which they
are executed. However, this variety of possible workloads or underlying hardware means
there is no “one-size-fits-all” approach to best perform the execution. As a result, systems
often expose configuration parameters which guide their behaviour and can be manually

adapted to a user’s context.

This manual tuning is a complex task, especially for non-experts users, as it requires an
understanding of the underlying system behaviour. It breaks the notion of abstraction

that systems are supposed to provide. Furthermore, users often run a stack of indepen-
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dent systems concurrently. In that case system configuration parameters will need to be
adapted in synergy to obtain good performance, further increasing the difficulty of tuning.
With the growth of complex computer systems, configuration tuning has become one of
the main difficulties faced by users [BGOT16].

Auto-tuning frameworks have been designed to tackle this issue and restore performance
portability without the need for manual tuning. At the heart of an auto-tuner is an opti-
misation which iteratively evaluates the empirical performance of specific configurations
to converge towards efficient ones. For example, Bayesian optimisation is a method often
used for auto-tuning. It uses the measured results to incrementally build a probabilistic
model of the impact of the parameters on performance. Unfortunately, for many complex
computer systems, either the configuration space is too large to develop a good model,
or the time needed to evaluate performance is too long to be executed many times. For
these reasons, it is rare to see auto-tuners applied, for example, to distributed systems

configurations.

This dissertation focuses on the construction of bespoke auto-tuners for computer systems.
I propose to tackle the limitations of standard auto-tuners by exploiting domain specific
structure. I have developed BOAT, a framework to build BespOke Auto-Tuners. BOAT
provides a set of abstractions to expose this structure and build a bespoke auto-tuner with
better convergence than its off-the-shelf counterparts. This can be done, for example, by
a system developer who has a good understanding of their system and wants to guarantee

its performance portability. I use BOAT to argue the following thesis:

Some black-box optimisation problems, such as tuning a program’s parameters for
performance, can significantly benefit from leveraging a small amount of domain
specific information. The resulting optimisation performance can surpass that of
off-the-shelf auto-tuners, making auto-tuning applicable in previously unexplored

contexts.
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1.1 Contributions

In this dissertation, I make three principal contributions, each of which is a key aspect of
BOAT’s architecture:

1. My first contribution is Structured Bayesian Optimisation (SBO), an extension
of the Bayesian optimisation algorithm often used for auto-tuning. SBO exploits a
user-given probabilistic model of the behaviour of the system being optimised to run
an informed search on the configuration space. User-given probabilistic models can
leverage multiple measurements per run of the system, akin to the use of profilers,
to quickly infer the system’s behaviour. Exposing an accurate model to an SBO is
the key method proposed in this dissertation to exploit domain specific structure.
I show how, by using SBO, one can construct optimisers that perform significantly

better the traditional Bayesian optimisation algorithm.

2. My second contribution is Probabilistic-C++, a lightweight, high performance
probabilistic programming library which can be used to easily declare arbitrary
probabilistic models and perform full Bayesian inference on them. In the context of
SBO, Probabilistic-C++ allows users to declare models of their system’s behaviour.
Performing inference on complex probabilistic models can be computationally ex-
pensive. Probabilistic-C++4 offers ways to expose the probabilistic independence
and conditional independence of a model to improve its convergence. Probabilistic-
C++ also comes with a set of useful non-parametric models, including a novel treed
Gaussian process implementation that is well suited to Probabilistic-C++’s infer-

ence algorithm.

3. My third contribution is BOAT’s optimisation scheduling abstraction, which
offers a structured way to express optimisations which themselves execute other
optimisations. For example, this is useful to express Bayesian optimisations, which
each iteration executes a numerical optimisation. Furthermore, these numerical
optimisations are typically performed by an off-the-shelf optimiser. In large config-
uration spaces they may fail to converge due to the curse of dimensionality. BOAT’s
optimisation scheduling abstraction also allows a user to easily implement decom-
positions in which loosely related regions of the configuration space are optimised
almost independently, improving the optimisation’s convergence. Decompositions
methods are a known and extensively used approach in optimisation. I present a
spectrum of decomposition based techniques that can be used, the most advanced

of which are inspired by reinforcement learning algorithms.
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1.2 Dissertation outline

The rest of this dissertation is structured as follows:

Chapter 2 presents the Machine Learning techniques that BOAT is based on. In partic-
ular I focus on Gaussian Processes, an important class of non-parametric Bayesian

models and show their use in the context of the Bayesian optimisation algorithm.

Chapter 3 introduces Structured Bayesian Optimisation (SBO) which is the key method
I present to exploit domain structure. It also introduces the BOAT framework
and presents a novel way to declare complex parameter spaces, including Turing-

complete dependencies between a parameter’s value and other parameters’ existence.

Chapter 4 presents Probabilistic-C++ and its underlying inference algorithm. I show
how independent parts of a model can be decoupled to help the model converge.
I also discuss three topics which have proved useful in the context of modelling
computer program’s behaviour: (i) semi-parametric models which offer a simple
approach for a developer to expose domain specific structure, while still accurately
interpolating observed measurements, (i) inference with non-Gaussian noise which
is typically the case in the context of computer programs and (7ii) non-parametric
models which can scale to large numbers of measurements, in the form of treed-

Gaussian Processes.

Chapter 5 is concerned with the numerical optimisation stage of Bayesian optimisation.
I present BOAT’s optimisation scheduling abstraction and how it can be used to
implement decompositions of the configuration space. I also introduce two new tech-
niques for decompositions, one based on Bayesian optimisation, the other inspired

by reinforcement learning algorithms.

Chapter 6 combines the techniques introduced in the previous three chapters to show
how to build a bespoke auto-tuner in BOAT using SBO. I also discuss the use of
cheap experiments which can bring information about the behaviour of the system

at a small cost.

Chapter 7 evaluates the application of BOAT and SBO via three case studies: (i) a
garbage collection case study in which I tune the configuration flags of a database
to minimise its 99th percentile latency, (i7) a sort case study in which I tune the
implementation of a sort function to minimise its runtime based on the hardware
and the input distribution of the arrays and (4ii) a neural network case study in
which I tune the scheduling of the training of a neural network on a distributed
cluster to minimise its runtime. In each case study, I present the structure that was
exploited to construct a bespoke auto-tuner and I quantify the improvements over

off-the-shelf auto-tuners.
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Chapter 8 presents related work, including auto-tuning frameworks and applications of

modelling techniques to computer programs

Chapter 9 concludes this dissertation and outlines the directions for future work.

1.3 Related publications

Parts of the work described in this dissertation has been covered in peer-reviewed publi-

cations:

[DSY17] Valentin Dalibard, Michael Schaarschmidt and Eiko Yoneki. BOAT: Building
auto-tuners with structured Bayesian optimization. In Proceedings of the ACM
International Conference on World Wide Web (WWW), April 2017. To appear.

[DSY16] Valentin Dalibard, Michael Schaarschmidt and Eiko Yoneki. Tuning the schedul-
ing of distributed stochastic gradient descent with Bayesian optimization. In NIPS
Workshop on Bayesian Optimization, December 2016.
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CHAPTER 2

BAYESIAN OPTIMISATION

In this dissertation, my primary contributions are an extension of the Bayesian optimi-
sation framework so it can leverage domain specific information. Therefore, this chapter

surveys the different aspects of the Bayesian optimisation framework.

I begin this chapter with a review of Gaussian processes, a powerful class of Bayesian
models which define a distribution over continuous functions (Section 2.1). Gaussian
processes are often used in the context of Bayesian optimisation as a probabilistic model
of the objective function. I then present Bayesian optimisation and show some of its

implementation choices (Section 2.2).

2.1 Gaussian Processes

Gaussian Processes (GPs) are a class of probabilistic models that define a distribution over
continuous functions. Although they have recently received significant interest in machine
learning, they have long been used in various other scientific fields. In geostatistics and
physics, GPs have been used for interpolation under the name Kringing, after Danie G.
Kringe who developed a similar method in his master’s thesis in 1951 [Kri51]. The term
was later coined by Matheron [Mat62] who developed the theoretical basis for the method.
They were later introduced in the context of Bayesian machine learning by Neal [Nea94]

and have since received significant contributions from this community [Ras06].

In this section, I first review the basic inference mechanisms used by Gaussian processes
(Section 2.1.1). I then consider their computational cost which can be significant with
large datasets (Section 2.1.2). Section 2.1.3 is concerned with the choice of the covariance
function, a component of GPs which states how smooth we expect the function being

modelled to be. Finally, I briefly survey some extensions of GPs (Section 2.1.4).

23
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2.1.1 Inference with Gaussian processes

Gaussian processes define a distribution over function mapping X — ) where x € X is a
multi-dimensional input and y € ) a real valued output. It is completely defined by two

functions:

e m(x) the mean function at x, and

e k(x,x’) the covariance function, also called kernel.

The resulting Gaussian process is defined as

f(x) ~ GP(m(x), k(x,x))

The covariance function is used to describe how similar two points are. A popular choice
of covariance function when dealing with D-Dimensional input data is the squared expo-

nential:

1
b)) = exp (- 1) 2.)

although there are alternatives. I discuss the choice of covariance function in Section

2.1.3. An important restriction is that it must be positive definite.

If we want to sample from the prior distribution defined by a Gaussian process, we first
define a set of inputs {x;.,} which we are interested in. The goal will be to sample a

corresponding set of sampled outputs {yi.,}. We first compute the covariance matrix

k(Xl,Xl) e k(Xl,Xn)
K= : - :
k(x,x1) - k(Xp,Xp)

and the mean vector

m = [m(x;)---m(x,)].

Then, {y1.,} can simply be sampled from the multivariate normal distribution yi., ~
N(m, K). For example, Figure 2.1a shows four samples drawn from a Gaussian process

distribution.

In the context of Bayesian optimisation, we will rarely want to sample from the prior
distribution. Instead, we will have a set of observed data {xi.,,¥1.}, and we will want

to predict the posterior distribution of another input x,. From the prior distribution we

know that
()
[?/* ] m(x.) k} k(xs, x.)
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Figure 2.1: Example distributions of Gaussian processes.

where

k, = [k(x1, %) - - k(xy, X.)].

The posterior distribution of y, can be analytically solved [Ras06] as

Py | X, {X1in, Y1 }) = N ((x.), 0% (x4))

where

p(x.) = m(x) + kK (y1., — m) (2.2)
0% (x.) = k(x.,x.) — k] K 'k,. (2.3)

For example, Figure 2.1b shows the mean and standard deviation of a Gaussian process

after three measurements.

An important intuition is that, in a way, the GP never “sees” the true value of the
inputs. Instead, it only sees how they relate to one another via the covariance matrix.
Similarly, note that the mean vector can be moved out of the distribution definition:
N(m,K) = m + N(0,K). With this view, the GP also does not see the output values,

only their differences from the mean function.

2.1.2 Computational complexity
I now discuss the computational complexity of three operations: adding a new observation
to the model, predicting the mean value of an input, predicting the variance of an input.

Adding a new observation. The most expensive part of the above predicted distri-

bution is the computation of the inverse of K. If we have n points in our dataset, this
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has a cost O(n?). In practice, we do not compute the actual inverse and instead compute
the Cholesky decomposition of K which also has cost O(n?).

In the context of Bayesian optimisation, we will often receive observations one after an-
other. We can take advantage of the previously computed decomposition to reduce the

complexity. Consider computing the Cholesky decomposition of the matrix

Kl:n kn+1
k7T7,+1 k(Xns1,Xnt1)
given the decomposition Ly, of Kj.,. Note that Li., is triangular. We can compute

l,+1 = Li.,\k,41 as the solution to the equation L., 1,11 = k,y1 in O(n?) steps. Then,

the decomposition of Kj., is simply

Ll:n 0
Ll:n+1 =

ln+1 \/k(xn+17 Xn+1> - 171—+1ln+1

Hence, adding a new observation to the model can be computed in O(n?).

Predicting the mean value of a new input. Equation 2.2 showed how to compute
the mean prediction for an input x,. The term K~!(y;., —m) requires using the decompo-
sition L of K and computing L\ (y1., — m) at computational cost O(n?). However, this is
independent of x,. Hence, we can compute it once when adding an observation and reuse
the computed value afterwards. The rest of the computation involves performing an inner
product with k, which can be done in O(n). Therefore, the computational complexity of

predicting the mean value of an input is O(n).

Predicting the variance of a new input. Equation 2.3 involves computing Kk,
which means solving L\k.. Unlike for the mean prediction, this is dependent on the value
of x, and hence must be performed per input. Hence, the complexity of computing the

variance is O(n?).

2.1.3 Choice of covariance functions

As mentioned in Section 2.1.1, a Gaussian process prior is fully defined by the mean
and covariance functions. In Chapter 4, I will discuss semi-parametric models which will
effectively allow a user to define a mean function. In this subsection, I consider the choice
of covariance functions which specifies the smoothness of the GP’s output. I discuss three
properties: hyperparameters which are used to parametrise the covariance function and
adapt it to the data, the use of noisy measurements, and the Matérn covariance function

which is an alternative to the squared exponential defined in equation 2.1.

Hyperparameters. Often we will want to adapt the covariance function to the data.

This is usually done via hyperparameters. Two types of hyperparameters are used: the
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amplitude hyperparameter 0']2c, which states how far from the mean we expect to be, and
the length-scale parameters £, which squash or dilate the dimensions of the input space.
If x € X id D-dimensional, then £ is a D-dimensional vector ¢;...¢p and the distance
along the kth dimension of two inputs x = [z1...2p| and X" = [z ... 25| from the point

of view of the covariance is (xp — z},) /(.

The kernels I use are isotropic. Given the inputs x and x’, they can be equivalently
written as a function of the Euclidean distance ||x — x'||. In the presence of the length-
scale hyperparameters, the scaled Euclidean distance can be written as a function of the

scaled square norm:
D
2
E xq — ly)? /05
d=1

For example, the squared exponential covariance function defined in equation 2.1 can be

rewritten to include the hyperparameters:
2 L,
k(xi,x;j) = o exp —5" (x4,%5) | -

The linear scales hyperparameters have a high impact on the behaviour of the GP and
hence it is important to understand them well. Setting a high value of ¢; means all of
the inputs will be squished along dimension ¢. This implicitly decreases the importance
of that dimension. All points will be seen as similar in that aspect and discrimination
will happen along other dimensions. On the other extreme, setting a very low value of /;
means all of the points will be far from one another, ultimately leading for them to be
viewed as uncorrelated by the GP. Within reasonable ranges, decreasing the value of ¢;

means we expect functions to vary more along dimension .

In practice, we do not know in advance the right values of the hyperparameters, we must
therefore learn them from the data. This is usually done in one of two ways. One approach
is to perform an optimisation and find the hyperparameter values which best explain the
data. This is done by maximising the marginal likelihood (or evidence) of the Gaussian
process with respect to the data. The second approach is to perform Bayesian model
selection and place a prior distribution on the hyperparameters. We can then infer a

posterior distribution of their values, usually as a set of samples.

When I use Gaussian processes in this dissertation, I always do so within the context
of my probabilistic programming framework, described in Chapter 4. This allows me to
use this second and more robust approach, I place priors on the hyperparameters and let
the probabilistic engine perform inference on their values. However, this means I am not
able to use more clever inference algorithms which are more suited to a Gaussian process’s
structure such as elliptical slice sampling [MAM10] or Hamiltonian Monte Carlo sampling
[Neall].

Noisy measurements. Often the measured values will be noisy. If we repeated the
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same experiment with the same input, we would obtain a slightly different output. Gaus-
sian processes are able to model Gaussian noise. Say our measurements are distributed
with noise variance o2. This can be added to the GP by adding an extra term to the

covariance function when both inputs are from the same measurement:

K (xi,%;) = ki %) +on i =
75 A
k(x;,%;) otherwise.

We can even allow the noise variance to be a function of the input x, which is called

heteroscedasticity.

Matérn covariance function. In practice, the squared exponential covariance func-
tion tends to lead to functions that are too smooth to realistically represent the behaviour
of computer programs. There are a range of alternatives. In this dissertation, I always
use the Matérn 5/2 kernel as is recommended by Snoek et al. [SLA12]:

5)
karse(xi,x;) = aj% (1 +4/572(x;, %) + gTZ(Xi,xj)) exp (— 5r2(xi,xj)> )

2.1.4 Extensions to Gaussian processes

One of the major difficulties when dealing with Gaussian processes is their computational
cost with large datasets. In this subsection, I highlight some of the extensions that have

been proposed to allow them to scale.

Experts approaches. To reduce the computational burden, some approaches train
multiple independent “experts” on different subsets of the data. Mixture of experts meth-
ods [JJNH91] have been applied to GP regression [MO06, RG01, YN09]. In this context,
a gating network divides the domain of A into regions within which local experts make
predictions. An advantage of this approach is that, since each GP is trained on a local
dataset, we can infer the hyper-parameters of each GP independently, allowing them to
adapt locally. Predictions for a new input x, are made by querying each expert at x, and

weighing these predictions by responsibilities assigned by the gating network.

On the other hand, product of experts methods sidestep the need for weight assignment by
training independent GPs whose predictions can be combined based on their confidence
on the input [ND14, CF14, DN15].

Sparse approximations. Another alternative to reduce the computational cost of
Gaussian process is to train a single GP on a reduced number of data points. This can
be done either naively, by selecting a subset of the training data, or more accurately,
by generating pseudo-inputs which capture the shape of the data [SWL03, SG05, Tit09].

The major limitation of these approaches, is the error in the variance estimates generated
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Algorithm 2.1 The Bayesian optimisation algorithm
Input: Objective function f()
Input: Probabilistic model G
Input: Acquisition function a()
1: fort=1,2,...do
2: Sample point: x; < argmax, a(x | G)
3: Evaluate new point: y; < f(x;)
4: Update probabilistic model: G < G | (x¢, yr)
5. end for

by these methods. Predictions near pseudo-measurements will be over-confident. On the

other hand, predictions at inputs from the dataset may have high variance.

Treed Gaussian processes. Similarly to expert approaches, treed GPs train multiple
GPs on different subsets of the data [GL07]. Unlike them however, the predictions of
the different GPs are not combined. Treed GPs are constructed in a similar way to the
decision trees used by random forests for regression. The trees are binary trees, and each
branch of the tree queries the aspect of an input. A branch b specifies a dimension uy,
along which to query the input, and a threshold value s,. A prediction for an input
X, is made by propagating x, down the tree. At each branch b, the u,th dimension of
X, is compared with s,. If it is greater, the input is propagated to the right sub-tree,
otherwise, it is propagated to the left sub-tree. At the leaf of the tree, a Gaussian process
that was trained using all data points in the training set that followed this path returns
its prediction for x,. In order to average over possible tree branch values and structure,
MCMC is used to sample different decision trees. At prediction time, we can combine the

predictions from each sampled tree.

2.2 Bayesian optimisation

This section presents Bayesian optimisation, a methodology to find the extremum of an
expensive black-box function. Although first introduced by Mockus et al. [MTZ78] in
1978, it was only years later, once it became coupled with Gaussian processes, that the

framework gained popularity.

I first present the Bayesian optimisation methodology (Section 2.2.1). Section 2.2.2 is
concerned with the choice of acquisition function, which trades-off the exploration and
exploitation of the procedure. Finally, I consider the limitations of Bayesian optimisation
(Section 2.2.3).
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2.2.1 Methodology

In its most classical setting, Bayesian optimisation attempts to find the maximum of some
objective function f(x) where x € RP. To this end, it incrementally builds a probabilistic
model which reflects the current knowledge of the objective function. Most of the time, a
Gaussian process (GP) is used although random forests [Bre01] and neural networks have
also been considered [HHLB11, SRS*15].

Algorithm 2.1 shows the procedure. In each iteration, the optimisation executes three
steps. First, it performs a numerical optimisation to find a point in the configuration
space which maximises an acquisition function. Acquisition functions are designed to
maximise a combination of exploration and exploitation. Given a point x, they measure
its quality based on the distribution predicted by the model at x. I discuss them in details

in the next subsection.

Finding a point which maximises the acquisition function can be performed using an
off-the-shelf numerical optimisation algorithm. The implicit assumption is that getting a
prediction from the model is orders of magnitude faster than executing f(), and hence
we can afford to use a simpler optimisation algorithm. Because the model represents
the objective function f(), which may be multimodal, we must use an algorithm which

supports black-box global optimisation.

The DIRECT algorithm, which recursively sub-DIvides the space into sub-RECTangles
is often used for this task [JPS93]. Another popular alternative is the CMA-ES algorithm
[HOO01], which is based on evolutionary methods.

Second, the optimisation evaluates the expensive objective function at the point x; found

by the numerical optimisation. Third, it includes this new measurement into the model.

When compared with other optimisation methods, such as evolutionary algorithms, Bayesian
optimisation tends to converge in fewer iterations. This however comes at the cost of a
high overhead per iteration due to the computational cost of performing the numerical

optimisation.

2.2.2 Acquisition functions

The goal of the acquisition function is to evaluate the goodness of an input x based
on the model’s prediction. We want to trade-off exploitation, evaluating configurations
which we know will perform well, and ezploration, evaluating configurations which will
be informative about the shape of the objective function. This subsection lists a range of

popular acquisition function. I follow the notation of Shahriari et al. [SSWT16].

Possibly the simplest form of acquisition function is Thompson sampling [Tho33], origi-

nally introduced in the context of Bernoulli bandit problems (see [Scol0] for a complete
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Figure 2.2: Examples of acquisition functions.

treatment). We simply sample a single model g() from the current distribution of possible

models G. Then the acquisition function is:

ars(x | g) = g(x).

If the numerical optimisation stage of the Bayesian optimisation finds the optimal value of
x for arg() then we are implicitly sampling from the distribution of optimal configurations
of G. Until recently, this approach was not applied to Bayesian optimisation as it was not
clear how to sample a single continuous function from a Gaussian process at an acceptable
computational cost. However, spectral sampling techniques have recently been used to
draw an approximate sample form the posterior [HLHG14], T discuss this approach in

more details later in this subsection.

A popular acquisition function is the ezpected improvement which was originally proposed
by Mockus et al. [MTZ?S]. For an input x, it returns the expected value of the improve-
ment brought by evaluating f(x) over the best objective function value found so far 7,

also called incumbent:

aex(x | 1, G) = / max(0, g(x) — 1) plg(x) | G) dg(x).

A useful feature of the expected improvement is that it has a closed form formula when the
predicted distribution of g(x) is normally distributed. If we are using a Gaussian process
as the model, then given p(x) and o(x) the posterior mean and standard deviation at x,

the resulting expected improvement is:

apr(x | p(x), 0(x))
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where ®(Z) and ¢(Z) are the PDF and CDF of a standard normal distribution respec-

tively. Figure 2.2b shows an example of the expected improvement function.

An alternative is the upper confidence bound (UCB), or lower confidence bound (LCB)
when considering minimisation [SKSK10]. The acquisition function uses a positive pa-
rameter k which explicitly trades-off the exploration and exploitation. Given the posterior

mean (x) and standard deviation o(x) of an input x, it is written as:

ayes(x | p(x),0(x)) = pu(x) + Ko (x).
Figure 2.2¢ shows an example of the upper confidence bound function.

Another recent promising avenue are acquisition functions which maximise the informa-
tion gain about the distribution of the optimum brought by evaluating x. Entropy search

(ES) attempts to maximise
aps(x | G) = H(x" | G) = By o H(x" | (G| (x,9)))

where H(x* | G) is the differential entropy of the distribution of x*. The expectation is
over the distribution of the random variable y ~ G(x). Unfortunately, this function is
not tractable for continuous spaces. Hence, approaches which use it rely on discretising
the space X [VVWO09, HS12]. An alternative is predictive entropy search (PES) which
remove the need for this discretisation [HLHG14]. It leverages the symmetric property of
mutual information to reformulate ES in terms of the differential entropy of the predictive
distribution:
apps(x | G) = H(y | G,x) — Exic[H(y | G,%x,Xx7)].

The right term requires averaging over the current distribution of optimums. This can be
estimated through Thomson sampling. In the context of Gaussian processes, this can be
done using spectral sampling techniques which approximate samples from the posterior
distribution. Then, using simplifying assumptions, an approximation for the differential

entropy H(y | G,x,x*) can be derived.

Portfolio strategies. It has been observed that no single acquisition function per-
forms best over all problems, or even throughout the optimisation. Portfolio strategies
use multiple acquisition functions concurrently. Each iteration, each acquisition function
provides a candidate point to evaluate. A meta-criterion is then used to select among
these candidates. Hoffman et al. keep track of the past performance of each acquisi-
tion function to select which should be used next [HBdF11]. More recently Shahriari et
al. discriminate between candidates by measuring their information gain, in a similar
way to entropy search techniques discussed above [SWHT14]. Their formulation also re-
quires a set of Thomspon samples, they generate them using the same spectral sampling

methodology for Gaussian processes as used by Herndndez-Lobato et al. [HLHG14].
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2.2.3 Limitations

Recently, Bayesian optimisation has successfully been used to tune the hyper-parameters
of machine learning applications and surpass human experts [SLA12, DSH13|. However,
it has so far been unsuccessful at tackling optimisations in high dimensional spaces (more
than 10) [SSWT16]. There are two issues that may occur and limit the performance of a

Bayesian optimisation:

1) The probabilistic model fails to accurately capture the objective function landscape
after a reasonable number of iterations. This is due to the curse of dimensional-
ity [Murl2]. The number of regions being modelled will grow exponentially with the
number of dimensions. Hence, in order to converge in high dimensional domains,

the model will require large numbers of measurements.

2) The numerical optimisation algorithm, used in each iteration, fails to converge and
find a point with good acquisition function value. Once again, this can be linked
to the curse of dimensionality. As the number of dimensions grows, the numerical

optimisation will need to search an exponentially large number of regions.

In the rest of this dissertation I propose to extend Bayesian optimisation in a number of
ways. The goal is always to provide abstractions allowing a user to tackle either of the

above two issues.

2.3 Summary

This chapter focused on two related research research areas. First, I discussed Gaussian
processes, a class of probabilistic model for regression. I highlighted their computational
complexity which prevents their application to large datasets, and discussed some of the

extensions that had been proposed to tackle this difficulty.

I then presented Bayesian optimisation, which most often uses a Gaussian process to
incrementally model the objective function. I listed different approaches to select the next
point to evaluate using the model’s predictions. I discussed the limitations of Bayesian

optimisation in high dimensional settings.

In the next chapter, I will present an extension of the Bayesian optimisation method-
ology which leverages the domain structure of an optimisation problem to tackle these

limitations.
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CHAPTER 3

BESPOKE AUTO-TUNERS WITH
STRUCTURED BAYESIAN OPTIMISATION

In this chapter, I present the overall techniques that I use to create bespoke auto-tuners.

I make the following contributions:

e I present Structured Bayesian optimisation(SBO), an extension of the Bayesian
optimisation algorithm which leverages a user-given probabilistic model to quickly

converge towards the objective function (Section 3.2).

e I introduce BOAT, my framework to build BespOke Auto-Tuners (Section 3.3.1).
BOAT includes a range of tools which can be used by a developer to construct an

SBO.

e [ present BOAT’s configuration space abstraction, which is used to define the domain
of an optimisation (Section 3.3.2). It allows developers to specify complex depen-
dencies between parameters. In particular, the existence of a set of parameters can

be made dependent on the value of another parameter.

Before this, Section 3.1 discusses the motivation for this dissertation. In particular, it
gives an overview of the three optimisation problems tackled in Chapter 7, which I will
use as running examples throughout the dissertation. It also lists a range of generic
optimisation techniques which a developer would ideally be able to use in their bespoke

auto-tuner.

3.1 Motivation

In this section, I first present the case studies evaluated in Chapter 7. These will both

expose the necessity of having performant auto-tuners and serve as running examples

35
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throughout the rest of this dissertation. I then outline the different types of domain

specific structures which can be taken advantage of by an optimisation.

3.1.1 Case Studies

To evaluate BOAT, I constructed three case studies designed to show a variety of contexts
where auto-tuning is beneficial. The first case study, on garbage collection, only optimised
three parameters. It showed that, even for simple optimisation problems, building a
bespoke auto-tuner can yield significant convergence improvements. The second case
study was concerned with optimising a sorting routine. It had over thirty parameters, a
context in which off-the shelf auto-tuners are not applicable. It was designed show the
applications of the optimisation methods presented here to complex parameter spaces
with many dependencies between parameters. Finally, the third case study optimised the
distributed scheduling of a neural network. It also had over thirty parameters. It was
built to show that the methods presented here can be applied to complex distributed

systems.

Garbage collection. The goal of this case study was to tune the garbage collection
(GC) flags of a Java Virtual Machine (JVM) based database to minimise its 99th percentile
latency. I tuned three parameters of the Concurrent Mark Sweep (CMS) collector: the
young generation size and survivor ratio flags, which govern the size of the different
sections of the heap, and the max tenuring threshold which sets the rate at which objects
are promoted between heap sections [YL96]. I measured the 99th percentile latency
of Cassandra [Apal6], a popular JVM-based wide-column store, using the YCSB cloud

benchmarking framework [CST*10] with a variety of workloads.

The behaviour of the garbage collection has a high impact on the latency. In one context,
setting appropriate values of these three flags reduced the 99th percentile latency from
19ms — using Cassandra’s default values — to 7ms. This is mostly due to minor collections
which frequently collect objects in the young generation section of the heap, provoking
a “stop-the-world” pause which halts the application. Good configurations will minimise
the average duration of these collections as well as their total time. For example, Cassan-
dra’s default configuration uses a low young generation size, 100 MB per core. In practice
this makes minor collections short but frequent, taking a large fraction of the total time.
Increasing the young generation size will lead to more batching and will improve perfor-
mance, but only up to a point, as large values will lead to long pauses raising latency

again.

The small domain of this tuning problem means that off-the-shelf auto-tuners are still
applicable. In my evaluation, I found that Spearmint [SLA12] converged to good configu-
rations in 16 iterations after four hours of auto-tuning time (15 minutes per evaluation).

However, exploiting contextual information can significantly reduce convergence time.
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My auto-tuner, implemented in BOAT, is simple yet converged to within 10% of the best
found performance by the second iteration. The next two case studies tackle more complex
tuning problems — each with over thirty dimensions — in which off-the-shelf auto-tuners

fail to find good values after thirty iterations.

Sort. In this case study, I tuned the implementation of a sorting procedure based on
the distribution of input arrays and the underlying hardware. The optimisation domain
is based on the implementation of std::sort used by libstdc++, gcc’s standard library.
std::sort uses a hybrid implementation of quicksort and insertion sort. Quicksort is
recursively used on the array, up to the point where the length of the sub-arrays are
smaller than a single parameter called block_size, after which it switches to insertion
sort. As noted by Ansel et al. [ACWT09], the default value of block_size, 32, is better
suited to older hardware architectures. Furthermore, insertion sort performs well on arrays
which are almost sorted. Therefore, using larger values of block_size on almost sorted

arrays leads to better performance.

I designed a decision tree configuration space which dynamically queries an array’s prop-
erties to dispatch it to an appropriate block_size parameter value. Branches of the
decision tree scan the first elements of the input array and count the number of pairwise
unsorted elements. This is used to estimate how sorted the array is. Counting the number
of unsorted elements has a cost and hence there is a trade-off between the quality of the
dispatch and the querying cost. This, along with the selection of appropriate block_size

values at the leaves of the tree, is what is optimised by my auto-tuner.

The decision trees generated by my bespoke auto-tuner were up to four times faster on
average than std::sort’s implementation. Furthermore, off-the-shelf auto-tuners were
unable to cope with the large parameter space. When executed for sixty iterations, their
median optimised configuration was almost twice slower than ones found by the bespoke

auto-tuner after twenty iterations.

Neural network scheduling. In this case study, I tuned the distributed scheduling
of the training of a neural network onto a heterogeneous cluster. There are two major

components of this configuration space.

First, the computation load must be balanced across workers. Stochastic gradient descent,
used to train neural networks, involves getting estimates of the gradient using many inputs
in parallel. Hence, the auto-tuner must find how many inputs should be allocated to each

worker based on their computational speed.

Second, the set of workers must be selected. A synchronisation barrier at each iteration
of stochastic gradient descent makes all workers share and update their weights. The
amount of data exchanged grows linearly with the number of workers and hence the
slowest machines should not be used at all. T optimised this scheduling for a variety of

clusters and neural network architectures.
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Numerical
Model optimisation
convergence | convergence
Embedding in the configuration space v v
Structured probabilistic model (§3.2, 4) v
Many runtime measurements (§3.2, 4) v
Decomposition methods (§5.3 - 5.6) v
Exploratory experiments (§6.2 - 6.3) v
Cheap experiments (§6.4) v

Table 3.1: List of techniques to improve an optimisation’s convergence.

In my experiments, the optimised configurations found by my bespoke auto-tuner were up
to 2.9x faster than simple configurations a user may have selected. Once again, the large
dimensionality of the space prevented off-the-shelf auto-tuners from converging. Their
median time after thirty iterations were over twice slower than the ones found by the

bespoke auto-tuner after ten iterations.

Although these case studies are diverse, I used the same set of generic techniques to build
each bespoke auto-tuner. The next subsection lists these techniques and discusses their

impact.

3.1.2 Techniques to exploit

This subsection discusses the different techniques that we would like to exploit when
optimising a computer system’s configuration. Recall from Section 2.2.3 that there are two
issues that can limit the performance of a Bayesian optimisation. Either the model used
fails to converge after a reasonable number of iterations, or the numerical optimisation,
performed each iteration, fails to find configurations viewed as promising by the model.
Each optimisation technique presented in this dissertation is designed to combat one or

both of these issues. I list them in table 3.1 and discuss each in turn.

Embeddings. Using an embedding means performing the optimisation over a sub-
space of the configuration space which we know contains the optimum. This reduces the
size of the domain that has to be searched by the optimisation. For example, say we
were optimising the performance of an application running two concurrent processes on
a machine with eight cores. If two parameters of the configuration space specified the
number of threads used by each process, we may start by allowing these parameters to
be any positive integer. However, by reasoning about the parallelism of the machine, and
the cost of context switches we may decide that the processes should use a total sum of

eight threads, leading to only seven possible configurations.

Although simple, this kind of structure is crucial to reduce the complexity of the optimi-

sation and should be employed whenever possible. It does not benefit from abstractions
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and hence I do not discuss it in the technical part of this dissertation. I do, however,

mention the embeddings that were exploited in my case studies.

Structured models and multiple measurement. To help the Bayesian optimisa-
tion model converge, we can exploit some of the understanding we have of the objective
function landscape. This is what I propose in the next section by using a user-given
structured probabilistic model, and is the core idea of structured Bayesian optimisation.
Another advantage of using such bespoke models is that they can exploit many runtime

measurements, allowing them to converge even faster.

Decompositions. Decomposition methods are well known techniques which improve
the convergence of an optimisation by exploiting some of its independences. I will show
how they can be exploited to help the convergence of the numerical optimisation stage of

a Bayesian optimisation.

Exploratory experiments. In order to explore the domain of the optimisation,
Bayesian optimisation uses acquisition functions (Section 2.2.2), which trade-off explo-
ration and exploitation. Exploratory experiments target regions of the domain with high
uncertainty. It is the role of the numerical optimisation to find a configuration with high
acquisition function value. In practice, this can be difficult. Due to their as acquisition
functions are often highly multi-modal. Furthermore, their structure is typically not well
suited to the use of decomposition methods. I will present techniques which tackle both

issues.

Cheap experiments. Finally, cheap experiments are experiments that give us some
information about the landscape of the utility function at a fraction of its cost. We would
like to be able to exploit them to help the Bayesian optimisation model converge at a

quicker rate. I will suggest how this can be done in the context of BOAT.

To summarise, this section highlighted some contexts in which having an efficient auto-
tuner would be useful. It then listed a variety of techniques which could be employed by
an auto-tuner. Although these techniques are simple in concept, they may be difficult to
employ when building a bespoke auto-tuner from scratch. Hence, I argue that there is a
need for a framework which makes the use of these techniques easy and intuitive. The
next section presents structured Bayesian optimisation, the core methodology which my
framework BOAT is built upon.

3.2 Structured Bayesian optimisation

In this section, I present Structured Bayesian Optimisation (SBO). SBO extends the
Bayesian optimisation methodology by using a user-given structured probabilistic model
of the underlying function being optimised, instead of a generic model like a Gaussian

process. In the context of creating a bespoke auto-tuner for a computer system, this
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Figure 3.1: Procedure of structured Bayesian optimisation.

model would be implemented by a system developer that has a good understanding of
the underlying system behaviour.

The procedure of an SBO is similar to the one of a traditional Bayesian optimisation and
is presented in Figure 3.1. It performs three steps at each iteration: (1) it looks for a
configuration with good predicted performance by the bespoke model. (2) It evaluates the
best found configuration using the objective function and collects runtime measurements.

(3) It performs inference on the model using all observations.

When compared with traditional Bayesian optimisation, using bespoke models brings
three main advantages. First, it captures the user’s understanding of the behaviour of the
system. This drastically reduces the number of iterations needed for the model to con-
verge towards the objective function. In the context of BOAT, models are implemented in
probabilistic programming and can reason about arbitrary data structures — like regular
programs — and reproduce complex behaviours. For example, the model in the neural
network case study predicts the individual computation time of each machine in a dis-
tributed cluster. The total time is predicted to be the highest of these individual times
plus a communication cost. It would take many evaluations for a generic probabilistic
model to accurately model the function max over multiple inputs, but our model does so
by default.

Second, it makes Bayesian optimisation applicable to new domains with complex con-
figuration spaces, where the existence of some of the parameters may be conditional. If
instead we were using Gaussian Processes, we would have to design a covariance function
over this complex configuration space. This is a difficult task, recall from Section 2.1.1
that the covariance function must be positive definite. The construction of kernels for
complex data structures, such as trees, is an active area of research. For example, Swer-
sky et al. [SDS™13] recently derived a covariance function for configuration spaces with a
fixed number of parameters, but where the relevance of some parameters was dependent
on the value of others. However, the approach is not generalisable to recursive parameter
spaces, such as trees, with a possibly infinite number of dimensions. On the other hand,
probabilistic programs can reason about these complex configuration spaces and interpret
them in a suitable way.

Third, using such a model allows us to collect many runtime properties reflected in the

model and use them for inference. For instance, in the garbage collection case study, the
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Figure 3.2: Dataflow of the garbage collection model

model predicts the rate and average duration of minor collections. After each experiment,
the garbage collection logs are parsed to observe their true value of these statistics and
use them for inference. In Chapter 6, I will further take advantage of this aspect to
suggest how we can leverage cheap experiments, which can give some information about

the behaviour of the system at a fraction of the cost of the objective function.

3.2.1 Bespoke probabilistic models

In this subsection, I illustrate the construction of a structured probabilistic model which
captures the behaviour of the underlying system. I do so using the model used in the

garbage collection case study.

In the context of BOAT, the probabilistic model written by the system developer should
take as input a configuration and predict its performance. Initially, developers should use a
generic model, effectively running traditional Bayesian optimisation, and observe whether
the convergence time is acceptable. If it is not, SBO allows users to incrementally add
structure to the model to reduce convergence time. Adding structure is done by making

the probabilistic model more similar to the behaviour of the system.

In the garbage collection case study, I used a Gaussian process (GP) as the initial model.
The GP predicted 99th percentile latencies based on the flag values. This took many
iterations to converge, despite the simplicity of the problem. To add structure, I included
in the model a notion of rate and average duration of minor collections. Given flag values,
the model predicted both these statistics. It then predicted the latency as a function of

the flag values and the statistics. The data flow of the model is shown in Figure 3.2.

When using the model in BOAT, I collected the true value of these statistics from the GC
logs after each evaluation and use them for inference. Further, I declared how I believed
each of the three model components behaved as a function of their inputs. For example,
I noticed the rate of minor collections was inversely proportional to the size of the eden
memory region in the JVM-heap, which is where objects are initially allocated. This
intuition was included in the corresponding model by building a semi-parametric model

(Section 4.3.1), which can successfully combine a user-defined trend with empirical data.

In practice, I find that even adding a little structure can be sufficient to make the optimi-

sation converge in a reasonable time. This is useful as simpler models are able to adapt
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Figure 3.3: Overview of the flow of data when using BOAT

to a broader variety of behaviours, such as widely different hardware and workloads.
This allows for the construction of bespoke auto-tuners that provide global performance

portability.

3.3 BOAT

This section presents BOAT, my framework to build bespoke auto-tuners. The goal of
BOAT is to allow a system developer to design an auto-tuner with a good convergence rate
for their system, hence guaranteeing their system’s performance portability. I begin this
section with an overview of BOAT and its use. I then present BOAT’s configuration space
API which allows the declaration of optimisation domains with dependencies between

parameters.

3.3.1 Overview of BOAT

Figure 3.3 shows an overview of the flow of data when using BOAT. Application users

provide two types of arguments specific to their application:

e Configuration space properties: These have an influence on the set of valid
configurations. In a distributed scheduling problem, this could be the list of available

machines.

e Preferences: These define system performance metrics. For example, a user could
set the workload with which the system should be evaluated, or specify whether to

optimise throughput or tail latency.

To create a bespoke auto-tuner, a system developer takes these arguments as input to

provide four types of information to BOAT:
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1) Configuration space: The space of valid configurations which should be explored.

This is also called the domain of the optimisation.

2) Objective function & runtime measurements: This specifies how to evaluate
a given configuration. For example, this can involve writing configuration values to

a configuration file and starting a distributed system along with a benchmark.

3) Probabilistic model of system behaviour: The contextual information which

allows BOAT to discard regions of low performance and quickly converge.

4) Decompositions: How to decompose the numerical optimisation so independent

parameters can be optimised individually.

Note that the first two items specify the optimisation problem, while the latter two are
designed to give structure to the optimisation to make it converge quickly. All of BOAT’s

components are implemented in C++.

3.3.2 BOAT’s configuration space abstraction

Often when tuning programs, the existence of a parameter is dependent on the value of
another. For example, when optimising a decision tree, each node can either be a branch
or a leaf, and the existence of left and right sub-trees is dependent on that status. For
this reason, the domain often used in numerical optimisation, X C R?, is insufficient for
our needs. In this section, I show how more complex configuration spaces are declared in
BOAT.

I distinguish two related constructs to define domains of valid parameters. The first is
traditional parameters which can take some scalar or categorical values. In BOAT, these

are called Parameter’s. For example,

RangeParameter<int> x1(9,5);

declares a parameter which can take integer values in the range [0,5]. If x1 has been

assigned a value, this can be queried as x1.value().

The second are parameter functions, which are normal executable functions with the
added construct of being able to read parameter values and construct new parameters.
In BOAT, ParameterSpace objects are designed to hold Parameters and may have a

parameter function to create Parameters whose existence is conditional.

Listing 3.1 shows the implementation of a generic configuration space for decision trees in
BOAT. The class Node inherits from ParameterSpace and has some parameters as fields.
The first is a BoolParameter, called is_leaf, specifying whether the node is a branch or

a leaf. The remaining ones are templated ParameterPtrs. This allows for them to only
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template <class Leaf, class Query>
struct Node : public ParameterSpace {

void parameter_function() override {
// The existence of the parameters is dependent on the value of is_leaf
if (is_leaf.value()) {
leaf.new_parameter();
} else {
query.new_parameter();
left.new_parameter();
right.new_parameter();
}
}

// Fields

BoolParameter is_leaf;
ParameterPtr<Leaf> leaf;
ParameterPtr<Query> query;
ParameterPtr<Node> left;
ParameterPtr<Node> right;

Listing 3.1: Example of a decision tree configuration space.

be constructed depending on the value of is_leaf. The parameter_function method,

overridden from ParameterSpace, defines how this construction is executed.

By allowing the use of arbitrary C++ functions as parameter functions, BOAT allows the
construction of complex parameter spaces with dependencies between parameters. The
domain of a parameter can be dynamically restricted in a similar way. Arguments can be

passed to the parameter’s constructor via

parameter_ptr.new_parameter(args);

For example, say we wanted a RangeParameter<int>’s domain to be bounded by a value
max dependent on the values of the other parameters. Then we could declare a field
ParameterPtr<RangeParameter<int>> param. In the parameter function, we would then

compute the value of max and use

param.new_parameter (@, max);

This configuration space interface decouples the optimisation procedure — assigning values
to parameters — from the configuration space properties. In BOAT, the optimisation iter-
atively assigns values to parameters, such as is_leaf. The framework then automatically
constructs other parameters which exist as a consequence of those value assignments.

This allows the easy comparison of different optimisation procedures.

The sort case study configuration space. As an example, I here show a simplified

version of the configuration space of the sort case study, originally introduced in Section
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struct SortQuery {

SortQuery() : scan_length(@, 5000),
threshold(@, 5000) {}

RangeParameter<int> scan_length;
RangeParameter<int> threshold;

3

struct SortLeaf {
SortLeaf() : block_size(1, 1 << 30) {}
RangeParameter<int> block_size;

3

typedef Node<SortQuery, SortlLeaf> SortNode;

Listing 3.2: A simplified declaration of the sort case study parameter space.

void opt_sort(std::vector<int>& input){
int cumul = 0;
cumul += count_unsorted(input, @, 166);
if (cumul > 30) {
opt_sort(input, 6);
} else {
cumul += count_unsorted(input, 166, 579);
if (cumul > 4) {
opt_sort(input, 9);
} else {
opt_sort(input, 12);

Listing 3.3: A sort configuration’s implementation.

3.1.1. It consists of a decision tree whose queries scan the input array’s first elements to
establish how sorted it is. At the leaves, it selects a value for block_size, an algorithmic
parameter of the sorting procedure. Listing 3.2 shows a simplified implementation which
uses the Node definition from Listing 3.1. Queries have two parameters, scan_length and
threshold, which can each take values from 0 to 5000. Leaves have a single parameter
block_size. In practice, I also use two types of embeddings. First, I bound the maxi-
mum depth of the decision tree to avoid “overfitting” the arrays representing the input

distribution. Second, I restrict block_size to have values that are powers of two.

When I implemented this configuration space, I also implemented an objective function
which turned a configuration into C++ code, compiled it and evaluated its performance.
As an example, Listing 3.3 shows a possible configuration’s implementation. The variable
cumul keeps track of the number of unordered elements observed from the root of the

decision tree. Each leaf specifies a value for the log base two of block_size.

In conclusion, BOAT includes multiple components which can be used together to build
bespoke auto-tuners. This section highlighted BOAT’s configuration space abstraction

which can be used to define complex recursive domains for optimisations.
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3.4 Summary

In this chapter, I started by highlighting the need for a structured framework to perform
optimisations. This was based around two observations. First, there are many implicit
optimisation problems in systems which would benefit from an adequate auto-tuner. Sec-
ond, there are multiple generic optimisation techniques which can be applied to a range
of problems. This motivated the construction of BOAT, a structured framework to build

bespoke auto-tuners.

I then presented structured Bayesian optimisation, the key optimisation approach intro-
duced in this dissertation. SBO extends Bayesian optimisation by leveraging a structured
probabilistic model of the function being optimised. I then introduced the BOAT frame-
work which includes a number of abstractions to build a bespoke auto-tuner based on
SBO.

Figure 3.3 showed the dataflow when constructing a bespoke auto-tuner. It listed three

of BOAT’s components:

Configuration space abstraction This was presented in Section 3.3.2. It allows the
construction of configuration spaces with complex dependencies. Both the sort and

neural network case studies make extensive use of this construct.

Probabilistic programming library This will be the topic of Chapter 4. It allows a
system developer to define a probabilistic model for the behaviour of their system,
which can then be exposed to BOAT.

Optimisation scheduling abstraction This will be the topic of Chapter 5. One of the
main uses of this abstraction will be the implementation of decompositions to help

the numerical optimisation converge.

Finally, Chapter 6 will discuss how these different components can be put together to

build a bespoke auto-tuner.
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PROBABILISTIC MODELS OF PROGRAMS
EXECUTIONS

A structured Bayesian optimisation leverages a bespoke probabilistic model of the ob-
jective function to quickly converge. This chapter discusses the construction of such
models. I introduce a number of techniques and abstractions which allow a developer to
easily implement a probabilistic model of their system’s behaviour. I make the following

contributions:

e [ present the design and implementation of Probabilistic-C++, a lightweight and
high performance probabilistic programming library (Section 4.2). Probabilistic pro-
gramming is a recent framework for expressing probabilistic models. Probabilistic-
C++’s implementation makes it over 1000x faster than similar state-of-the-art
probabilistic programming languages. Beyond performance, it has two key fea-
tures. Incremental inference: when a new item is added to a dataset, the previously
inferred model distribution can be used to do the minimum amount of work nec-
essary. Faploiting independence: the probabilistic independence of a model can be

exposed to help the inference converge.

e [ outline a methodology to build Probabilistic-C++ models in the context of an op-
timisation in BOAT (Section 4.3). I discuss semi-parametric models which combine
a user defined parametric model with a non-parametric model, such as a Gaussian
process. Semi-parametric models offer an intuitive methodology to construct models

of a system’s behaviour.

e [ show how Probabilistic-C++’s inference mechanism is well suited to do infer-
ence on complex noise functions (Section 4.4). I present a data structure called
OSTimeSampler which can be used to construct an accurate distribution of the noise
in runtimes when executing brief, single threaded computer programs. I evaluate

the gain in modelling power on a dataset of matrix multiplication runtimes.

47
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e [ present a treed Gaussian process data structure that is designed to tackle the high
computational complexity of Gaussian processes and is well suited to Probabilistic-
C++ (Section 4.5). This allows developers to build models which perform inference
on many measurements without having to sacrifice the computational performance
of the model. T evaluate the data structure on the matrix multiplication dataset as

well as a dataset from the sort case study.

e [ show a method to generate an approximate model sample from a Probabilistic-
C++ model distribution. I will use this technique in subsequent chapters to generate

approximate Thompson samples (Section 4.6).

Probabilistic-C++ is strongly inspired by the Probabilistic-C probabilistic programming
language. It uses the same inference algorithm, which is based on a particle filtering
method called sequential Monte Carlo (SMC). Section 4.1 reviews the concepts behind

probabilistic programming and the use of SMC for inference on probabilistic programs.

4.1 Probabilistic Programming

This section presents the concepts behind probabilistic programming. Section 4.1.1 dis-
cusses the semantics of probabilistic programs and how they can be used to express
probabilistic models. I then review sequential Monte Carlo, a probabilistic inference al-
gorithm, and show how it can be used in the context of probabilistic programs (Section
4.1.2).

4.1.1 The semantics of probabilistic programs

Probabilistic programming is a recent tool from the Machine Learning community which
generalises graphical models and makes the construction of structured probabilistic mod-
els intuitive. It is akin to regular programming with the following added constructs
[GHNR14]:

1. the ability to draw values from random distributions,

2. the ability to constrain the value of a variable via observations, and
3. the ability to output the distribution of a variable.
Unlike regular programs which are written to be executed, probabilistic programs are

written to specify a probability distribution. For example, graphical models [KF09], such
as Bayesian networks, can be represented in probabilistic programming. The goal of
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# Draw from distributions
bias = uniform_draw(0.0, 1.0)
flip = bernoulli_draw(bias)

# Observe an outcome
observe(flip, true)

# Output the resulting distribution
predict(bias)

Listing 4.1: A very simple probabilistic program.

probabilistic programming is to make the construction of such probability distributions
easy, hiding away the difficulties involved with performing inference. In this dissertation,

I use probabilistic programs to model the behaviour of computations.

For example, Listing 4.1 shows a very simple probabilistic program in Python-like pseudo
code. First, it sample a value from the uniform distribution in the range [0.0,1.0] and
assigns it to a variable bias. It then draws a value from a Bernoulli distribution with
parameter bias and assigns it to a variable flip. That is, flip will be true with prob-
ability bias and false with probability 1.0 - bias. The next statement performs an
observation, it constrains the value of flip to be true. Finally, predict(bias) outputs
the distribution of bias, in light of this observation. Intuitively, this should be centred
on the upper side of the range 0.0, 1.0].

One way to understand the semantics of a probabilistic program is as follows. Performing
inference is equivalent to running the program many times as a traditional program, but
only outputting a value at predict statements if, for all previous observe statements,
both arguments had the same value. In our example, this means only outputting the
value of bias if the value of the variable flip was exactly true. As a consequence, the

output values of bias are ones that explain our observation well.

Relationship with the traditional machine learning approach In machine learn-
ing, users typically perform inference on a probabilistic model. To do so, they use a dataset
containing many independent samples. Typically, this would be expressed in probabilis-
tic programming in the following way. First, the model would be defined, sampling each
model parameter. Then, each sample in the dataset would lead to one or multiple obser-
vations. Intuitively, this makes the parameters of the model agree with the data. Finally,
either the inferred distribution of the model parameters, or their predictions on a test

dataset, would be output.

For example, Listing 4.2 shows pseudocode implementing linear regression, with the use
of probabilistic programming constructs highlighted. The linear regression model has
three parameters, alpha, the slope, beta, the y-intercept and noise, the noise at each

observation. The listing performs inference on alpha and beta while keeping noise fixed
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# Define the two model parameters
alpha = normal_draw(0.0, 1.0)
beta = normal_draw(0.0, 1.0)
noise = 2.0

# Define the model
def linear_model(x):
return normal_draw(alpha * x + beta, noise)

# Perform observation x=1.0, y=3.0
# Draw from the model

samplel = linear_model(1.0)

# Constrain the sample
observe(samplel, 3.0)

# Perform observation x=3.0, y=5.0
sample2 = linear_model(3.0)
observe(sample2, 5.0)

# Output beta’s distribution
predict(beta)

Listing 4.2: Linear regression pseudocode in Probabilistic Programming.

at 2.0.

It draws both alpha and beta from a normal distribution with mean 0.0 and variance
1.0. It then performs two observations, i.e. use a dataset of size two. Each constrains a
prediction from the model to match an observed value. Intuitively, the values of the obser-
vations (x = 1.0,y = 3.0 and z = 3.0,y = 5.0) mean we should expect the values of alpha
and beta to be on the upper range of their initial distribution. Finally, predict(beta)

outputs the distribution of the beta parameter, typically as a set of samples.

In the linear regression example, we are performing inference over two continuous proba-
bilistic variables: alpha and beta. This makes it amenable to a number of frameworks,
such as BUGS [STB*96] or Stan [CGH"16] which perform inference on a restricted set
of probabilistic programs. Recently, methods to perform inference on Turing complete

probabilistic programs have been proposed [GMR™08].

For example, Listing 4.3 shows the definition of a probabilistic program which includes
a while loop. In it, we again perform inference on the bias of a biased coin. The
biased_coin_model keeps flipping a coin with probability bias until it return true. Once
finished, it returns the number of flips that were performed. We should expect a low
number of flips to be generated by high values of bias and vice versa. Our dataset has
one sample in it saying the coin was observed to produce its first “head” on the fifth flip.

Hence, we should expect bias to have a low value.
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# Define the model parameters
bias = uniform_draw(0.0, 1.0)

# Define the model
def biased_coin_model():
count = 0@
flip_head = False
while not flip_heap:
count += 1
flip_head = bernoulli_draw(bias)
return count

# Draw from the model and constrain the sample
sample = biased_coin_model ()
observe(sample, 5)

# Ouput the bias’ distribution
predict(bias)

Listing 4.3: A probabilistic program with a while loop.

For a probabilistic language to have a while loop, it must be Turing-complete. For
example, the probabilistic programming frameworks BUGS [STB*96], Stan [CGH'16]
and Infer NET [MWGT]| are not Turing complete and would not represent the above
program in its current form. Recently, Church [GMR™'08] was proposed as the first Turing
complete probabilistic programming language. Since then a number of similar frameworks
have been proposed [TvdMW15, MSP14].

In Section 4.2, T will present Probabilistic-C++, a new lightweight and high performance
framework for probabilistic programming. The next subsection describes, as a prelim-
inary, the particle filtering algorithms which Probabilistic-C++ and some of the other

frameworks are based on.

4.1.2 Inference on probabilistic programs

This subsection presents sequential Monte Carlo (SMC), a particle filtering technique used
for inference in probabilistic programs [DDFGO1]. First, I introduce importance sampling
which is a key component of SMC. T follow the notation of MacKay [Mac03]. See Doucet
and Johansen [DJ09] for a complete introduction to SMC methods.

Importance sampling. Importance sampling is used when we want to estimate the
expectation of a function ¢(x), where x is drawn from a distribution P(x) which we
cannot directly sample from. Usually we cannot evaluate the density P(x) directly but

instead have access to a function P*(x) which is identical up to a multiplicative constant:

P(x) = P*(x)/Z.
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Suppose we have access to a simpler density (x) such that:
e We can generate samples from (Q(x)
e We can evaluate ()*(x) which is identical to Q(x) up to a constant Q(x) = Q*(x)/Zg

Importance sampling allows us to estimate the expected value of ¢(x) by first generating
R samples {z(} | from Q(x). To correct for the differences between P(x) and Q(x) we

introduce a weight for each sample:

The expectation can then be estimated as:

b — o wro(x)
Ef:l Wr

Importance sampling for Bayesian inference. In the context of Bayesian infer-
ence, we have some data y and we would like to estimate the expected value of a function

on the posterior distribution of x given y: p(x | y). Bayes theorem states that:

PPy | %)

p(x|y) = o)

p(x) is called the prior distribution of x, and p(y | x) the likelihood, or evidence.

Consider a situation in which (i) we cannot sample directly from the posterior distribution,
(i) we can sample from the prior distribution, and (i) given a sample x(), we can
compute the likelihood p(y | x(™). Then we can use important sampling to compute the

expected value of a function ¢(x) on the posterior distribution by setting:

P(x) =p(x|y)
P (x) =p(x)p(y | x)
Q(x) =p(x)
v )
"TQx)
_px)p(y | %)
p(x)
=p(y | x).

That is, we generate samples from the prior distribution and weigh each of them by their
likelihood on the data.

Sequential importance sampling. In the context of particle filtering, we have a

sequence of observation at time steps 1 to t: yi.,. Each observation y, was generated by



CHAPTER 4. PROBABILISTIC MODELS OF PROGRAMS EXECUTIONS 53

Algorithm 4.1 The sequential importance sampling procedure.

. Draw a set of R particles {x{"/}Z| from p(x;)

. Initialise the weights {w{”}2 | as w{” = p(y; | x\”)

1
2
3: fori=23,...tdo

4: Sample the particles’ next time step {x\"}2, from p(x'” | x{"))
5 Update the weights {w(”}E | as w!” = w{”, p(y; | x\")

6

. end for

a corresponding state x;,. We would like to perform inference over the entire trajectory of
states x;.; given their transition probabilities p(x; | x;_1). Sequential importance sampling

does so by exploiting the recursive nature of the posterior distribution:

p<X1:t | Y1;t) = p(Xt | Yt;Xt—l) p(xlzt—l | Y1;t—1)

This exploits the Markov property, the distribution state x; depends only upon z;_; and

none of the other states that precede it.

Like importance sampling, sequential importance sampling works by drawing a set of
samples, called particles, from a distribution and reweighting them appropriately. These
weights are computed sequentially as the trajectory of states of the particles are drawn.
Algorithm 4.1 shows the procedure. Each particle sequentially samples its trajectory. At
each state 7, it updates its weight with its likelihood of observing y;. Like with importance
sampling, if we want to compute the expected value of a function ¢(x) at time step i, we

can approximate it using the R particles as
& => W s(x") (4.1)

where Wi(r) is the normalised weight of particle r at time step i:

wl?

(r _

NS
In practice, sequential importance sampling tends to perform poorly. The reason is that
with each time step, a fraction of the particles will generate a poor sample from the
transition distribution. This results in a low likelihood for those particle. As we go
through the time steps, the fraction of particles which will have generated only decent
samples throughout their trajectory will decrease exponentially. Eventually, none of the

particles will be representative of the distribution.

A side effect of this issue is degeneracy: after a few time steps there is a wide distribution of
importance weights for the particles, and all but one of the particles have their normalised

importance weight I/VZ»(T) near zero. As a result, we are effectively averaging over a single
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Algorithm 4.2 The sequential Monte Carlo procedure.

1. Draw a set of R particles {Xgr)}le from p(x;)

2: Initialise the weights {w!”}2 | as w” = p(y | x")
3: fori=23,...tdo

4: Compute ESS;_1

) if ESSi_l < g then
6: resample particles {x\", }2_| with probability density {w!”,}E

. . 27{%: wfi) . . T
7: Assign the average weight value ==p—= to each of their weights wZQl
8: end if
9: Sample the particles next time step {x\" }2_, from p(x\" | x\"))

10:  Update the weights {w\”}E | as w!” = w!"\p(y: | x;)

11: end for

sample which is unlikely to yield good results. Degeneracy can be quantified by measuring

the effective sample size (ESS) of the particles at time step i:

ESS; = __

()

r=1

Sequential Monte Carlo. In order to improve over sequential importance sampling,
we monitor the ESS throughout the time steps. Whenever it falls below a threshold,
typically £/2, we perform a resampling step which eliminates the less likely particles and
duplicates the more likely ones. The full sequential Monte Carlo procedure is shown
in Algorithm 4.2. Just like with sequential importance sampling, we can estimate the
expected value of a function ¢(x) using Equation 4.1. I describe below the details of

resampling.

There are multiple ways in which resampling can be performed. One of the more popular
and efficient technique is systematic resampling. It samples a single random number
U, = U0, %] and defines U; = U; + j%l. The number of times each particle r is duplicated

at time step ¢ is then

r—1 r
N© = HUj D wi < < ZW}”H .
k=1

k=1

If Ni(r) is 0, particle r is deleted. The values U; ... Ug can be viewed as regular “ticks” in
the interval [0,1]. To compute Ni(T) we allocate each of the particles a region of size W,
in the range [0,1] and count how many ticks fall within each particle’s region. After a
resampling step, all particles can be seen as drawn uniformly from the posterior distribu-
tion. We therefore re-initialise their weights equally. Typically the value % is used, but I

use instead the average values of the weights % (" /r for reasons I explain later.

r=1 "4
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The limits of SMC In order to produce distributions similar to the true posterior,
SMC relies on our ability to sample from the transition p(x; | x;—1) and get some particles
which followed a similar behaviour as the one which generated the data. In low dimen-
sional state space models, such as when tracking a physical object in a 3 dimensional
space, this is a reasonable assumption. However, we must be aware that, due to the curse
of dimensionality, SMC will perform poorly if a transition samples random values in a
large multi-dimensional space. An important part of Probabilistic-C++, presented in the
next section, will be to allow users to expose some independence in the distributions being

modelled to tackle these large dimensional spaces.

Another limitation comes from the resampling step. Because some of the less likely
particles are discarded each time we resample, as more time steps are performed, fewer
of the original particles will remain. This is another aspect of degeneracy. Most of the
original particles have probability 0 assigned to them as they are discarded in later time
steps. This pitfall is the reason we only resample when the effective sample size has
decreased to low values and not every iteration. However, we should still be aware that

too many resampling steps will eventually lead to degeneracy.

Likelihood of the model A nice property of SMC is that it not only allows us to

perform inference over a model, but also allows us to quantify how good that model was

at explaining the data. In the context of Bayesian inference, this is measured by the

likelihood of the model. Following the SMC procedure, we can estimate the likelihood
re1 W

of the model at time step i by measuring the average weight of the particles >%  «"/r.

This is why I did not reinitialise them to % in my description above.

Applying SMC to probabilistic programs SMC is directly applicable to probabilis-
tic programs. Random draws are seen as transition probabilities. Observe statements are
the observations y. The only necessary construct is the ability to duplicate a program’s
execution thread into two identical threads so we can perform the resampling step. A
good analogy is the POSIX fork() construct which duplicates a single threaded process.
This is in fact used by the probabilistic programming language Probabilistic-C [PW14]

to perform inference. I describe this mechanism in more details below.

To perform inference on a probabilistic program, we initiate R execution threads exe-
cuting the program concurrently. Each thread will correspond to a particle and keep
track of its own weight w). In order to sample from the transition distribution, we
simply execute the probabilistic program, sampling random values whenever necessary.
We execute all threads up to the first observe statement, at which point they halt in a
synchronous barrier. The threads use the content of the observe to update their weights

w'™) accordingly.

A master thread then gathers each of the threads weights and checks whether the effective
sample size is below a threshold. If it is, the master thread samples which of the threads

should be duplicated, and which should be terminated. It then instructs all threads to act
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accordingly. We repeat this procedure of synchronous barrier and possible resampling for
each observe statement in the program. At predict(expr) statements, threads output
their computed value for expr. We can then compute the average value of expr by

performing a weighted average, as in Equation 4.1.

Finally, it is important to mention that there have been recent breakthroughs in research
on sequential Monte Carlo, with the recent introduction of particle Markov chain Monte
Carlo methods (PMCMC) [ADH10]. These hybrid techniques combine the SMC and
Markov chain Monte Carlo (MCMC) inference algorithms by using SMC as the inner loop
of an MCMC. PMCMC techniques have been applied to probabilistic program inference.
Unfortunately, for an identical computational budget, they tend to perform slightly worse

than SMC [PW14].

4.2 Probabilistic-C++

This section presents Probabilistic-C+4, BOAT’s lightweight and high performance prob-
abilistic programming library. It is implemented in C++ and based on the recently pro-
posed Probabilistic-C programming language. I first introduce the interface offered by
Probabilistic-C++ through an example program (Section 4.2.1) and discuss its relation-
ship with existing frameworks (Section 4.2.2). Section 4.2.3 lists some of Probabilistic-
C++'s useful features. Finally, I show how model independence can be exploited to help

the inference converge (Section 4.2.4).

4.2.1 Interface

In this subsection, I review how models are implemented in Probabilistic-C++. I use
linear regression as a running example, which could be useful, for example, to model the

runtime of an O(n) algorithm.

To declare a probabilistic model, developers declare a model class in C+4. The Bayesian
implementation of one dimensional linear regression has three parameters: alpha the
slope, beta the y-intercept, and noise the amount of noise at each data point. Listing
4.4 shows the Linear regression model class with those three parameters as fields. On a
high level, the role of inference will be to find model objects instances of the model class

whose parameters fit the data well.

A model class must implement three functions. First, the constructor which samples
parameter values from the prior distribution. The prior distribution represents the un-
certainty on the parameter values before any data points have been observed. In the
example, alpha and beta are drawn from normal distributions with mean 0.0 and stan-

dard deviation 1.0, and noise is assigned 2.0. Second, the observe function which will



CHAPTER 4. PROBABILISTIC MODELS OF PROGRAMS EXECUTIONS 57

struct LinearModel {
LinearModel() {
alpha = std::normal_distribution<>(0.0, 1.0)(generator);
beta = std::normal_distribution<>(0.0, 1.0)(generator);
noise = 2.0;

}

double observe(double x, double y) {
double prediction = alpha * x + beta;
return normal_lnp(prediction, y, noise);

3

double predict(double x) {
return alpha * x + beta;

}

double alpha, beta, noise;

3

int main() {
ProbEngine<LinearModel> engine;
engine.observe(1.0, 3.0);
// Average value predicted at x=0.0 (beta)
std::cout << engine.predict(0.0) << std::endl;

Listing 4.4: Linear regression in Probabilistic-C++.

be used to perform inference. An observe takes as argument a data point, and returns
the object’s log-probability of producing that point. In the example, this is done by com-
paring prediction, the value predicted by the object’s parameters, with the observed
value y. We use the normal_lnp function — part of Probabilistic-C++ — which returns
the log-probability of getting y from a normal distribution draw centred on prediction
and with standard deviation noise. Third, the predict function allows the model to be

queried. Given a value x, it returns the value predicted at x.

To use a model class, users declare a probabilistic engine ProbEngine templated on that
class. On construction, the engine will create many model objects, always using the
default constructor to do so. These will correspond to particles when performing SMC
inference. Developers can then make the engine observe data points. The engine will call
the corresponding observe function on each of its model objects and use the returned log-
probabilities to determine which of the objects best fit the data. In the example, I make
the engine observe the data point z = 1.0,y = 3.0. Intuitively, this means objects with
higher values of alpha and beta will be considered more likely. Finally, the engine can be
queried using the predict function which will return the average of the predictions of the

model objects. In the example, I predict the average value of beta, which is near 0.75.
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Framework Runtime | Peak memory usage
Probabilistic-C 52.090s 15840 MB
Probabilistic-C++ 0.035s 6 MB

Table 4.1: Measured performance on the linear regression example with 100,000 particles. Ran
on an r3.2xlarge EC2 instance with 8 hyperthreads and 61 GB of memory.

4.2.2 Relationship with existing probabilistic programming frame-

works

Probabilistic-C++'s architecture is based on that of Probabilistic-C [PW14] — both use
Sequential Monte Carlo (SMC) [DDFGO1] to perform inference. In Probabilistic-C++,
SMC duplicates likely model objects, using the C++ assignment operator, and discards
others to keep a pool of particles with balanced likelihoods. The key difference between
the two frameworks is that in Probabilistic-C particles are processes and duplication is
done using POSIX fork(). Using fork() allows Probabilistic-C to be a probabilistic
programming language, where the entire program can be viewed as a distribution and
each process is a particle. On the other hand, it suffers from the overhead of fork(),
which is orders of magnitude slower than the C++ assignment operator. For illustration,
I compare the computational performance of the two frameworks on the linear regression
example in Table 4.1. Probabilistic-C++ reduces the runtime and memory consumption of
inference by over 1000 x. Note that Probabilistic-C++ makes no algorithmic improvement
over Probabilistic-C, and I therefore do not evaluate its regression performance, referring
the reader to [PW14].

Compared to a traditional probabilistic languages such as Venture [MSP14] or Anglican
[TvdMW15], we retain the ability of programming complex distributions without need-
ing an entire new language. Probabilistic-C++ is integrated within BOAT. The models
implemented in Probabilistic-C++ are Turing-complete, they can execute any C++ func-
tion. Some probabilistic programming languages such as Stan [CGHT16] restrict the class
of allowed models to employ more advanced inference algorithms. In practice, I find

Turing-completeness to be useful when modelling complex computer systems.

4.2.3 Features and limitations of Probabilistic-C++

I now go over some of the features available in Probabilistic-C++ that I have found
to be useful and are not always available in probabilistic programming languages. The

subsection concludes on some of the limitations of Probabilistic-C++-.

Observes are top level. In many but not all probabilistic programming languages,
observe calls are forced to be top level. This means it is not allowed for an observe

statement to be executed conditionally on the value of another variable. This is because
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the resulting distribution would be ill formed. This is not enforced in Probabilistic-C. For
this reason, Probabilistic-C calls itself a “compilation target for probabilistic programs”
rather than a probabilistic language. It is designed to be a fast backend to higher level
probabilistic languages. Probabilistic-C++ forces observe calls to be top level as they are
called on the ProbEngine rather than within the probabilistic code itself. This guarantees
that the content of the observe will be executed on all particles. This makes it suitable

to be a probabilistic programming library, which can be exposed to users.

Decoupled implementation of the model from the data used for inference.
Some probabilistic programming frameworks mix definitions of probabilistic models with
the data used for inference. This is, for example, the case in the Python-like probabilistic
program pseudo-code from section 4.1.1. In Probabilistic-C++ the two are decoupled,

making the model definitions simpler.

Decoupled predictions from the model. Another decoupling is that we can separate
the model definition from the statistics we are trying to gather about the model. In the
linear regression example I predicted the mean value of beta in the posterior distribution.
If we want to average more complex expressions, we can do so using C++ lambda func-
tions. Say we had computed the mean value of beta as beta_mean, the variance could be

computed as:

beta_variance = engine.average(
[&](const LinearModel& m){
return pow(m.beta - beta_mean, 2.0);

1

Incremental observes. Most probabilistic programming languages are designed to
perform inference on a static dataset. As described above, the data may even be included
in the program. Within the context of Bayesian optimisation, each iteration leads to new
data that must be incorporated in the model. Therefore, when receiving the kth obser-
vation, it is beneficial to be able to re-use the inference performed for the k& — 1 previous
samples rather than starting from scratch. In Probabilistic-C++, this is the default be-
haviour; observe calls are performed incrementally, internally performing another time
step of SMC. In contrast, in Probabilistic-C, because observe statements are part of the

compiled program, the inference would have to be run from scratch.

Deterministic observes. The resampling step used by SMC allows likely particles to
be replicated many times. In turns, this means when an observe call performs random
actions, the likely particles will get many more “shots” at choosing the action that best
explains the data. The downside of resampling is that it eventually leads to degeneracy,
as explained in Section 4.1.2. When the observe call performs no random actions, we
would hence like to avoid this resampling. ProbEngines in Probabilistic-C++ includes
an observe_deterministic method, allowing them to perform an observe without the

corresponding resampling step.
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template <class Archive>

void LinearModel: :serialize(Archive& ar, const unsigned int version) {
ar & alpha;
ar & beta;
ar & noise;

}

int main() {
ProbEngine<LinearModel> engine;
engine.observe(1.0, 3.0);
engine.store("linear_model.txt");

}

Listing 4.5: Serialisation example in Probabilistic-C++-.

Quantifying the quality of a model. Performing inference on a model is use-
ful. However, sometimes we would like to query the quality of the model itself. In
Bayesian statistics, this can be measured through the marginal likelihood. In Probabilistic-
C++, given a ProbEngine engine, we can query the logarithm of the likelihood as
engine.get_marginal_log_likelihood(). As described in Section 4.1.2, this can be read-

ily computed when using SMC for inference by averaging the likelihoods of all particles.

Dynamically changing the number of particles. Having many particles allows
the inference to be more accurate, but it also leads to a greater computational cost.
Sometimes we would like to adjust the number of particles based on the difficulty of
performing inference at a given time step. Given a ProbEngine, this can be done in
Probabilistic-C++ by calling engine.set_num_particles(int). The engine will perform
an extra resampling step to adapt the number of particles. Typically, this will be used to
have very large numbers of particles for the first few observations, so we can have many
samples from the prior distribution. Afterwards, once the randomness only comes from
the observe calls, we can reduce the number of particles for the rest of the computation

and pay a lower computational cost.

Serialising probability distributions. It is often useful to be able to save an inferred
distribution to a file so it can later be reused, either for prediction or further inference.
In Probabilistic-C++-, this can easily be achieved by implementing a serialize member
function of model classes using Boosts serialisation library [Bool6]. This can be used to
store all properties of a probabilistic engine, including all of its particles, to a file so it
can be loaded again later. Listing 4.5 shows how this is implemented in the LinearModel

example by adding a member function.

I now discuss some of the limitations of Probabilistic-C++ and its underlying SMC in-

ference algorithm.

SMC as the only inference algorithm. In Probabilistic-C++, SMC is the only
available inference algorithm. In contrast, many probabilistic programming languages

offer access to a variety of inference methods such as Metropolis-Hastings, Gibbs sam-
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int sort_and_hash(vector<int>& array){
sort(array.begin(), array.end());
int result = hash(array);
return result;

3

Listing 4.6: Implementation of sort_and_hash.

pling, slice sampling, Hamiltonian Monte Carlo or variational inference [TKD*16, RG15,
MSP14, TvdMW15]. Different inference algorithms will be best suited to different types
of models. Hence allowing a variety of inference methods increases the range of proba-
bilistic programs that can be performed inference over. By only allowing the use of SMC,
Probabilistic-C++ can therefore only perform inference over a narrow range of models. I

now discuss which models fall within that range.

Limaitations of SMC. Typically, most of the random draws done by a model in
Probabilistic-C++ will be performed in the constructor, when we sample the model pa-
rameters. As described in Section 4.1.2, SMC will perform poorly when we perform too
many draws at once with no observation in-between informing us of the quality of those
draws. Hence, if the model’s prior distribution samples too many parameters at once,
inference will perform poorly. Typically we will be using on the order of 10° particles. In
practice, this means we should not expect to successfully perform inference on more than
five continuous model parameters accurately. This is a clear limitation and if it is not
tackled, we will not be able to model complex systems accurately. The next subsection
describes how a user can expose the independence and conditional independence available

in a model to help the inference converge.

4.2.4 Exploiting model independence

This subsection discusses the exposition of model independence in Probabilistic-C++. As
a running example, [ will attempt to model the execution time of three functions: sort()
which sorts an array, hash() which hashes an array, and sort_and_hash which sorts and
then hashes an array. I assume that executing sort_and_hash requires the same amount of
time as executing sort() and hash() subsequently. Listing 4.6 shows its implementation.
Figure 4.1 shows the graphical representation of the model and the data. I assume we
already have the model classes SortModel and HashModel which model the execution time

of sort() and hash() as a function of their parameters.

I first show the way this model would traditionally be implemented in probabilistic pro-
gramming (Section 4.2.4.1). This implementation may require too much inference work
to be performed by the model and could lead to poor inferred parameters. I then present
a way to leverage the independence of the model to help the model converge, and show
its implementation in Probabilistic-C++ (Section 4.2.4.2). This implementation assumes

we only have data from sort() and hash() and none from sort_and_hash, but we still
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SortModel HashModel

\J \
sort () sort _and hash() hash ()
Measurements Measurements Measurements

Figure 4.1: Graphical representation of the sort() and hash() models and the data.

would like to be able to make predictions for sort_and_hash. I show how this method
also applies to conditional independence using the garbage collection case study model
as an example (Section 4.2.4.3). Finally, I show we can leverage both independence and
measurements from sort_and_hash, albeit at the cost of incremental observes (Section
4.2.4.4).

4.2.4.1 Traditional Probabilistic Programming implementation

The traditional way to express the graphical model of Figure 4.1 in probabilistic program-
ming is as follows. The entire model would be placed in a single model class. Listing 4.7
does this by placing a SortModel and HashModel into a combined class FullModel. The
default constructor of FullModel, implicitly defined with C++’s semantics, will call the
default constructors of SortModel and HashModel. The issue with this approach is that
the parameters of both SortModel and HashModel will be sampled at once in FullModel’s
constructor. Hence, the total number of model parameters being sampled by the construc-
tor of FullModel may be high. This may lead to few model objects having parameters

which explain the data well.

4.2.4.2 Exposing model independence

I now show how some structure of the probabilistic model can be leveraged to help the
inference engine. There is a notion of independence that can be extracted. SortModel
and HashModel both are sampled independently and perform inference on different data
(assuming we have no data for sort_and_hash). But we still would like to perform pre-
dictions based on their joined distribution. Probabilistic-C++ offers a way to do this. In
Listing 4.8, I implement two separate ProbEngines for the two models. I then use the

Probabilistic-C++’s average function to average a prediction over multiple engines.

The first time the function value() is called on an engine within an average, the engine
performs a temporary resampling steps. This is so that each of its model objects have
identical probabilities, and it has as many model objects as the number of samples used

for average (a parameter passed implicitly). Then, if value() is called at the ith iteration
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class FullModel {
// Three types of predictions
double predict(const SortParameters& parameters) {
return sort_model.predict(parameters);

3

double predict(const HashParameters& parameters) {
return hash_model.predict(parameters);

b

double predict(const SortParameters& sort_parameters,
const HashParameters& hash_parameters) {
// Combine both models’ predictions
return sort_model.predict(sort_parameters) +
hash_model.predict(hash_parameters);

// Three types of observes
double observe(const SortParameters& parameters, double runtime){
return sort_model.observe(parameters, runtime);

b

double observe(const HashParameters& parameters, double runtime){
return hash_model.observe(parameters, runtime);

b

double observe(const SortParameters& sort_parameters,
const HashParameters& hash_parameters, double runtime){
// Compare the combined model predictions with the data
double prediction = sort_model.predict(sort_parameters) +
hash_model .predict(hash_parameters);
// Assumes a noise of 0.1s
return normal_lnp(prediction, runtime, 0.1);

SortModel sort_model;
HashModel hash_model;

1

int main(){
ProbEngine<FullModel> engine;
// Use the model for inference on any type of data

3

Listing 4.7: Implementation of a model combining SortModel and HashModel.
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// Assume we have some data in sort_measurements and hash_measurements

// And that we want to predict the runtime of sort_and_hash in sah_parameters
ProbEngine<SortModel> sort_model;

ProbEngine<HashModel> hash_model;

// Perform inference on the models independently
for(const auto& m : sort_measurements){
sort_model.observe(m.sort_parameters, m.runtime);
}
for(const auto& m : hash_measurements){
hash_model .observe(m.hash_parameters, m.runtime);

}

// Use both models to make a prediction
double prediction = average(
[&1O{
// Use value() to retrieve an engine’s content
return sort_model.value().predict(sah_parameters.sort_parameters) +
hash_model.value().predict(sah_parameters.hash_parameters);

1

Listing 4.8: Performing observations on SortModel and HashModel independently and using
their joint distribution for predictions.

of average, the engine returns the ith of its model objects. Once average returns, the
resampling is undone to avoid causing degeneracy. An arbitrary number of engines can

be used in a function being averaged.

Note that in the context of Listing 4.8, where we predict the average sort_and_hash time,
this approach is not necessary as we could simply add the predictions of each model
independently. However, the approach is also applicable to models whose predictions are

not simply summed together.

4.2.4.3 Exposing model conditional independence

In a similar way to how we exploited independence above, we can exploit conditional
independence. Consider the garbage collection model presented in Section 3.2.1. The
model is composed of three parts, first GCRateModel and GCDurationModel predict the
rate and average duration of the garbage collections respectively as a function of the GC
flags values. Then LatencyModel predicts the 99th percentile latency of the database as
a function of the rate and duration of GCs and the flag values. Whenever we perform an
experiment and measure empirical data, we collect the true rate and duration of GCs as

well as the 99th percentile latency.

Note that given the true rate and duration of GCs, LatencyModel is independent of both
GCRateModel and GCDurationModel. This is called conditional independence, a property
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ProbEngine<GCRateModel> rate_model;
ProbEngine<GCDurationModel> duration_model;
ProbEngine<LatencyModel> latency_model;

// Perform inference on the models independently
rate_model.observe(gc_flags, result.rate);
duration_model.observe(gc_flags, result.duration);
latency_model.observe(gc_flags, result.rate,
result.duration, result.latency);

// Predict the latency of gc_flags
double latency_prediction = average(
[&10O{
double rate = rate_model.value().predict(gc_flags);
double duration = duration_model.value().predict(gc_flags);
return latency_model.value().predict(gc_flags, rate, duration);

1

Listing 4.9: The overall model of the garbage collection case study, originally described as a
graph in Figure 3.2.

often used in graphical models, and key to some inference algorithms such as Gibbs
sampling [Murl2]. To exploit it here, we simply perform inference on each of the models
separately. When predicting a 99th percentile latency, we can use the average function
as we did above. Listing 4.9 shows the high level implementation of the garbage collection

model using average.

4.2.4.4 Combining models for inference

Finally, I go back to the sort_and_hash example and consider the case where we also
have measurements from sort_and_hash. In this context, we must use the FullModel
data structure to perform inference on those measurements. However, we can still use
the data from sort and hash to perform inference on their specific part of the model
initially. Listing 4.10 shows how to do this. At the top, we implement a new constructor
for FullModel which takes as input its SortModel and HashModel parameters. This will
allow us to create FullModel objects which come from a specific distribution, different

from the default constructor’s one.

Underneath, we create two ProbEngines for SortModel and HashModel to perform in-
ference on their respective data. We then construct a third ProbEngine for FullModel.
We use Probabilistic-C++’s method create_from_engines to construct its particles from
the other two engines. Internally, this combines the particles of both ProbEngines and
uses FullModel’s new constructor to combine them into FullModel particles. Once this is
done, we can use the sort_and_hash measurements to perform inference on the Ful1lModel
ProbEngine.

When compared to the traditional probabilistic programming approach, as presented
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// Implement a new constructor for FullModel
FullModel: :FullModel (SortModel sm, HashModel hm)
: sort_model(sm),
hash_model (hm){

// Perform inference using all types of measurements
ProbEngine<SortModel> sort_model;
ProbEngine<HashModel> hash_model;

// Exploit the independence fot the sort() and hash() measurements
for(const auto& m : sort_measurements){
sort_model.observe(m.sort_parameters, m.runtime);
}
for(const auto& m : hash_measurements){
hash_model .observe(m.hash_parameters, m.runtime);

}

// Combine both models into one
ProbEngine<FullModel> full_model;
full_model.create_from_engines(sort_model, hash_model);

// Use the combined models to perform inference
for(const auto& m : sort_and_hash_measurements){
sort_model.observe(m.sort_parameters, m.hash_parameters, m.runtime);

}

Listing 4.10: Combining independent models to perform joint inference.

in Section 4.2.4.1, the implementation presented here has the following advantages and

disadvantages.

Advantage : Better convergence. Given a dataset and a fixed amount of computational
power, the implementation presented here will converge better to the true posterior

distribution.

Disadvantage : More complex implementation. This makes the implementation more
error prone. Users should only implement it if they do require the better convergence

brought by the technique.

Disadvantage : No O(1) incremental observation. This is because the order in which
observations now matters, we must first observe all measurements associated with
individual models before they are combined. Hence, unlike Section 4.2.4.1’s imple-
mentation, the implementation here cannot perform a small amount of incremental
work per new observation. For example, say new data of sort’s performance is
made available. We can integrate this data incrementally into sort_model. But
sort_and_hash_model will have to be constructed from scratch with the newly in-

ferred sort_model particles. All of the sort_and_hash measurements will have to be
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used for inference again. Hence, the cost of adding a new measurement in the model

will go from O(1) to O(n), where n is the amount of data available for inference.

In practice, I never use this last approach. Instead, I design my models so that each
model class is used to predict one specific type of measurement, and use the true value of
these measurements to exploit conditional independence. The next section discusses the

construction of realistic models using a semi-parametric approach.

4.3 Probabilistic Programming in Practice

Developers build bespoke auto-tuners in BOAT by declaring a probabilistic model of the
system’s behaviour. This section first presents semi-parametric models [Murl2], an easy
to use class of probabilistic models that are well suited to SBO (Section 4.3.1). I then
show how a semi-parametric model can be used in Probabilistic-C++4 via an example from
the garbage collection case study (Section 4.3.2). Finally, I list some design considerations
for models used in SBO (Section 4.3.3).

4.3.1 Semi-parametric models

There are two desirable properties that a model should have in the context of SBO:

e [t should understand the general trend of the objective function to avoid exploring
regions of low performance. This wastes iterations and, when optimising runtime,

can lead to longer evaluations.

e [t should have high precision in the region of the optimum, to find the point with

highest performance.

Semi-parametric models, which I now describe, can fulfil both properties. They are a
combination of parametric models and non-parametric models. As a running example, I
model the average time needed to insert an element into a sorted vector as a function of
its length. This has complexity O(n), but implementations will have runtimes affected
by cache effects and other hardware properties. Figure 4.2 compares the predictions of a
parametric, non-parametric and semi-parametric model after observing five points from
the dataset. The data was obtained using the boost::flat_set data structure [Bool6]

and averaged over a million runs.

Parametric models learn a fixed number of parameters. For example, LinearModel, from
Section 4.2.1, is a parametric model that learns two parameters alpha and beta. Para-

metric models allows developers to specify the expected behaviour of the system. In the
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Figure 4.2: Three models predicting the time to insert an element into a sorted vector after
five observations.

example, this means specifying that the relationship between length and time is linear
and not, for example, quadratic. They, however, cannot fit subtleties in the data. I fit a
linear regression to five data points from the sorted-vector data in Figure 4.2a. Although
the general trend is correct, the model fails to fit all of the data points as they are not
strictly linear.

On the other hand, non-parametric models learn an unbounded number of parameters
that grows with the training data. For example, in the k-nearest neighbour algorithm
each training example is memorised so it can be used for prediction. Non-parametric
models typically provide no direct way to specify a general trend. Gaussian Processes
(GPs), used in traditional Bayesian optimisation, are a powerful family of non-parametric
models. T use a GP to fit the same five points from the sorted-vector data in Figure
4.2b. They succeed at fitting all of the data points, but fail to grasp the overall trend.
In the context of Bayesian optimisation, this can lead to the over exploration of regions
with poor performance. This may seem acceptable for the sorted vector example, but the

number of these regions grows exponentially with the number of dimensions.

Semi-parametric models combine a parametric model and a non-parametric one. The

non-parametric model is used to learn the difference between the parametric model and
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class GCRateModel{
GCRateModel () {

// Prior distribution on the parameters

allocated_mbs_per_sec = uniform_draw(@.0, 5000.0);

gp.stdev(uniform_draw(3.0,30.0));

gp.linear_scales({uniform_draw(@.0, 15000.0),
uniform_draw(0.0, 20.0)});

gp.noise(uniform_draw(0.001, 0.01));

3

double parametric(int ygs, int sr){
//Compute the size of eden used by the JVM
double eden_size = ygs * sr / (sr + 2);
return allocated_mbs_per_sec / eden_size;

}

double predict(int ygs, int sr, int mtt) {
return gp.predict({ygs, sr, mtt}) + parametric(ygs, sr);
}

double observe(int ygs, int sr, int mtt, double observed_rate){
return gp.observe({ygs, sr, mtt},
observed_rate - parametric(ygs, sr));

b

double allocated_mbs_per_sec;
GaussianProcess gp;

}

Listing 4.11: Semi-parametric model of the rate of garbage collections.

the observed data. In Figure 4.2¢, I fit the sorted-vector data with a semi-parametric
model that simply combines the previous two models. Predictions interpolate all data

points, and correctly keep increasing with larger vector sizes.

It is interesting to note that some of the earlier work on Gaussian Processes was concerned
with performing inference over such semi-parametric models. For instance, O’Hagan
[O’HT78] presents a method to perform full Bayesian inference on semi-parametric models
where the parametric part of the model is of the form h(x)"3, h() is a fixed set of basis

functions and a Gaussian prior is placed on the parameters 3.

4.3.2 Semi-parametric models in Probabilistic-C++

To build a semi-parametric model in Probabilistic-C++, both the parametric and non-
parametric parts of the model must be included in the model class. The non-parametric
model is used to model the difference between the parametric model and the observed
data.
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Probabilistic-C++ comes with its own Gaussian Process implementation which can be
used as for non-parametric models. It is implemented on top of the high performance
Eigen library for linear algebra [GJT10]. It implements the incremental version of Cholesky
decomposition at an O(n?) complexity, as described in Section 2.1.2. Tts APT also makes

its intuitive to use in the context of Probabilistic-C++.

For example, recall from Section 3.2.1 that in the context of the garbage collection (GC)
case study, the rate of GCs is inversely proportional to the size of the eden heap region of
the JVM. The GCRateModel class, shown in Listing 4.11, is a semi-parametric model. It
predicts the rate of GCs as a function of the young generation size flag (ygs), the survivor

ratio flag (sr), and the max tenuring threshold flag (mtt).

It has two fields: allocated mbs_per_sec, a probabilistic variable part of the parametric
model, and gp, a Gaussian process as the non-parametric model. The constructor assigns
values from the prior distribution to allocated mbs_per_sec and gp’s hyperparameters.
The parametric model computes the size of the eden region as a function of the flag values
and returns its estimate for the rate of garbage collections. In predict and observe, the
Gaussian process object gp models the difference between the parametric model and the

true rate as a function of the flag values.

Although simple, this model understands the general behaviour of the rate of GCs as a

function of the flag value.

4.3.3 Designing models for bespoke auto-tuners

In conclusion, here are the main takeaways of how a probabilistic model should be designed
in the context of an SBO:

e Create one model class per type of collected runtime measurements if
possible. Runtime measurements will often allow to exploit conditional indepen-
dence, as show in Section 4.2.4. This helps the inference algorithm converge. Hence,

it is best to build the model classes as a function of the measurements available.

e Make each model class semi-parametric. For reasons presented above, semi-

parametric classes will both be able to interpolate the data and generalise well.

e Only add structure to the parametric part of models if it has shown to
converge too slowly. In the context of SBO, non-parametric models require lit-
tle developer effort. Including parametric parts to describe general behaviour will
help the optimisation converge faster but requires some analysis. In my experience,
complex parametric models designed in a narrow setting may also fail to gener-
alise. Therefore, when building a model for an SBO, I recommend beginning with
non-parametric models. Then, add structure to the model until the optimisation

converges in a satisfactory time.
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Figure 4.3: Distribution of runtimes of a fixed computation in a shared resource environment.

e Limit the parametric parts of models to five parameters or fewer. The
SMC algorithm used for inference will not be able to tackle inference over large multi-
dimensional prior distributions. Hence, we should limit the number of parameters

sampled in the prior distribution or the inferred parameter values will be poor.

4.4 Inference with non-Gaussian likelihoods

A frequent difficulty when benchmarking short lived computer programs is the high vari-
ance of their runtime. Measuring the execution time of the same program multiple times
will often show a complex long tailed distribution. This is especially true if there are
other concurrent programs being executed on the same machine or system, and they are

competing for resources.

To illustrate this, I repeatedly perform the same computation, consisting of simple lo-
cal floating points operations, on an m4.xlarge EC2 instance with four hyper-threads.
Concurrently, I execute four infinite bash loops designed to use CPU. Hence, there are a
total of five running threads competing for the machine’s four hyper-threads. Figure 4.3
show the distributions of observed runtimes of the simple floating point operation. We see
that although there is a clear mode slightly below 10ms, the distribution has a complex

multi-modal long tail.

This behaviour makes inference difficult. I find that standard long-tail statistics distribu-
tions, such as log-normal distributions, tend to underestimate the length and thickness of

the tail. If we are doing inference with a semi-parametric model using a Gaussian process,
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as suggested in the previous section, they will use a Gaussian likelihood to model noise
which is particularly unsuited to this noise distribution. When observed, the outliers will
produce low likelihoods, unless we use a high noise standard deviation parameter with

the Gaussian process in which case it will learn slowly.

The traditional approach to tackle this problem is to repeat the execution many times and
average the results. The central limit theorem guarantees that as long as the executions
are independent, the distribution of these averages will be normally distributed around
the true mean. However, this approach is clearly wasteful of resources. Some information
is contained in the short measurements and we should consider how it can be exploited.
In the context of SBO, we will rarely optimise the execution time of short programs, but
we could be optimising the execution time of a long program which generates many short

measurements.

In this section, I consider the task of modelling the long tailed noise distribution of

computations. I present three contributions:

e [ discuss a generic method to perform Gaussian process inference on measurements
with an input-dependent non-Gaussian noise distribution using particle filtering al-
gorithms and pseudo-measurements (Section 4.4.1). Although the general approach
is not new, I am not aware of prior work applying it to the context of Gaussian

processes.

e [ present a way to empirically generate an approximate noise distribution for the
execution of single threaded computer programs, and to use this distribution for

inference (Section 4.4.2).

e [ evaluate this method on a matrix multiplication dataset. The goal is to infer the
average runtime of matrix multiplications based on the dimensions of the matrices
(Section 4.4.3).

4.4.1 Gaussian process inference on non-Gaussian noise func-

tions with particle filters

Consider performing inference on a Gaussian process within a particle filter as presented

in the previous section. We are modelling a function f() such that
f(x) ~ GP(0,k(x,x")).
In a noisy environment, we are trying to perform inference from a measurement y:

y=rfx)+e
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where ¢ is distributed from a noise function € ~ p,(e | x). I make the assumption that
pn() is only dependent of the value of f() at that point: p,(] x) = p.(] f(x)). Further, I
make the assumption that p,() can only be sampled from. We do not have access to its
likelihood.

If p,() is not a normal distribution, we can not feed a measurement y directly into the
Gaussian process. Instead, we have to create a pseudo-measurement y’. I describe two
ways of doing this. First, the traditional probabilistic programming approach, based on
forward sampling. Second, an approach that uses backward sampling. It assumes that

from a measurement y, we can sample backward from the noise distribution p,(f(x) | y).

In the first approach, we sample a pseudo-measurement 3y’ from N(u(x),0?(x)) and
make the GP observe it. In Probabilistic-C++-, this can be done in a single step using
GaussianProcess: :sample_and_observe(). Then, we sample a noise ¢ from the distribu-
tion p,(| ¥/).

At that stage, we have the model’s prediction for the measurement y’ + ¢ and the true
measurement y. If we were rigorous, we would return as the particle’s likelihood 1 if
y =y + ¢ and 0 otherwise. Since we are modelling continuous values, its unlikely that
both values will ever match. Instead, we allow for some small error from the sampling an
use a normal likelihood centred on ¢’ + € with variance o2. In Probabilistic-C++, this
means returning normal_lnp(y' + ¢, vy, 0,).

There are two issues with this approach. First, we do not use the GP’s ability to model
Gaussian noise, which is one of its modelling strength. Second, we’re sampling from two

distributions, which requires a fair amount of inference.

The second approach tackles both these issues. Using the ability to backward sample from
pn(), we sample ' ~ p,(f(x) | y). We then make the GP observe 3 and return as the
particle’s likelihood the likelihood returned by the GP. Once again, to allow for a small
error from the sampling, we assume ¢’ is normally distributed around f(x) with variance
o2. However, in this case, it can simply be integrated in the GP’s covariance function as

noise.

I find it is sometimes possible to empirically construct an approximation of this distri-
bution p,(y; | y:). The next subsection shows how I construct this distribution in the

context of single threaded programs.

4.4.2 Empirically constructing the noise distribution

This subsection presents a method to build an empirical distribution of the noise in
measured runtimes in the context of the execution of single threaded programs. I present
a data structure called 0STimeSampler which lets us sample from the posterior of the
noise distribution. Given a measured runtime y, 0STimeSampler can sample an average

execution time which could have generated y.
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Figure 4.4: The 0STimeSampler architecture.

Figure 4.4 summarises the architecture of 0STimeSampler. There are two phases, a load
phase in which 0STimeSampler gathers data by measuring the runtime of computations,
and a sample phase in which we will be able to sample from the distribution. The load
phase should be executed in the same context as the experiments which we would like to

perform inference over.

In the load phase, 0STimeSampler iteratively performs a fixed short computation. In the
actual implementation, the computations consists of a thousand floating point divisions.
It performs this computation k£ times, where k is an input parameter. At the end of each
iteration i, it stores t;, the time that elapsed since the load phase started. I call this a
“tick”. By performing this procedure over a long enough time, we can get a good estimate

of the mean duration of each tick as t/k.

In the sample phase, 0STimeSampler can be sampled from. This procedure is shown in
Algorithm 4.3 and takes as input a measured runtime ¢. 0STimeSampler selects a random
tick 7 on the array with associated time ¢,. From there, the goal is to estimate, from

when tick 7 happened, how much work was performed in the following time t.

To do so, 0STimeSampler finds the last tick 7/ with time smaller than ¢, +¢ using a binary
search. It then linearly interpolates between ticks 7" and 7'+ 1 to account for the difference
between t and ¢, — t,. This yields an estimate for the quantity of computational work

that occurred over the time ¢.

Finally, OSTimeSampler returns the average time needed to execute this computation by
using its computed average tick time. From a Bayesian point of view, this procedure
samples from the posterior distribution of average times given ¢, with a uniform prior

over average times.

In the context of semi-parametric models implemented in Probabilistic-C++, 0STimeSampler
can be used to pre-process a measured execution time by each model object independently.
Then, as is done in semi-parametric models, we subtract the time predicted by the para-

metric model from this sampled average time. We feed this difference to the GP. Finally,
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Algorithm 4.3 Sampling procedure of 0STimeSampler.
Input: Measured time ¢ of the computation

1: Sample 7 ~ U(1, k)

2: Binary search greatest tick 7/ such that t,, — ¢, <t

3 work‘(—T’—T{—t;(tf;tf)

g1t
4: Return work X average_tick _time

we return the GP’s likelihood for the measurement as the model object’s likelihood of

observing the data.

The SMC procedure will then assign low probabilities to particles which found this data
unlikely, possibly due to a bad sample from the 0STimeSampler, and high probabilities to
those which found the data likely. Over time, particles which selected bad 0STimeSampler
samples will be deleted through resampling and others kept. This sort of inference over
a single random draw per measurement is what SMC is most suited to. In the next

subsection, I evaluate 0STimeSampler and show code examples of its use.

4.4.3 Evaluation

I evaluated the method proposed in this section by comparing the performance of a model
which uses the sampler, against a model that does not. The models infer the average time

needed to multiply two matrices A and B of size [ x m and m X n respectively.

Data. 1sampled 100 random pairs of matrices, with [, m and n each sampled at uniform
random in the range [50, 500], and the content of the matrices being drawn at random
between 0 and 1. All of my measurements were performed in the environment described
at the beginning of this section: a four hyper-thread m4.xlarge EC2 instance with four
other concurrent processes executing infinite bash loops. The distribution of Figure 4.3

is therefore representative of the computation noise.

After “warming up” the program for a while by executing some other random matrix
multiplications, I measured the time to multiply each of the matrix pairs. Multiplications
were performed using the Eigen library [GJ*10] in single threaded mode. I did some other
random matrix multiplications between each pair to avoid the times being correlated.

Most of the measured times lie between 0.1ms and 50ms.

The goal of inference is to deduce the average time to perform a matrix multiplication
as a function of the matrices dimensions. Hence, it is useful to have an estimate of
these average times in order to measure the error of the models. I therefore subsequently
repeated the same experiment 100 times to have an accurate estimate of the average time
needed to multiply each matrix pair. Finally, I executed the load phase of 0STimeSampler

in this environment.

Model. 1 designed a semi-parametric model which attempts to predict the time to
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double observe(int 1, int m, int n, double time) {
time = os_time.backwards_sample_milisecs(time);
time -= parametric(l, m, n);
return gp.observe({l, m, n}, time);

3

Listing 4.12: Using 0STimeSampler in a model class.
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Figure 4.5: Evolution of the marginal log-likelihood as both models observe the data.

multiply the two matrices as a function of I, m and n. The parametric part of the
model contains a single parameter . It predicts the execution time as almn. The non-
parametric part is a Gaussian process with 0 mean and standard deviation ¢ being inferred
by the probabilistic program. Its length-scale ¢ is the same for all three dimensions and

is inferred too. Finally, the noise per measurement o,, is inferred as well.

I compared two versions of this model. First, the non-sampling version in which the
runtime measurement is not preprocessed. This means the noise is modelled as Gaus-
sian. Second, the sampling version in which I sampled an average execution time using
0STimeSampler. All of the parameters prior distributions are identical except for the noise
of the Gaussian process o,. In the first version the Gaussian process is responsible for
modelling all of the noise, and the posterior distribution of o, is centred around 8.0ms. In
the second version, as 0STimeSampler models most of the noise, the values of the posterior

of 0, tend to lie near 0.15ms. I therefore adapted the prior distributions accordingly.

To show the simplicity of using 0STimeSampler, I show the implementation of the observe
function of the second model in Listing 4.12. I use each model in a ProbEngine with
100,000 particles. In the non-sampling version, I take advantage of the deterministic
nature of the observes by always using observe_deterministic, hence no resampling is

performed.

Figure 4.5 shows the evolution of the marginal log-likelihood as the data is measured.
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Sampling | Non-Sampling
RMSE | 0.438ms 4.58ms

Table 4.2: Root mean squared error of the sampling and non-sampling versions on the average
execution times.

Initially, both models were similarly surprised by the data. But as more measurements
were made available, the sampling version started understanding the distribution and
hence explained the data better. After all measurements were processed, the sampling

version had a much higher log-likelihood.

Once both models were been trained, I queried them on each item from the training
set, and compare their inferred average time with the estimated average time. This is
analogous to smoothing in particle filtering. Table 4.2 shows the root mean squared error

of both trained models.

The sampling model is significantly more accurate than the non-sampling version. This is
because, in order to explain the outliers, the non-sampling model is forced to use a very
large noise, above 8.0ms, which is greater than most measurements. Hence, it ends up
barely learning from the data. In comparison, the sampling version infers a very small

noise, around 0.15ms, and explains the rest via 0STimeSampler.

The environment which I used to generate the data is extremely noisy and hence showcases
O0STimeSampler well. In more stable cases, such as an otherwise free machine, I find
O0STimeSampler still brings an improvement over the naive non-sampling version, albeit
not as clearly. In more complex distributed environments, 0STimeSampler is not applicable

and I resort to repeating runs.

0STimeSampler was originally designed in the context of the sort case study. However
it turned out that, due to the cost of the numerical optimisation stage of the Bayesian
optimisation, it was more efficient to repeat brief measurements in order to get an accurate

measurement. Hence, none of the case studies evaluated in Chapter 7 make use of it.

4.5 Fast non-parametric models

As mentioned in Section 4.3.1, non-parametric models are crucial to Bayesian optimisa-
tion. They let us accurately model the region around the optimum. Gaussian processes
are the non-parametric tool of choice when performing Bayesian regression. However, one
of the difficulties of Gaussian Processes is their computational complexity, as discussed
in Section 2.1.2. After n observations, the cost of making a prediction is O(n?). In
traditional Bayesian optimisation, this is often acceptable as the optimisation performs
one observation per iteration and runs for dozens of iterations. In our context, how-

ever, this cost can be prohibitive as each iteration may yield thousands of observations.
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In this section, I present a novel treed Gaussian process model which is well suited to
the Probabilistic-C++ framework. While not statistically rigorous, it performs well in

practice.

Section 4.5.1 lists the desirable requirements from a non-parametric model and discusses
why the existent extensions to Gaussian processes, highlighted in Section 2.1.4, were
insufficient in this context. I then present my proposed approach (Section 4.5.2) and
evaluate it (Section 4.5.3). Finally, I present two extensions which tend to make the

model more robust (Section 4.5.4).

4.5.1 Requirements

Ideally, a non-parametric model would have the following properties:

e Ability to compute the log-likelihood of observations. When an obser-
vation is performed in Probabilistic-C++, each model object needs to return a
log-likelihood quantifying how “surprised” it is to see that observation. This log-
likelihood is what lets us establish which of the model objects best fit the observa-
tions. Non-parametric probabilistic models which are not Bayesian, such as random
forests [Bre01], tend to not have a direct way of calculating this likelihood. This
makes their application to Probabilistic-C++ difficult.

e Have the memoisation property. If we query a model on or near a point for
which we have an observation, we want to guarantee that the corresponding predic-
tion will match our observation. This requirement discards sparse Gaussian process
approaches [SWL03, SG05, Tit09] which approximate a Gaussian process by fitting

it on a restricted number of synthetic data points.

e Sub-linear prediction cost. In order to be useful in a general context, users
should not have to reduce the amount of data they feed the model in order to re-
duce its computational complexity. The model should have a sub-linear prediction
cost with respect to the number of measurements. This discards expert approaches
[RG01, DN15]. Expert methods train multiple Gaussian processes on different sub-
sets of the data. At prediction time, each of the experts is queried and their pre-
dictions are then weighted based on their confidence on the specific input. While
this is under O(n?), it is still at least O(n) as the input will be compared to each

training data point.

e Sub-linear observation cost. In Bayesian optimisation, each iteration leads to
new measurements being added into the model. In order to be practical, the time
spent per observation by our model should not grow with the number observations

performed so far. This discards the treed Gaussian process models proposed by
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Gramacy et al [GLO7]. These models use a decision tree data structure with Gaus-
sian processes at the leaves. In order to integrate over the many possible trees,
they use an Markov Chain Monte Carlo (MCMC) step which iteratively mutates
the tree. This produces many decision trees, from which predictions are averaged
out. Because this procedure is data-dependent, it must be executed before making
predictions each time new observations are added. Performing MCMC on the entire

decision tree is at least O(n) and hence not practical in our setting.

4.5.2 Proposed approach

My approach is inspired by the treed-GP of Gramacy et al. In our context, the non
parametric model is used as part of a probabilistic programming library. This means we
could achieve the same property of integrating among many possible trees by allowing a

distribution over trees as part of the probabilistic framework. The model works as follows.

I iteratively build a decision tree with GPs at the leaves. When a new input is observed,
it is propagated down the decision tree and added to the GP at its leaf. A threshold
parameter specifies the maximum number of data points that can be stored in a leaf.
When a leaf grows beyond this threshold, it is recursively split it across one of the input
dimensions. I pick the dimension which sees a maximum spread of the data points once
normalised with the Gaussian process’ linear scales. Since Probabilistic-C++ allows users
to provide a prior over those linear scales, different particles will split the data across

different dimensions.

A few notable aspects and limitations of this procedure are:

e The data is no longer exchangeable with respect to the model. The order in which
the data is observed by the model will have an influence on the dimensions used for
splitting.

e The resulting model resembles a random forest. Each particle uses a decision tree
to make predictions. An overall prediction is produced by averaging over all par-
ticles. However, the splits are deterministic given the GP’s linear scales. Hence,
if the model has degeneracy, and only one of the original particles has a non-zero

probability, all trees will have the same structure.

e [f the threshold is larger than the number of measurements, the single leaf never

gets split. This leads to traditional Gaussian process regression.

The next subsection evaluates this approach.
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Figure 4.6: Evaluation of the treed GP on the matrix multiplication data. The rightmost
point fits a single GP.

4.5.3 Evaluation

I evaluated this treed-GP implementation in two contexts:

1. The matrix multiplication data presented in the previous section. There were orig-
inally 100 measurements, which I used as training data. I generated another 100
average matrix multiplication measurements which I use as a test dataset. I used
the same model as the one presented in the previous section apart from a single
difference: I draw the three length scales hyper-parameters of the GP individually

so that different particles split the data across different dimensions.

2. A dataset from the sort case study. Each iteration of the Bayesian optimisation, I
measured the individual times to sort 1000 arrays. Here I selected the data generated
from a single iteration. I set the last 500 measurements to be the test set. I vary the
size of the training set to evaluate its impact on performance. The model is semi-
parametric and predicts each array’s sort time. It does so using three inputs: (i)
the array’s length, (i7) the number of adjacent items in the array that are unordered
and (7ii) the block_size parameter of the sort procedure, part of the configuration

space in the case study.

In both contexts I evaluated the impact of the threshold parameter on the time to perform
inference, and on the root mean squared error on the test dataset. All runtimes were

evaluated on an m4.xlarge EC2 instance.

Matriz multiplication data. Figure 4.6 shows root mean squared error of the model
and the inference time. Interestingly, the threshold value seems to have had little impor-
tance on the predictive performance of the model. In particular, the highest threshold
is greater than the size of the data and hence we are simply fitting a single Gaussian

process. The resulting error is only slightly lower than the other models.
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Figure 4.7: Evaluation of the treed GP on the sort case study data, trained with 50 samples.
Note that all thresholds above 50 simply use a single Gaussian process.
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Figure 4.8: Evaluation of the treed GP on the sort case study data, trained with 400 samples.

Sort case study data. Figure 4.7 and 4.8 show the results on the sort data for a
training set of size 50 and 400 respectively. I only used 1000 particles in the probabilistic
engine, which explains why the inference times are shorter than for the matrix multipli-
cation case. Interestingly, the threshold parameter had more of an impact on inference
time than it did for matrix multiplication. I suspect this is because the smaller num-
ber of particles lead to more memory locality, making computational performance more

important.

Once again, the deviation in resulting error are small. We would expect that with fewer
measurements, the better generalisation properties of the GP would show. However, the

treed GPs seem to perform reasonably well.
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4.5.4 Extensions

I found the following further techniques led to more robust models:

e Overlapped split. When splitting a leaf into two after it has reached the threshold
number of observations, I duplicate the £ data points closest to the border on either
side of the branch, where k£ is a parameter. I find this reduces the discontinuity that

occurs across branches.

e Not splitting at the median. Often when performing optimisations, observations
have a distribution that is centred near the optimum. When splitting a leaf into
two, the region that loses the most precision is around the border. Therefore, if we
were to set the border at the median, we would lose prediction power where it is

most important. Instead, I set the border to be on the data point at index:

3—-5

X threshold ~ 0.382 x threshold.

This has the property that after a split followed by another split on the same di-
mension of the initially larger right leaf, the middle partition will be centred on the

median.

In practice, I use this treed Gaussian process model by default when using a non-parametric

models, with a threshold of 64 and an overlap of k = 3.

4.6 Sampling from a model

In the next two chapters, I will present techniques that rely on our ability to sample a
single instance of the model from a ProbEngine. This will allow techniques similar to
Thomson sampling. In this section, I briefly explain how I achieve this in the context of
Probabilistic-C++.

Sampling from a parametric model is simple. We select one of the particles with proba-
bility weighted by their likelihood. In Probabilistic-C++ this can be achieved by calling

ProbEngine: :single_particle_engine() which will select one of the particles at random.

If the model class of the probabilistic model also contains a non-parametric model, then
we must also sample a single response surface from that model. Sampling from the
posterior of a Gaussian process is too computationally expensive to be practical in multi-
dimensional domains. One way to approximate a sample would be to use the approximate
spectral sampling techniques introduced by Herndndez-Lobato et al. [HLHG14]. I use a

simpler approach which works well in practice inspired by the upper confidence bound
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Figure 4.9: True samples and approximated samples from the posterior of a Gaussian process
after three measurements.

acquisition function [SKSK10]. Recall from Section 2.2.2 that the upper confidence bound

of a Gaussian process is written as:
aven(x) = () + Ko (x) (4.2)

where k is a positive parameter. This gives a response surface that is higher than the mean.
When sampling, I will want the surface to be sometimes higher and sometimes lower than
the mean. I achieve this by simply picking x from a standard normal distribution AV (0, 1).

Figure 4.9 compares samples drawn from the true posterior to approximated samples.

A desirable property of this approach is that the resulting distribution of an input x is
identical to its true distribution. However, unlike true samples from the Gaussian process,
this response surface is not smooth at observed measurements, and tends to be flatter
than true samples from the Gaussian process. When using a treed Gaussian process, as
presented in the previous section, I sample a single value for s for each of the Gaussian
processes at the leaves. I did experiment with using a different sample of x for each leaf,

but the resulting sampled distributions were too discontinuous to be practical.

Hence, when sampling from a Probabilistic-C++ semi-parametric model, I sample a sin-
gle particle from the ProbEngine. Then, for each non-parametric model in the particle
(usually one), I sample a single value x and subsequently use Equation 4.2 to make predic-
tions. With my Gaussian process implementation, this is automated by using the method
GaussianProcess: :set_sampling() or TreedGP: :set_sampling().

4.7 Summary

This chapter presented a set of techniques and abstractions designed for a developer to

build a probabilistic model of their system’s behaviour. The core abstraction is the one
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offered by the Probabilistic-C++ programming library. It allows a developer to specify a

prior distribution of their model and perform inference on it via observations.

In the context of a structured Bayesian optimisation, I argued that the best way to develop
a model was to construct a set of independent semi-parametric models. They combine a
parametric model, written by the developer, which can capture the overall trend of the
data, with a non-parametric model, such as a Gaussian process, which will interpolate
between measurements. One can design multiple semi-parametric models, representing
different components of the system being modelled, and expose their independence to

Probabilistic-C++ by performing inference on them independently.

Finally, T presented three techniques tackling different problems that may occur when
performing structured Bayesian optimisation on a program’s performance. First, I showed
how to tackle the long tail in the noise distribution of brief runtime measurements. Then,
I presented a treed Gaussian process model which, unlike simple Gaussian processes, can
handle very large numbers of measurements. Finally, I discussed how to sample from
a probabilistic model, which will be useful for the numerical optimisation stage of a

structured Bayesian optimisation.



CHAPTER 5

BOAT’S OPTIMISATION SCHEDULING
ABSTRACTION AND ITS USE FOR
DECOMPOSITIONS

With each iteration of a Bayesian optimisation, a numerical optimisation is performed.
The goal is to find a configuration deemed promising by the model. In traditional Bayesian
optimisation, an off-the-shelf optimiser will typically be used. Unfortunately, for complex
optimisation problems, such off-the-shelf optimisers will often fail to converge. This is
a significant issue, if the numerical optimisation fails to find good configurations, the
Bayesian optimisation itself will not converge. This chapter is jointly concerned with
two related topics. First, techniques which exploit the domain specific structure of a
numerical optimisation problem to improve convergence. Second, the implementation of

these techniques in the BOAT framework. It makes the following contributions:

e [ present BOAT’s optimisation scheduling abstraction. Its key feature is the ability
to nest optimisations within one another. This formalises an often used pattern of

executing optimisations as part of another optimisation (Section 5.1).

e [ show BOAT’s interface to off-the-shelf numerical optimisation methods, which
can be used by default in a numerical optimisation. I quantify the limits of these
methods by using two synthetic benchmarks inspired by the case studies presented

in this dissertation (Section 5.2).

e [ discuss how decompositions methods, which are often used in numerical optimi-
sation problems, can be exploited to tackle the limits of off-the-shelf methods in
the context of Bayesian optimisation. I show how decompositions are also easy to

express using BOAT’s optimisation abstraction (Section 5.3).

85
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e Even when using decompositions, the convergence of the numerical optimisation may
still be slow, especially for large configuration spaces. I present two new techniques
which can be used to improve this convergence. The first one is based on structured
Bayesian optimisation. Using decompositions can lead to performing optimisations
with expensive objective functions — the objective function will itself consist of other
optimisations. Hence, it can be useful to reduce the number of iterations at the cost
of a higher overhead per iteration. This is exactly the trade-off offered by Bayesian
optimisation and I show how it can be exploited in this context (Section 5.4). The
second technique builds on top of the first one and uses an approach inspired by
reinforcement learning. This allows the models used in Bayesian optimisation to
“remember” the shape of the objective function between subsequent optimisations
(Section 5.5).

e [ empirically compare the performance of these new techniques against traditional

decompositions in the context of the sort case study (Section 5.6).

Note that within this chapter, I always assume the role of the numerical optimisation is
to find the configuration predicted best by the model. This is different from optimising
an acquisition function, as presented in Section 2.2, which optimises a combination of
exploration and exploitation. I will discuss in Chapter 6 how the methods presented in
this chapter can still be used for exploration. In essence, the methods discussed here will

be used to generate Thompson samples.

5.1 Optimisation scheduling abstraction

This section introduces the optimisation scheduling abstraction offered by BOAT which
can be used to optimise BOAT configuration spaces, as introduced in Section 3.3.2. This

abstraction will prove useful in a number of contexts.

I first discuss how to assign values to BOAT parameters (Section 5.1.1) and show how
this can be used within a simple optimisation (Section 5.1.2). I then present the key
feature of BOAT’s optimisation abstraction: the ability to nest optimisations within one
another (Section 5.1.3). Finally, I discuss the optimisation of a special type of parameters,
ParameterPtrs which are BOAT’s way of handling dependencies in the configuration space
(Section 5.1.4).

5.1.1 Assigning values to parameters

A parameter can be assigned to and read from by using its assign and value member

functions respectively. The following code exemplifies these two functions:
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RangeParameter<double> a(0.9, 1.0);
SimpleOpt<double> opt;
opt.set_iteration_function(
3101
// a has no assigned value yet
assert(!a.has_assignment());
a.assign(uniform_real_distribution<>(0.0, 1.0)(generator));
assert(a.has_assignment());
return a.value() * (1.0 - a.value());

1

opt.run_optimisation();

// Print the best value found
std::cout << a.value() << std::endl;

Listing 5.1: Simple optimisation example.

RangeParameter<double> param(0.0, 1.0);
param.assign(0.4);
std::cout << param.value() << std::endl; //Prints 0.4

If a parameter already has an assigned value, attempting to assign another value will

result in an error. For example:

RangeParameter<double> param(0.0, 1.0);
param.assign(0.4);
param.assign(@.6); //Yields an error

Similarly, querying an unassigned parameter also yields an error:

RangeParameter<double> param(0.0, 1.0);
std::cout << param.value() << std::endl; //Yields an error

5.1.2 Simple optimisations

In practice, we want to use parameters for optimisations, and doing so involves iteratively
assigning different values to them to find out which ones yield better outputs from the
objective function. Listing 5.1 shows an optimisation which randomly samples values for

a parameter a in the range [0, 1] to minimise a(1 — a).

At the beginning of each iteration, a appears to be unassigned. Hence, we can assign it
a new value each iteration. Throughout iterations, the optimisation keeps track of the
different values that were assigned to a and the corresponding result from the objective
function. Once the optimisation terminates — by default after 100 iterations — a remains
assigned with the value that generated the highest objective value. I now explain how

this is implemented internally.
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Each iteration of an optimisation, a parameter instance is implicitly created. Whenever
a value is assigned to a parameter, the parameter instance of the current iteration is
associated with it. The optimisation is responsible for managing the set of instances it
creates. Once it returns, the instance that has yielded the best result of the objective
function is promoted, and the other instances discarded. As a result, values assigned

during this best iteration remain visible afterwards.

Reading values from previous iterations. Throughout an optimisation, it may be
useful to be able to query previous parameter values. For example, simulated annealing,
which I present in the next section, works by mutating one of the previously assigned
configurations. The ParameterInstancelD of a previous iteration of an optimisation can

be queried as

ParameterInstanceID id = opt.get_parameter_instance_id(iter_number);

The values that were assigned to parameters on those iterations are then accessible by call-
ing param.value(id). When calling value() without an argument, as presented before,

we are implicitly passing down the current iteration’s parameter instance.

Abstraction offered by an optimisation in BOAT. Tosummarise, an optimisation
in BOAT offers the following abstraction. It implicitly takes as input a set of unassigned
parameters. After the execution, the parameters are assigned with values which maximise

the optimisation’s objective function.

5.1.3 Nested optimisations

The key aspect of BOAT’s optimisation abstraction is the ability to nest optimisations
within one another. Say an optimisation was given the task of optimising a parameter a.
This means it must assign a value to a each iteration. The optimisation may delegate this
task to a sub-optimisation. The sub-optimisation will be executed entirely each iteration

of the higher level optimisation.

Although simple, this pattern of sub-optimisations is frequent and used by a range of op-
timisation techniques. Formalising it therefore simplifies the implementation of a number
of optimisation methods. Two examples of nested optimisation already discussed in this

dissertation are:

¢ Bayesian optimisations which performs a numerical optimisation each iteration

to find promising values.

e Portfolio acquisition functions, described in Section 2.2.2, which make the nu-
merical optimisation stage of the Bayesian optimisation perform multiple indepen-
dent optimisations using different acquisition functions. At the end of the numerical
optimisation, the parameters are left assigned with the values that maximise a meta-

criterion.



CHAPTER 5. OPTIMISATION SCHEDULING AND DECOMPOSITIONS 89

void optim_single_param(RangeParameter<double>& param){
SimpleOpt<double> opt;
opt.set_iteration_function(
[&10O{
param.assign(uniform_real_distribution<>(0.0, 1.0)(generator));
return param.value() * (1.0 - param.value());
D
opt.run_optimisation();
}
int main(){
RangeParameter<double> a(0.0, 1.0), b(0.0, 1.0);
SimpleOpt<double> opt;
opt.set_iteration_function(
[&10{
optim_single_param(a);
optim_single_param(b);
return a.value() * (1.0 - a.value()) * b.value() * (1.0 - b.value());
s
opt.run_optimisation();

}

Listing 5.2: Nested optimisations example.

Furthermore, I will use this abstraction extensively later in this chapter to implement

decompositions.

I here present an example of this behaviour, although it is too simplistic to be realistic.
In Listing 5.2, I optimise two values a and b, each in the range [0, 1], to minimise the
objective function a(1.0 — a)b(1.0 — b). The task of the high level optimisation is to
assign good values to @ and b. To do so, each iteration, it delegates this task to two

sub-optimisations which optimise a and b individually.

Figure 5.1 shows how BOAT handles this internally. For each iteration, the corresponding
optimisation keeps track of the parameter values that were assigned to the parameters, and
the utility that was returned. When a sub-optimisation is executed, the task of tracking
parameter values and their associated utilities is delegated to that sub-optimisation. This
is the case in the upper left diagram of Figure 5.1, in which sub-optimisation 1 keeps track

of the different parameter values that have been assigned to a.

Once the sub-optimisation returns, it selects the iteration that yielded the best utility.
The associated parameter values are then promoted and considered part of the higher-
level optimisation. This is shown in the lower left diagram of Figure 5.1 in which the best

value found for a within sub-optimisation 1 got promoted.

Finally, the lower right diagram shows the second sub-optimisation being executed. Be-
cause a has been assigned a value through sub-optimisation 1, it appears as assigned.
This means that calling a.value() within sub-optimisation 2 would return as. If instead,

a.value() was called before sub-optimisation 1, before the upper left diagram, it would
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Figure 5.1: Nested optimisation procedure.

result in an error as a was not assigned to yet.

Throughout this dissertation, I often use a diagrammatic representation of sub-optimisations.
Figure 5.2 shows the representation of the optimisation of a and b, with both sub-

optimisations.

5.1.4 Parameter pointers

Recall from Section 3.3.2 that ParameterPtr objects are designed to hold pointer to pa-
rameters or sets of parameters whose existence or domain is conditional. From the point of
view of BOAT, ParameterPtrs are another special type of parameters and go through the
same process of assignment and promotion. Unlike regular parameters, ParameterPtrs
can only be assigned to via the parameter_function() of a ParameterSpace object. This
is so that the optimisation procedure, which assigns values to parameters, can be decou-

pled from the domain properties.

The parameter_function() of ParameterSpace objects is executed lazily. When an op-
timisation calls ParameterPtr: :deref() on a ParameterPtr, either it already has an as-
signment or it does not. If it does, deref () simply returns a reference to the corresponding
content. If it does not, the parameter_function() of the enclosing ParameterSpace ob-

ject is executed up to the point where the content of this ParameterPtr is created. The
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Figure 5.2: Diagram of an optimisation with two sub-optimisations.

ParameterPtr is then assigned with a pointer to this content. Finally, the content itself

is returned.

A notable implementation detail is that parameter functions are executed via coroutines
[Con63], which are program executions which can be interrupted and resumed, using
Boost coroutine’s library [Bool6]. When a previously called parameter_function() is
called again to create the content of another ParameterPtr, BOAT performs the minimum
amount of work necessary. The previous execution of the parameter_function() is simply

resumed up to the point where it assigns content to the ParameterPtr being dereferenced.

In conclusion, using BOAT’s optimisation abstraction, a developer can implement nested
optimisations in a structured way. BOAT hides the implementation details of manag-
ing the values assigned to the parameters at each iteration. This allows the developer
to focus on the core properties of the optimisation, such as its objective function, or
the sub-optimisations it uses. The next section shows BOAT’s interface to off-the-shelf

optimisation routines.

5.2 Interface to numerical optimisation routines

The previous section showed optimisations which randomly sampled values each iteration.
This is extremely inefficient. This section presents BOAT’s interface to numerical optimi-
sation routines. I show how to use off-the-shelf optimisation algorithms in Section 5.2.1.
In parameter spaces with dependencies, these optimisers may not be applicable. I there-
fore present how to implement simulated annealing optimisations which are extremely
general (Section 5.2.2). Finally, I quantify the capabilities of these generic optimisation
methods (Section 5.2.3).



92 5.2. INTERFACE TO NUMERICAL OPTIMISATION ROUTINES

RangeParameter<double> a(0.0, 1.0), b(0.0, 1.0);
NLOpt<double> opt(a,b);
opt.set_utility_function(
[&10O{
assert(a.has_assignment() && b.has_assignement());
return a.value() * (1.0 - a.value() - b.value())
s
opt.set_max_num_iterations(10000);
opt.run_optimisation();

Listing 5.3: Using the DIRECT optimisation algorithm in BOAT.

5.2.1 Off-the-shelf optimisers

BOAT offers an interface to the NLOpt toolbox [Joh14], as well as an implementation
of the CMA-ES algorithm [HOO01]. These optimisations take as part of their constructor
the list of parameters they will be optimising. The code in Listing 5.3 optimises two
parameters using the DIRECT algorithm [JPS93], which is used by default when using
the NLOpt package. Using the CMA-ES algorithm can be done using the similar CMAESOpt
class. In practice, I find that the DIRECT algorithm yields better performance than other
off-the-shelf optimisation algorithms I have tried, and I therefore use it by default.

Limitations DIRECT and CMA-ES are well engineered algorithms and should be used
whenever possible. However, they can only be applied in the domain x € R?. In more
complex settings, such as ones with categorical parameters, or parameters dependencies,
they cannot be applied. BOAT offers no off-the-shelf method to optimise these complex
configuration spaces. Instead, it offers the skeleton of a simulated annealing optimisation

which I describe in the next subsection.

5.2.2 Simulated annealing

This subsection presents the implementation and use of simulated annealing in BOAT.
Simulated annealing [KGV83] is a stochastic algorithm for black-box optimisation inspired
by statistical physics. It models a particle moving according to the Boltzmann distribution,

which specifies the probability of being in state x as:

p(x) o exp(—f(x)/T)

where f(x) is the energy of x, which we try to minimise, and T is the temperature. In
simulated annealing, we perform a random walk on that distribution and progressively
lower the temperature. As T approaches 0, the particle spends more time in states of low

energy.

To do a random walk, after k iterations, we propose a new state near x;. For example, if
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void proposal(const SortNode& from, SortNode& to, ParameterInstancelID id){
// Mutate the is_leaf parameter
bool from_is_leaf = from.is_leaf.value(id);
bool to_is_leaf = from_is_leaf ? bernoulli_draw(@.9) :
bernoulli_draw(@.1);
to.is_leaf.assign(to_is_leaf);

// If from_is_leaf == to_is_leaf mutate the rest of the tree recursively
// Otherwise, generate it randomly

// Body of a function executing a simulated annealing optimisation

SortNode sort_param;

SimulatedAnnealingOpt<double> opt;

opt.set_proposal_function([&](ParameterInstancelID id){
proposal (sort_param, sort_param, id)

1

Listing 5.4: Using simulated annealing in BOAT.

x;, € RY, a typical proposal is X' = x;, + € where € ~ N (0, X). Sometimes but not always,
the step size decreases with the temperature. In our example, we could use 3 = TI. With

the proposed state we compute

a = exp((f(x) — f(X))/T).

We then accept the proposal with probability min(1, ), in which case x4 < X/, or we

reject it and remain in the same state xj 1 < xx.

The rate at which the temperature is lowered is the cooling schedule. For example, an
exponential cooling schedule is often used: Ty, <— CT; where C' < 1.0. Typically, C' =
0.95. It has been shown that if the cooling schedule is sufficiently slow, the optimisation
is guaranteed to find the global optimum [KGV83|.

The reason I use simulated annealing as the generic optimisation method for complex
domains is its simplicity. In order to use it on their problem, developers have to specify

two functions:

e The initial value function which assigns parameters their initial value, and

e The proposal function which assigns parameters value from a proposal distribution,

given the value of parameters from a previous iteration.

For example, Listing 5.4 shows part of the implementation of simulated annealing in
BOAT to optimise a sort decision tree, as presented in Section 3.3.2. The top of the listing



94 5.2. INTERFACE TO NUMERICAL OPTIMISATION ROUTINES

shows the proposal function, and the bottom shows its exposition to the SimulatedAnnealingOpt.
As input, the proposal function takes a ParameterInstancelD, which is used to retrieve
the values assigned to the parameters at the previous state. It then assigns new values to

the parameters drawn from the proposal distribution.

There are other more elaborate methods to optimise complex configuration spaces, such as
evolutionary algorithms. The reason BOAT includes simulated annealing is its simplicity
for users. Most of the work consists of implementing the proposal distribution. In con-
trast, evolutionary algorithms require the implementation of more cumbersome crossover
functions. They may perform better, but will still be inherently limited by their black box
nature. Hence, domain specific structure is favoured as a way to help the optimisation
converge, as | will show in the next section. The next subsection quantifies the capabilities

and the limits of the optimisation algorithms I have presented so far.

5.2.3 Quantifying the limits of off-the-shelf numerical optimisers

For problems with a large number of dimensions, off-the-shelf optimisers may fail to
find high quality values in a reasonable number of iterations. This is famously due to
the curse of dimensionality — as the number of dimensions grows, the problem becomes
exponentially hard. This subsection attempts to quantify the scale at which we can
expect these optimisers to work. I benchmarked the performance of three algorithms:
the DIRECT algorithm [JPS93], the CMA-ES algorithm [HOO01] and simulated annealing
[KGV83]. I did so using two synthetic benchmarks inspired from the case studies tackled
in Chapter 7.

In both benchmarks, I computed the optimal configuration x,. I evaluated the perfor-
mance of an optimisation by comparing its best found configuration with the optimal one.
An optimisation was considered successful if its best configuration x is within 1% of the

best configuration:
f(x) <1.01 x f(x4)

In practice, I found optimisation algorithms tend to either converge after a low number of
iterations (<10,000) or not converge at all. I evaluated the performance of the different

algorithms after 100,000 iterations.

In the first benchmark, the optimisation balanced a computational load onto different
simulated workers, each of which had different computational performance. The overall
performance was the one of the slowest worker. The second benchmark optimised the

parameters of a decision tree to make it reproduce its input.

Load Balance benchmark: For a given dimension d, I drew a uniform random vector

speeds in the continuous space [0.1, 1]%:

speeds = speeds,, .. ., speeds, ~ U(0.1,1)%
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Figure 5.3: Evaluation of the performance the optimisation algorithms on the load balance
benchmark. Each dimension was evaluated over 10 run.

This conceptually represents the individual processing speed of the d workers. Consider
the task of balancing work to minimise the maximum individual processing time. That

is, given a vector x € [0, 1]%, we minimise:

1

9= s

max(z;/speeds;).

The le term normalises the total amount of work. The value of x; therefore represents

7 v

the relative load assigned to worker . For a given vector speeds, the optimal value of x
is any vector along the line x = o x speeds that lies in the domain [0, 1]¢. Hence, I set

X, < speeds.

Evaluation procedure: I evaluated all three algorithms via the BOAT framework. To
evaluate an algorithm, I performed 100,000 iterations and observed whether the success
criterion had been reached. Each optimisation took roughly a minute to return. Figure
5.3 shows the proportion of time the success criterion was reached as a function of the

dimension for all three algorithms.

We see that while simulated annealing always converged, DiRect and CMA-ES often failed
beyond 10 dimensions. Although both are designed to be global optimisation algorithms,
it appears they somehow got stuck in regions of low performance and failed to continue
exploring. The optimisations which succeeded typically converged within 1500 iterations,
a point after which others ceased to improve. Simulate annealing is well suited to this

benchmark as it performs a local search. Reducing a single dimension, the one of the
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Figure 5.4: Structure of decision trees and optimal parameter values.

slowest worker, will improve performance.

Decision tree benchmark In this benchmark, I optimised the parameters of a binary
decision tree to make it reproduce its input as closely as possible. The tree takes inputs
drawn from a uniform distribution  ~ U(0,1). Each branch of the tree compares the
value of x to a fixed parameter value and propagates x to one of its children accordingly.
When x reaches a leaf [, the value g, of the leaf is compared to x. I minimised the squared
residual (x — ;). The structure of the tree was fixed in advance. I always used complete
trees, every level of the tree was filled except possibly for the last level, in which all
nodes were as far left as possible. Figure 5.4 shows optimal parameter values for trees of

dimension 3 and 5.

To evaluate the performance of a tree, I computed for each leaf [ the range of inputs it
received [lyin, lmaz|- I then computed the integral of the squared residual of the leaf for

that range:
lmam
= [ e
The total performance of a tree was the sum of the leaves’ performance: ), lyers.

Figure 5.5 shows the result. This benchmark is more difficult than the first one. Although
both are convex, the “valley” of efficient implementations is much shallower in this one.
This is because, in order to move from a good configuration to a better one, all parameters
should be updated in synchronicity. In contrast, in the previous benchmark, one can reach

the optimal value by mutating one parameter at a time.

The take away message from these two benchmarks is: one should not expect to achieve
good results with off-the-shelf numerical optimisation software beyond five dimensions.
The two benchmarks were simpler than most functions we would like to optimise. They
were both continuous. Numerical optimisation methods typically perform much worse in

discontinuous spaces. The benchmarks were also convex.
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Figure 5.5: Evaluation of the performance the optimisation algorithms on the decision tree
benchmark. Each dimension was evaluated over 10 run.

Luckily, in most contexts, there is some structure that can be exploited to help the
optimisation converge. The benchmarks are a good example of this, while the numerical
optimisers failed to find good performance values, there were closed form expressions of
the optimum points. In the next section, I discuss some generic techniques which can

help deal with large parameter spaces.

5.3 Decompositions

The previous section has shown that we cannot rely on off-the-shelf optimisers to find
good configurations in complex configuration spaces. In this section, I discuss the use of
decompositions methods to divide these large spaces into manageable chunks. Decompo-
sitions methods are generic techniques often used in numerical optimisation to tackle large
dimensional spaces. On a high level, they exploit the independence of the configuration
parameters to optimise them separately. This section reviews two known decomposition
techniques — block decompositions (Section 5.3.1) and primal decompositions (Section
5.3.2). In both contexts, I show how BOAT’s optimisation scheduling abstraction facili-

tates their implementation.

Note that I only cover aspects of decomposition methods which I believe are simple and
generic enough to be useful to a developer. Decomposition methods have received signif-
icant research interest and many extensive techniques have been derived. In particular,

I do not cover dual decompositions, which can be used on optimisation problems with
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constraints. Although they are useful, it is more complex to derive dual decompositions
than their primal counterpart. As a result I do not use them in my case studies. I refer
the reader to Boyd et al. [BXMMO7] for an introduction to decomposition methods, and
to Conejo et al. [CCMGBO06] for a full treatment.

This section assumes we are given a configuration space and a structured probabilistic
model and the goal is to maximise the expected performance predicted by the probabilistic
model. Note that this is different from maximising an acquisition function, as is usually
done at the numerical optimisation stage of a Bayesian optimisation. Chapter 6 will

discuss how the techniques discussed here can be applied to Bayesian optimisations.

5.3.1 Block decompositions

This subsection introduces the overall concept that we would like to exploit: the indepen-
dence of parameters. We want to optimise independent regions of the parameter space
individually so that the dimension of each optimisation is small enough to be tackled by
an off-the-shelf numerical optimiser. I discuss a optimisation problem where this is the
case, the objective function is a sum of independent functions which can each be optimised
individually. The next subsection will discuss more complex optimisation problems with

a more subtle notion of independence.

Consider optimising the performance of the following function, originally discussed in
Section 4.2.4:

size_t sort_and_hash(vector<int> a){
sort(a);
return hash(a);

Here, both sort and hash have their own parameters. If this were in the context of
a structured Bayesian optimisation and we had to minimise the average runtime of
sort_and_hash, we would most likely model the performance of sort and hash individu-

ally. This means that the time modelled could be written as:

model sq;, (sort_param, hash_param) =model ., (sort_param)+

modelpqs;,(hash_param)

The simplest way of performing the numerical optimisation of this parameter space would
be to optimise all parameters together. The objective function would be the expected
runtime of the corresponding implementation of sort_and_hash. If, however, the combined
parameter spaces of sort and hash were too large to be tackled at once, we would have

to extract some structure to help the optimisation converge.
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Figure 5.6: Example of block decomposition.

Here, we can do so by optimising the parameters of sort and hash individually using
their respective models. We know that doing so will lead to the correct result because the
performance of sort_hash grows monotonically with the individual performances of sort

and hash. Figure 5.6 diagrammatically shows the splitting of the optimisation into two.

The parameters in this example are completely unrelated, which allows for us to optimise
them independently. Most of the time, however, parameters are not unrelated but rather

loosely related. I show in the next subsection how to tackle such parameter spaces.

5.3.2 Hierarchical decomposition

Often the parameter space that we wish to optimise is hierarchical. That is, some higher
level parameters either have an impact on the existence of lower parameters, or on the way
that they should be optimised. This subsection presents hierarchical decompositions and
shows how they can be applied to both synthetic benchmarks introduced in the previous

section.

The type of decomposition discussed here are also called primal decomposition, meaning
they optimise parameters directly. On the other hand, dual decompositions optimise an

implicit price of the parameters.

Decision tree benchmark Consider the decision tree optimisation problem from the
previous section. The goal was to make a decision tree reproduce its inputs. Given
a branch b, the value b,y of the branch has an impact on how inputs propagate to its
children sub-trees. Hence, the optimal value of the children nodes will be dependent on the
value b,,. However, for a given value of b,,;, there is an notion of independence between
each of the two children sub-trees. This is because each has a fixed input distribution
that is not impacted by the specific values in the other sub-tree. Therefore, if the value
of the branch was fixed, we would be able to block decompose the optimisation of both

children sub-trees.

Once again, if we had to perform the numerical optimisation of this decision tree parameter
space, the first step would be to apply an off-the-shelf optimiser, just like we did in the

benchmark. If this did not converge, however, we would like to exploit some of the
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Figure 5.7: Primal decomposition of a decision tree.

double optimise_branch_node(SortNode& branch_node,
InputDistribution distrib){
SortQuery& query = branch_node.query.deref();
SortNode& left = branch_node.left.deref();
SortNode& right = branch_node.right.deref();

NLOpt<> opt(query.scan_length, query.threshold);
opt.set_utility_function([&](){

SplitDistribution split = distrib.split_on(query);

double left_perf = optimise_node(left, split.left_distrib);

double right_perf = optimise_node(right, split.right_distrib);

return weighted_average(left_perf, right_perf, split.proportion_right);
D
return opt.run_optimisation();

3

Listing 5.5: Primal decomposition to optimise a branch node and its children in the sort case
study.

structure inherent to this hierarchy. Unlike in the previous subsection, it is not possible
to decompose the parameter space directly. Each of the components of the tree are

somewhat related.

We can exploit this structure in the following way: we perform an optimisation of the
parameters of the branch node, and set as utility a procedure which performs two sub-
optimisations, optimising the children sub-trees individually. The utility returned by
that procedure is the sum of the performances of the children leaves [,.s. I show this
procedure in Figure 5.7. The advantage of this method is that we are able to exploit this

independence between the sub-trees.

Sort case study decision tree example. BOAT’s optimisation scheduling abstrac-
tion makes it easy to implement this technique. Listing 5.5 shows the implementation of
this strategy in the context of the sort case study, which also optimises a decision tree. Re-
call that inputs of the trees are arrays and the performance of the tree is the average time

to sort the arrays, including the querying cost incurred at branches. The optimisation
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Figure 5.8: Primal decomposition of the load balancing optimisation problem.

presented here optimises the parameters of a branch’s query and its two sub-trees. Sort’s
decision tree’s parameter space was defined in Section 3.3.2. The optimisation shown here

would be used in the numerical optimisation stage of the Bayesian optimisation.

More specifically, the function optimise branch_node takes as input a node that is a
branch — the is_leaf parameter was already set to false — and a distribution of input
arrays. The goal is to minimise the average time to sort the arrays in the distribution.
It must optimise the configuration parameters of the query of the branch and of both

sub-trees.

It does so by performing an optimisation of the query parameters, which as part its
objective function performs two sub-optimisations on each of the sub-trees. On line
14, when run_optimisation() is executed, the value returned is the one of the best
achieved objective function value. Therefore, the optimisation returns the performance
of its optimised parameters. That is, the average sort time of the input distribution in
the optimised configuration.

Listing 5.5 does not show the other higher-level decompositions that are also used in
the sort case study. The function optimise_node, used on a higher level, optimises the
is_leaf parameter only. It performs two iterations. In the first one, it assigns true to
is_leaf and delegates the optimisation of the corresponding SortLeaf parameters. In the
second one it assigns false and delegates the assignment of the remaining configuration

parameters to optimise_branch_node.

Load balance benchmark Sometimes, to perform a decomposition and exploit the
independence between parameters, it is necessary to introduce a new auxiliary parameter.
Consider, for example, the load balance synthetic benchmark of the previous section.
Parameters represent the amount of work allocated to each worker. All parameters are

related and hence no hierarchy can be directly exploited.

To remedy this, we can introduce a new parameter maz_time which conceptually repre-

sents the maximum amount of time a worker is allowed to work for. Then, we can optimise
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void optimise_single_param(RangeParameter<double>& load,
double worker_speed, double max_time){
// Find the greatest load which does not exceed max_time
NLOpt<> opt(load);
opt.set_utility_function([&](){
return load.value() * (worker_speed < max_time ? 1.0 : 0.0);
D
opt.set_maximising();
opt.run_optimisation();

3

void optimise_parameters(std::vector<RangeParameter<double>>& load,
std: :vector<double>& speeds){
// Create the auxiliary parameter
RangeParameter<double> max_time;
NLOpt<> opt(max_time);
opt.set_utility_function([&](){
// Optimise each parameter individually
for(int i=0; i<load.size(); i++){
optimise_single_param(load[i], speeds[i], max_time.value());
}
// Measure the objective function
double norm = 9.0, max = 0.0;
for(int i=0; i<load.size(); i++){
max = std::max(max, load[i].value() * speeds[i]);
norm += load[i].value() ;
}
return max / norm;
D
opt.run_optimisation();

}

Listing 5.6: Implementation of the decomposition of the load balancing benchmark.

each individual parameter separately to maximise the amount of work they perform in
the allocated time. Figure 5.8 shows the decomposition diagrammatically and Listing 5.6
shows its implementation in BOAT. Due to the benchmark’s simplicity — the amount of
work is continuous and normalised across workers — this implementation should find an
optimal value on the first iteration. However, this approach would also be applicable to
more complex settings. For example, in the neural network scheduling case study, I also
use it. In that case, the optimisation problem is less well behaved. The units of work are
discrete and the time needed by a worker is not linear with the quantity of work allocated

to it. However, the decomposition approach converges quickly.

Limaitations. Decompositions come at a cost. The time complexity of the optimisation
is exponential with the depth of the configuration space. For example, for a decision tree
of depth d, if we perform k iterations per sub-optimisation, the complexity will be O(k?).

Section 5.5 will tackle this by using techniques inspired by reinforcement learning. Before
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Figure 5.9: Bayesian optimisation within a decomposition.

this, the next section introduces how to leverage the Bayesian optimisation algorithm
within the numerical optimisation stage, in order to reduce the number of iterations

needed by the optimisation. This will come at the cost of a higher overhead per iteration.

5.4 Using Bayesian Optimisation for decompositions

This section introduces the use of Bayesian optimisation within the numerical optimisation
stage. In general, Bayesian optimisation should be used in the context of the optimisation
of expensive functions. At first, the overall function that we are trying to optimise —
evaluating the performance predicted by a model- is not expensive. Hence, it is not
initially appropriate. To perform this, however, we use some optimisations which have as
objective function other sub-optimisations, as introduced in the previous section. This
can be an expensive objective function, in which case Bayesian optimisation is a sensible
choice. In the remainder of this section, I will use the optimisation of a decision tree as

a running example.

The simplest way in which we can consider utilising the Bayesian optimisation methodol-
ogy is to use them for the optimisation of branches, which always have sub-optimisations
in their objective functions. The advantage of this method is that it takes fewer iterations
to converge. The disadvantage is the higher overhead per iteration, due to the numerical

optimisation stage of the Bayesian optimisation, which slows down the overall procedure.

Figure 5.9 shows the schedule of replacing each numerical optimisation with a Bayesian
optimisation. Note that we still use an off-the-shelf numerical optimisation to find the

values predicted as best by the model.

Improving the model used by Bayesian optimisation As argued in this disserta-

tion, when using Bayesian optimisation, it is possible to add structure to the probabilistic
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Figure 5.10: Structured Bayesian optimisation within a decomposition. Also shows the recur-
sive nature of the process, with both sub-trees also performing a Bayesian optimisation.

model so that it converges in fewer iterations. Ideally, each optimisation would only
require a few iterations for the model to capture the response surface of the objective

function.

For example, consider the optimisation of a branch in the sort case study. Each branch has
two parameters. The scan_length parameter specifies the length for which an input array
is scanned, at a computational cost. If we were to apply traditional Bayesian optimisation
to each branch decomposition, we would use a Gaussian process to model the performance
of a branch’s parameters. To improve on this, we can model the cost of the branch’s query,
and the performance of the sub-trees independently. This will expose to the model the

trade-off between performing a more accurate decision at a higher cost.

Further structure can be obtained by noticing that a sub-tree’s performance is uniquely
dependent on the input distribution given to it. The values of the branch parameters have
no direct impact on the performance of the sub-trees. Hence, we can make the model
predict the performance of each sub-tree as a function of some features of their input
distribution. When predicting the performance of a branch’s parameter values, we first
split the input distribution using these values. Then, we return the combination of the
prediction of both sub-trees performance and the branch’s cost. Figure 5.10 shows the

resulting optimisation. The model observes the performances of each sub-tree.

Even further, we can inspect the features of these input distributions and give some
knowledge to the model about the probable impact of these features by using a semi-
parametric model, as presented in Section 4.3. For example, recall that in the sort case
study, block_size is the parameter optimised at the decision trees leaves. To predict a
distribution of array’s performance, I compute the spread of optimal block_size param-
eter for the arrays. I place a penalty on distributions that have a large spread as they are

less likely to perform well.

This exemplifies how easy it is to add structure to a Bayesian optimisation by adapting the

model. As a special case, it is easy to force the prior of the model to be a known heuristic.
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For example, if we were optimising classification decision trees, often used for supervised
learning, we could set the prior of the model to optimise information gain [Qui86] or the
Gini index, which are heuristics traditionally used in this context [Murl2]. This would
mean that setting our Bayesian optimisations to perform exactly one iteration — and
hence no learning — would render the same algorithm as these traditional approaches.
Performing more iterations would likely yield decision trees of higher performance, albeit

at an exponential cost.

The complexity of this approach remains high. The next section introduces an approach

based on reinforcement learning, that is designed to improve this complexity.

5.5 A reinforcement learning inspired approach

In the previous sections, we saw methods to optimise a hierarchical parameter space which
had a complexity exponential in the depth of the hierarchy. In a way, a lot of the work
performed throughout these optimisations is redundant. For example, consider the op-
timisation of the branches at depth 1 of a decision tree using Bayesian optimisation, as
described in the previous section. With each iteration of the optimisation of the root
branch, they will themselves perform an entire Bayesian optimisation. These optimisa-
tions will iteratively learn the performance that can be expected out of their sub-trees.
At the end of each iteration, the information they learnt is lost, although it would have

been useful for subsequent iterations.

This section introduces a method based on reinforcement learning to take advantage
of previous iterations’ observations. I first review the general reinforcement learning

approach (Section 5.5.1) and then discuss how it can be leveraged in our context (Section
5.5.2).

5.5.1 Reinforcement Learning

Reinforcement learning is an area of machine learning concerned with making actions
in an environment, in order to maximise an expected reward. A reinforcement learning

problem usually includes an agent and an environment. At iteration ¢t the agent:

e Receives a state s; the agent is in.
e Receives a scalar reward ry.

e Selects an actions a; from a set A of possible actions.

The environment:
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e Receives action a;.
e Emits the agent’s state s, 1.

e Emits a scalar reward 7.

The role of the agent is to maximise the expected future rewards. Usually, the assumption
is made that rewards are discounted by a factor v < 1 per time step. The future discounted

return at time ¢ is R, = >.,_, 7" ~*ry, where the game terminates at time step 7.

Many algorithms have been proposed to tackle this problem. A number of them work
by learning a @-function which estimates the performance an agent should expect out
of performing an action in a given state. It is useful to define the optimal Q-function
Q*(s,a) = max, E[R; | sy = s,a; = a, 7| where 7 is a policy mapping states to actions.
Given, Q*, an agent can pick optimal actions by always selecting the one predicted as
best: a; = argmax, Q*(s;, a’). The role of the learning will be to make a probabilistic

model @) iteratively converge towards Q*.

The @ — learning algorithm [WD92] achieves this in the following way. The agent is
made to run through the environment many times. Every time step, the agent either
picks the best action predicted by the model a; = arg max,, Q(s;,a’) or a random action

for exploration.

Upon receiving the next state s;;1 and reward r;,1, we estimate the performance y; of
the action. If s;; is a terminal state, meaning the environment terminates, then the
performance is simply the last received reward: y; = ry1. Otherwise, we use the Q-

function to get an approximation of the performance of that state:
Yo = Trr1 +ymaxX Q(541,0").

Finally, we use this performance as training data. The pair ((s;, a;), y:) is fed to the model.

Initially, the training data will be of poor quality as it will be generated using the untrained
model. However, as the model converges towards *, the data will become of better
quality. Because of this initial low data quality, the model must be able to “forget” old
observations that were inaccurate. A good candidate for this task are neural networks
which learn a fixed set of parameters. Hence, as more data is exposed to a neural network,
the parameters can be updated in a way that no longer reflects the initial measurements.
This constraint makes it difficult to use other models for supervised learning, such as

Gaussian processes, as they will not forget old data.

Relationship between reinforcement learning and Bayesian optimisation. As
noted by Ghahramani [Ghal5], the problems tackled by Bayesian optimisation can be
seen as a subclass of reinforcement learning problems in which actions (or evaluated

configurations) do not affect the state of the system (the objective function). A Bayesian
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optimisation problem can be seen as a reinforcement learning problem with a single multi-

dimensional action.

Furthermore, the approach used by Q-learning also bears similarity to the Bayesian op-
timisation approach. In both cases, a probabilistic model simulating the environment is
iteratively learnt. Hence, if an environment only had a single multi-dimensional action,
then applying the Q-learning algorithm would have the exact same procedure as apply-
ing Bayesian optimisation. Both would learn a probabilistic model mapping the action,
or configuration space, to the only reward or objective function. The way in which Q-
learning builds upon Bayesian optimisation is that, in the presence of multiple subsequent

actions, it leverages its own model after each action to estimate how good that action was.

In the nested Bayesian optimisation approach described in the previous section, in order
to evaluate the quality of a parameter value, we had to optimise the entirety of the
remaining parameters. This resulted in an exponential computational complexity. In
the next subsection, I show how to adapt this hierarchical decompositions with Bayesian

optimisations approach to instead look like Q-learning.

5.5.2 Applying reinforcement learning techniques to the numer-

ical optimisations

This subsection discusses the transformation of a hierarchical Bayesian optimisation, as
discussed in the previous section, into a reinforcement learning-like optimisation. In both
cases we have a model predicting a parameter’s performance. In the Bayesian optimisation
case, the data used by the model is based on the best performance achieved by the sub-
optimisations. In the Q-learning algorithm case, the data is generated by the model’s

estimate of the bet possible performance at the next action.

Although the method presented here is not an actual reinforcement learning algorithm,

it shares some of its intuition. The following mapping shows how they relate:

e Actions are set of parameters. For example, when I use this method to optimise a
decision tree, ag is the value of the root node, a; is the values of the nodes at depth

1 and so on.

e State. The state is the values of all previously executed actions and their associated
consequences. In the case of decision trees, the state after the first action is both
the value of the root node and the resulting distributions that go to the left and

right sub-trees of the root node.

e Reward. All actions yield a reward of 0 apart from the last one. The final action

has for reward the objective function of the optimisation problem.
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Figure 5.11: Reinforcement learning based approach. A model’s data is generated by the
predictions of the models of the lower level.

e Model. Instead of a simple neural network, I will use structured probabilistic
models. To predict the quality of an action, these will take as input the action itself

as well as all previously executed actions.
I answer two questions to make reinforcement learning applicable to our context:

e How can we leverage a possibly inaccurate estimate of the performance with our
models? Neural networks, often used for reinforcement learning, have the ability
to “forget” old measurements. How can the same behaviour be achieved with our

models based on full Bayesian inference?

e How can we get such an estimate by only looking at the next action?

The first question is tackled by leveraging the notion of noise that was always used in the
probabilistic models presented in Chapter 4. Given an observation, our models are always
able to take as input the noise of the observation. This is true of models using Gaussian
processes and treed Gaussian processes. The measurements have a Gaussian likelihood

and a noise variable can be passed representing its variance.

Therefore, one approach would be to associate a large noise to each measurement. This
would be wasteful, however, as we would like to discriminate between observations which
are performed early on — and are likely poor — and higher quality ones performed later

on. Hence, we need to have an estimate of the inaccuracy of each measurement.

The second question is hence two-fold: how can we get this estimate and its variance
by only looking at the next action. Getting an estimate can be done in a similar way
as is done in Q-learning: we optimise the subsequent action and measure the predicted

performance of these optimised action.

For example, with a decision tree, to estimate the performance of the parameters of a
branch at depth d, we optimise the parameters of the top branches of both its sub-tree, at

depth d+ 1. The optimisation is done using each branch’s respective probabilistic model.
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Then, we use the performance predicted by the models for these optimised branches as a
proxy for how well we can hope to optimise the rest of the sub-tree. Figure 5.11 shows this
procedure diagrammatically. Unlike in the previous section, we are no longer optimising
a branch’s sub-trees as part of the branch iterative optimisation. Instead, with each
iteration of a global optimisation, we go down the entire tree optimising each branch

according to its own model.

We also need an estimate of the variance. I achieve this by generating Thompson samples
of the branch and measuring the variance in predicted performance. Recall from Section
2.2.2 that Thompson sampling involves sampling a model from the distribution of models.
Then, we find the optimal configuration for that model sample [Tho33]. Each time I
optimise a branch, I sample multiple independent models and optimise the branch using
each model independently. The resulting performance of these optimisations allow me to
estimate the variance in the distribution of the optimal performance for that sub-tree.
Sampling can be done in Probabilistic-C++ using the method described in Section 4.6.
Hence, this approach allows us to compute both the average predicted performance as

well as the noise.

Note that this reinforcement learning approach is the last and most complex method I
propose to help the numerical optimisation converge. For this reason, it should only be
used in a context where applying recursive Bayesian optimisation, as described in the
previous section, leads to a too long convergence time. I only use this approach in the
context of the sort case study to optimise the decision trees. In the next section, I compare
the performance of the different decomposition methodologies presented in this chapter

on an optimisation problem from the sort case study.

5.6 Evaluation

In this section I compare the empirical performance of the different decomposition tech-
niques introduced in this chapter. I do so by evaluating their performance on the numerical
optimisation stage of the sort case study. I load a model that was stored after performing
an entire structured Bayesian optimisation. I also load the corresponding array distribu-
tion. Then, the optimisation problem is: optimise the decision tree parameter space to

minimise the predicted average sort time.

I evaluated three procedures. First, a simple hierarchical decomposition, as described in
Section 5.3.2, which uses the DIRECT algorithm for each of its optimisations.

Second, a hierarchical decomposition which uses a structured Bayesian optimisation to
optimise each of its branches. The model, implemented in Probabilistic-C++-, takes as
input an input distribution, a SortQuery object and the maximum depth of the node.

It computes the two distributions that will go in each sub-tree, along with some of their



110 5.6. EVALUATION
_138
® _138
= —— »
QE)1 5 DIRECOT i‘/ —eo— DIRECT
=13 BayesOpt £136 BayesOpt
E T —— RL +
@ W s —— RL
§134 g134
%1 2 g
3 32 ten oo o _ %132
.5 ? @ ry
—————+——+— %+ 2
5130 5130 %
B %
[0 [0
om m
128; 500 1000 1500 1284000 2000 3000 4000 5000
Time (s) Time (s)

(a) Tree depth of 4. DIRECT executed
for up to 80 iterations per optimisation.
Bayesian optimisation executed for up to
3 iterations per optimisation.

(b) Tree depth of 5. DIRECT executed
for up to 30 iterations per optimisation.
Bayesian optimisation executed for up to
2 iterations per optimisation.

)

N
w
<]

(2]
% —o— DIRECT
E£136 BayesOpt
5 —— RL
© 134
o
(]
>
© 132 i
°
[0
>
2
5130
©
k7]
[
m 128 SR TN U T T
0 2000 4000 6000 8000 10000 12000
Time (s)

(c) Tree depth of 6. DIRECT executed
for up to 15 iterations per optimisation.
Bayesian optimisation executed for up to
2 iterations per optimisation.

Figure 5.12: Comparison of the best achieved average sort time by the different optimisation
approaches.

summary statistics. These statistics include the best and worst performance that can be
achieved on each of the distributions. Finally, it uses a treed Gaussian process to predict

the performance that will be achieved by each sub-tree within this possible spectrum.

Third, a reinforcement learning based decomposition which uses the same model as the
structured Bayesian optimisation based one. Instead of using one instance of the model per
branch, as described in the previous section, I share the same model across all branches.
Each time a query is being optimised, the optimisation is performed three times. Once
to maximise the average performance predicted by the model, and the other two by
using samples from the model. This generates a tuple (input distribution, mazimum
depth, performance estimate, variance estimate). At the end of each iteration, the tuples

generated by all branches are fed into the model.
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Iterations are alternatively performed in exploitation and exploration mode. In exploita-
tion mode, once the three optimisations have been performed on a query, the value that is
kept is the one that was optimal for the average model prediction. In exploration mode,

the value that is kept is the one that yielded the most optimistic predicted performance.

Figure 5.12 shows the results. I optimised trees of depth 4, 5 and 6. For the two hier-
archical decomposition approach, I repeated the optimisations multiple times, each time
allowing a different number of iterations per optimisation. I report the time that each op-
timisation took, along with the best achieved result. In the reinforcement learning based
approach, I ran the optimisation for ten iterations, and the different data points show
the performance achieved so far. This means that the results are obtained incrementally,
whereas for the primal decomposition approaches, the optimisation had to be run from
scratch. The runtimes were obtained by running the optimisations on an m4.xlarge EC2

instance.

There are a few interesting points to note. First, the reinforcement learning approach
shows a slight improvement over the Bayesian optimisation approach, which itself performs
significantly better than simply using the DIRECT algorithm. In particular, the Bayesian
optimisation always performs decently on its first iteration, suggesting that the model I

designed to predict a branch’s performance has a good prior.

Second, compare the first point of the Bayesian optimisation and the reinforcement learn-
ing inspired approach on each graph. Both consistently perform equally well but the
reinforcement learning approach takes longer. The reason is that both approaches use
the same model. Hence, in the first iteration, when no data has been given to the model,
they both optimise the branches in the same way. However, the reinforcement learning

approach also performs Thompson samples, hence the extra computational cost.

Third, the two recursive decomposition approaches do not scale with the depth of the
tree. The performance of the DIRECT based decomposition worsens from increasing the
depth of the tree, even though the representative power of the configuration space is
strictly greater. In the Bayesian optimisation case, the cost is such that we can only run
a maximum of two iterations per optimisation on trees of depth 5 and 6. In contrast, the
time needed to do a fixed number of iterations with the reinforcement learning approach

grows roughly linearly with the number of nodes in the tree.

5.7 Summary

In this chapter, I discussed two related concepts. First, I presented BOAT’s optimisation
scheduling abstraction which provides a structured framework to build complex optimi-
sations. In particular, it can be used to implement nested optimisations, a frequently

occurring pattern.
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Second, I have discussed the difficulty of performing the numerical optimisation stage of
Bayesian optimisations. I have shown how off-the-shelf optimisers can be inadequate for
the task of optimising domains with more than five parameters. I therefore introduced
the use of decompositions as part of this numerical optimisation stage. Decompositions
exploit some of the independence of large optimisation problems to divide them into

manageable chunks.

I have presented two generic techniques to improve the performance of decomposed op-
timisations. First, using Bayesian optimisation to perform the decompositions. This
reduces the number of iterations, at the cost of a higher overhead per iteration. Second,
by extending this first approach in a manner similar to reinforcement learning. In this
case, the predictions made by a probabilistic model are used as an estimate of the true
performance. I empirically compared the performance of these different approaches on a

numerical optimisation problem from the sort case study.



CHAPTER 0

DESIGNING A BESPOKE AUTO-TUNER

This chapter puts together the techniques from the previous three chapters to design a

structured Bayesian optimisation. It makes the following contributions:

I present how a structured Bayesian optimisation can be implemented in BOAT
(Section 6.1).

I show how to measure the expected improvement (EI) acquisition function of a
structured model (Section 6.2). EI is a general acquisition function which naturally

balances exploration and exploitation, and I use it in my case studies.

I show how to find a configuration which maximises the expected improvement via
Thompson samples (Section 6.3). In particular, it allows for the use of decompo-
sition methods presented in Chapter 5. The approach is well suited to BOAT’s

optimisation abstraction.

I present a method to exploit cheap experiments. Having a structured model means
we can perform inference on experimental results other than the expensive objective
function, allowing the model to converge faster towards the objective function. I
propose a new approach, based on BOAT’s optimisation scheduling abstraction,
which makes the scheduling of experiments clear and intuitive to a user (Section
6.4).

I conclude with the general methodology which should be followed when building a
bespoke auto-tuner with BOAT (Section 6.5).

Note that this chapter contains no evaluation. Most sections present generic techniques for

structured Bayesian optimisation and hence will be implicitly evaluated through the case

studies in Chapter 7. Unfortunately, none of the three case studies that I considered for

this dissertation were amenable to cheap experiments, and hence evaluating the approach

113
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presented in Section 6.4 is out of the scope of this dissertation. I however discuss a possible

extension of the neural network case study which would benefit from this approach.

6.1 Declaring a structured Bayesian optimisation in
BOAT

This section goes through the process of declaring a structured Bayesian optimisation in
BOAT. As an illustrative example, Listing 6.1 shows the implementation of the garbage
collection (GC) case study’s Bayesian optimisation. Recall from Section 3.1.1 that in the
GC case study I optimise the value of three JVM flags to minimise the 99th percentile

latency of a database.

The first step in building a structured Bayesian optimisation is defining the configura-
tion space being optimised. In the GC case, it is a GCFlags object containing three

RangeParameters for the three flags being optimised.

Then, we declare the probabilistic model used by the optimisation. In the GC case
study, I use three independent model classes: GCRateModel predicting the rate of GCs,
GCDurationModel predicting their duration and LatencyModel predicting the 99th per-

centile latency of the database. I build a ProbEngine for each class.

A structured Bayesian can then be declared via the BOAT’s BayesOpt class. It is tem-
plated on the type of measurements which will be returned by the objective function. In
our case, this is a GCResult class which stores the rate and duration of a GC, and the

corresponding latency observed in an experiment.

In order to be run, three functions must be given to the BayesOpt object:

e The suboptimisation function is responsible for assigning values to the parameters.
This is where the numerical optimisation will be executed. In the GC case study,
I use the expected improvement (EI) acquisition function, which maximises the
expected gain over the incumbent: the best result obtained so far. The function
optimise_expected_improvement performs a numerical optimisation. It leaves the
parameters of gc_flags assigned with values which maximise the EI, given the

incumbent and the different parts of the model.

e The objective function executes the experiment and returns the result. For the GC

case study, this is a GCResult object.

e The learning function takes as input the result measured this iteration and uses it
to perform inference on the model. Each model takes as input the values used for

the flags as well as their relevant results.
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//Declare the configuration space
GCFlags gc_flags;

// Declare the model
ProbEngine<GCRateModel> rate_model;
ProbEngine<GCDurationModel> duration_model;
ProbEngine<LatencyModel> latency_model;

// Declare the optimisation
BayesOpt<GCResult> opt;
opt.set_suboptimisation_function(
[&10O1
double incumbent = opt.get_best_utility();
optimise_expected_improvement(gc_flags, incumbent, rate_model,
duration_model, latency_model);

s

opt.set_objective_function(
[&](){return evaluate(gc_flags);});

opt.set_learning_function(
[&](const GCResult& result){
rate_model.observe(gc_flags.ygs.value(), gc_flags.sr.value(),
gc_flags.mtt.value(), result.rate);
duration_model.observe(gc_flags.ygs.value(), gc_flags.sr.value(),
gc_flags.mtt.value(), result.duration);
latency_model.observe(gc_flags.ygs.value(), gc_flags.sr.value(),
gc_flags.mtt.value(), result.rate,
result.duration, result.latency);
D;
// Set the optimisation properties
opt.set_max_num_iterations(10);
opt.set_minimising();

// Run the optimisation
opt.run_optimisation();

Listing 6.1: Implementation of the structured Bayesian optimisation in the garbage collection

case study.

Then, we must set some of the optimisation properties, such as the number of iterations.

Finally, the optimisation can be run. After it has returned, the parameters in gc_flags

will be left assigned the values which generated the best latency.

Choice of acquisition function. By default in my case studies, I use the expected

improvement acquisition function. I have found it generally performs well. Furthermore,

it is simple to estimate in the context of structured probabilistic models. Future work

could investigate whether more elaborate acquisition functions, such as predictive entropy

search [HLHG14], would yield better convergence.
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// The sample function of a semi-parametric model
double GCRateModel::sample(int ygs, int sr, int mtt){
return gp.sample({ygs, sr, mtt}) + parametric(ygs, sr);

double expected_improvement(

GCFlags& gc_flags, double incumbent,
ProbEngine<GCRateModel>& rate_model,
ProbEngine<GCDurationModel>& duration_model,
ProbEngine<LatencyModel>& latency_model){

double ei = average([&1(){
double ygs = gc_flags.ygs.value();
double sr = gc_flags.sr.value();
double mtt = gc_flags.mtt.value();
double rate = rate_model.sample(ygs, sr, mtt);
double duration = duration_model.sample(ygs, sr, mtt);
double latency = latency_model.sample(ygs, sr, mtt, rate, duration);
return max(incumbent - latency, 0.0);

D

return ei;

3

Listing 6.2: Measuring the expected improvement of a GC configuration.

This section has demonstrated how to declare a Bayesian optimisation in BOAT. In order
to be complete, the implementation must also specify how to maximise the expected
improvement. I describe a method to do so in Section 6.3. The next section discusses

how to measure the expected improvement.

6.2 Measuring the expected improvement

In order to select a promising configuration, Bayesian optimisation uses an acquisition
function that is designed to trade-off exploration and exploitation. In my case studies, I
use the expected improvement acquisition function as it performs well and is simple to
estimate. This section describes how to measure the expected improvement of a configura-
tion, given an incumbent — the best result obtained so far — and a structured probabilistic

model.

Recall that the expected improvement of a configuration x with incumbent 7 and model
G is

ani(x|1.6) = [ max(0.96) = 1) p(a(x) | G) dylx)
That is, we must compute the average value of max(0, g(x) — n), where g(x) is a model’s

prediction for x. In Probabilistic-C++, we can compute the average of an arbitrary

function of multiple models using the average function introduced in Section 4.2.4.2.
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One issue comes from the use of Gaussian processes within models which predict as
output a normal distribution rather than a single value. The solution is to sample from
this output distribution. If a Gaussian process is only queried once per prediction, we can
use the GaussianProcess: :sample() or TreedGP: :sample() member functions which do

this automatically. I show this in the context of the GC case study in Listing 6.2.

One further difficulty occurs if making a prediction requires sampling from a single Gaus-
sian process multiple times. Then, whenever a Gaussian process is sampled from, we
must make sure it remembers that sample so that future samples are distributed accord-
ingly. This can be achieved by the functions GaussianProcess: :sample_and_observe()
or TreedGP: :sample_and_observe(). However, this will leave the corresponding models
with useless, randomly generated observations that may be wrong. Hence, before execut-
ing an average which uses sample_and_observe, I always first create a temporary copies

of the models and use these copies to predict the expected improvement.

Using this technique, the expected improvement of a configuration can be measured. The

next section discusses how to find configurations which maximise its value.

6.3 Maximising the expected improvement

This section discusses how to find configurations with high expected improvement values.

There are two issues with optimising the expected improvement directly:

e Highly multi-modality. The expected improvement function is highly multi
modal. It returns low values at configurations which have already been observed,
and high values at promising configurations. If after some iterations of the optimisa-
tion we have sampled a few points near the true optimum, then the response surface
of such acquisition functions near the optimum will be highly jagged. This makes
the task of the numerical optimiser difficult. In practice, I have seen the DIRECT
optimisation algorithm fail to find configurations with good expected improvement
on the Branin-Hoo synthetic benchmark [JonO1], which only has two dimensions.

This unreliability is undesirable when designing an auto-tuner.

e Amenability to decompositions. If the dimensionality of the optimisation prob-
lem is large, then it may be necessary to decompose it into sub-optimisation prob-
lems in order for the numerical optimisation to converge, as presented in the previous
chapter. Unfortunately, acquisition functions like the expected improvement are not
easily amenable to decompositions. For example, consider the following model which

is the sum of two independent models: G(x1,X3) = G1(Xx1) + Ga(x2). If we were
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void optimise_expected_improvement(
GCFlags& gc_flags, double incumbent,
ProbEngine<GCRateModel>& rate_model,
ProbEngine<GCDurationModel>& duration_model,
ProbEngine<LatencyModel>& latency_model){

SimpleOpt<> opt;
opt.set_iteration_function([&](){
// For each model, sample a single particle and set the non-parametric
// model to sampling mode
ProbEngine<GCRateModel> rate_model_sample =
rate_model.single_particle_enginge();
rate_model_sample.execute([J(GCRateModel& m){m.gp.set_sampling();3});

// Find a configuration which maximises the sample’s performance
optimise_performance(gc_flags, rate_model_sample,
duration_model_sample, latency_model_sample);

// Return the expected improvement over the entire model
return expected_improvement(gc_flags, incumbent, rate_model,
duration_model, latency_model);
D
opt.set_maximising();
// Generate 100 Thompson samples
opt.set_max_num_iterations(100);
opt.run_optimisation();

}

Listing 6.3: Implementation of the Thompson sampling numerical optimisation method in the
GC case study.

optimising the expected value of GG, then we could use:

Eq(G(x1,%2)) = Eg, 6,(G1(x1) + Ga2(x2))
= Eq, (G1(x1)) + Eg,(Ga(x2))

and block decompose x; and x5 to optimise them separately. On the other hand, if

we were optimising the expected improvement over a previous incumbent 7:

ap1(x1,X2) = Eg, ¢, (max(0, (G1(x1) + G2(x2) — 1))
is not directly decomposable.

As an alternative to optimising the expected improvement directly, I propose generat-
ing many Thompson samples and selecting the one with highest expected improvement.
That is, we repeat the following procedure many times. First, we sample a model from

the posterior distribution of models. In the context of Probabilistic-C++, this can be
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Figure 6.1: Numerical optimisation stage with Thompson samples.

approximated using the method described in Section 4.6. Second, we perform a numer-
ical optimisation to find the configuration with highest performance predicted by that
sample. Because we are optimising a predicted performance, the objective function is
both smooth and decomposable. Third, we measure the expected improvement of that
configuration. Once this procedure has be ran many times, we select the configuration
which yield the highest expected improvement. This is the configuration selected by the
numerical optimisation stage of the Bayesian optimisation.

I show in Listing 6.3 the implementation of this procedure in the context of the GC case
study. It uses BOAT’s optimisation abstraction to perform multiple independent optimi-
sations. Each iteration the optimisation samples a model from the model distribution. It
then performs a numerical optimisation to find a configuration which maximises the per-
formance predicted by this model’s sample. Finally, it returns the expected improvement

of the configuration. Figure 6.1 shows this procedure diagrammatically.

This procedure is similar to the one used by portfolio acquisition functions [HBdF11,
SWHT"14], as discussed in Section 2.2.2. They also perform multiple independent nu-
merical optimisation and select a configuration based on a meta-criterion. However, the
motivation is different. The goal here is to be able to use decompositions while also
performing exploratory experiments, whereas portfolio acquisition functions are trying to

select the most performant acquisition function for the problem at hand.

Interestingly, because the sampling mechanism was inspired by the UCB acquisition func-
tion [SKSK10], performing numerical optimisations on samples of a model made of a single
Gaussian process is similar to optimising the UCB acquisition function with a random

value for k.

Another benefit of this approach, with high practical implication, is its computational
efficiency. Evaluating the performance of a configuration using a single model sample is
much cheaper than averaging over the entire distribution. Hence, it makes sense to use
only one sample when performing the expensive search for good configurations. Once we

have selected a few promising configurations, we select the most favoured one using the
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expensive expected improvement which averages over the entire distribution.

I also find that the approach presented in this section is robust. Performing multiple inde-
pendent optimisations protects us from infrequent issues that may occur in the numerical
optimisation, such as getting stuck in local minima. I therefore use it in all of my case

studies.

Number of Thompson samples. There is a trade-off between computational over-
head and accuracy in the number of Thompson samples generated. More samples will
possibly lead to a better picked configuration, at the cost of a higher overhead per it-
eration of the Bayesian optimisation. In the garbage collection and neural network case
studies, I used 100 samples. On the other hand, the sort case study suffers from a much
higher cost of the numerical optimisation. Generating a single sample took approximately
15 minutes. Hence, I only used one sample, effectively performing Thompson sampling.
For this reason, the sort case study required up to twenty iterations to converge, versus

ten for the other two case studies.

Limatations. Recall that the approach introduced in Section 4.6 to sample a model from
the model distribution is an approximation. If the model contains a Gaussian process, then
the entire response surface of the sampled Gaussian process will either be lower or higher
than its mean value. In some cases, this approximation may prevent the optimisation from
exploring promising regions of the configuration space. For example, this could happen
if the good performance of a configuration was dependent on a single Gaussian process
being high at a certain point and low at another. In practice, I have not observed this

being an issue.

This concludes the set of necessary techniques needed to implement a structured Bayesian
optimisation. The next section discusses a more advanced technique to use cheap experi-

ments.

6.4 Exploiting cheap experiments

Often when optimising the performance of a computer system, we can run some small
experiments which give us some information about the underlying behaviour at a fraction
of the cost of the objective function. For example, these can evaluate a subcomponent of
the system, or evaluate the system on a reduced benchmark. In this section, I propose a

method to easily leverage such experiments to make the optimisation converge.

In the most generic approach to the problem, there is a domain of possible experiments.
We have to perform a joint optimisation to find a pair of experiment and configuration
which tells us the most about the region of the optimum. If experiments have a range of

costs, these could be included in order to maximise the rate at which we learn about the
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optimum’s region. In general, this approach is difficult to apply. It involves measuring a

metric of what is expected to be learnt about the optimum, such as the information gain.

Instead, I propose in this section an approach which is intuitive and naturally exploits
BOAT’s optimisation scheduling abstraction. It relies on the assumption that the cheap
experiments that are available are at least an order of magnitude cheaper than the objec-
tive function. Hence, they can be executed many times per objective function evaluation,
at a small increase in total cost. Unfortunately, none of my case studies had such a context

and hence evaluating this procedure is outside the scope of this dissertation.

In Section 6.4.1, I describe an example problem which serves as motivation. I then
describe my proposed approach (Section 6.4.2). One of the difficulties is the design of the

acquisition function, which I discuss in Section 6.4.3.

6.4.1 Example problem

This subsection gives a motivational example of a setting with an experiment orders
of magnitude cheaper than the objective function. In the neural network case study,
I optimised the scheduling of a neural network on a distributed heterogeneous cluster.
The goal was to find the schedule which minimises the time per iteration of stochastic
gradient descent (SGD). Consider an optimisation problem where we have to configure
both the scheduling and the architecture of a neural network. The architecture setting
could include the number of layers and the number of neurons per layer. The optimisation
task is to find the global configuration which, when trained on a given dataset for a day,

yields the highest classification accuracy.

When considering the neural network architecture, there is a trade-off between the capa-
bility of the network — larger neural networks will eventually converge to better classifica-
tion errors — and computational performance — smaller networks will be computationally

cheaper and hence be able to train for more iterations within a day.

Although it is dependent on all of the architecture configuration parameters, this trade-
off is completely encapsulated by the number of SGD iterations that the network will
be able to perform in a day. Hence, a model predicting the final classification accuracy
of a configuration would likely first estimate the number of SGD iterations that would
be executed within the day from the architecture and scheduling parameters. Then, it
would predict the final performance as a function of the architecture parameters and the

estimated number of iterations.

In this context, I would propose using the evaluation of the time per iteration of stochastic
gradient descent — which takes a few minutes to estimate accurately — as a cheap exper-
iment. I now describe the concept of partially experimental models which are key to my

approach.
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Figure 6.2: Bayesian sub-optimisation with cheap experiments.

6.4.2 Partially experimental models

In the context of structured Bayesian optimisation, I define a partially experimental model

as a model that predicts the output of the objective function and either:

e can take as input an experimental result from a cheap experiment to make its

prediction (a discriminative model), or,

e can perform inference on an experimental result from a cheap experiment to update

its objective function prediction (a generative model).

When we evaluate the prediction of a partially experimental model, we first execute the
cheap experiment and use the result to make an informed prediction. For example, in the
neural network example, the model would be able to take as input an empirically measured
time per SGD iteration to predict a configuration’s performance. If it is possible to design

such a model, then I propose using it for cheap experiments in the following way:.

We perform two nested structured Bayesian optimisations. The high level optimisation
maximises the true objective function. The sub-optimisation is analogous to the numerical
optimisation stage, and maximises the expected improvement predicted by the partially
experimental model. Because getting predictions from the partially experimental model is
somewhat expensive, as it requires executing the cheap experiment, it cannot be optimised
directly by a numerical optimiser, hence the use of a Bayesian sub-optimisation. Figure 6.2
shows the overall structure of the optimisation. Once again, this is easily expressible using

BOAT’s optimisation abstraction.

The next subsection will discuss the range of possibilities for the inner Bayesian optimi-

sations acquisition function. I here list some of the benefits of this approach.
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e There is an explicit balance between cheap experiments and the objective function.
By setting the number of iterations for which the inner Bayesian optimisation is
executed, a developer can specify how many cheap experiments can be run per
evaluation of the objective function. BOAT also includes some elaborate stopping
criteria for optimisation which asses the rate of improvement over past k iterations,
where k is a parameter. Using such stopping criteria for the inner optimisation will
initially make the optimisation explore the cheap experiment heavily when there is
high uncertainty about its behaviour. In later iterations the inner optimisation will

quickly converge, hence performing fewer cheap experiments.

e Cheap experiments are only evaluated on promising configurations. This guarantees

that we will not be exploring low performance regions of the configuration space.

e The objective function is only evaluated on configurations which the cheap experi-
ment was previously evaluated on. This guarantees that we never use the expensive

objective function to explore properties observable in the cheap experiment.

Related work. The approach proposed here is similar in concept to the ones proposed
by Swersky et al. [SSA14] and Domhan et al. [DSH15]. In these works, the goal is
to tune the hyperparameters of machine learning models to maximise their performance
after training. They use the measured performance after training the model for a reduced
time as a cheap experiment. Both approaches develop partially experimental models,
which update their predictions of the final performance in light of these measurements.
However, they also rely on the fact that the cheap experiment can simply be continued

to yield the expensive experiments, something that I do not assume here.

6.4.3 Acquisition functions for partially experimental models

One difficulty that arises is the following: within the inner Bayesian optimisation, which
acquisition function should be used? Say, for example, that the high level Bayesian opti-
misation uses the expected improvement predicted by the partially experimental model as
acquisition function. This means the inner Bayesian optimisation’s objective function will
be this expected improvement. Therefore, it needs to tackle the exploration-exploitation
trade-off and find configurations which may improve on the best expected improvement

found so far.

Assume that we use the method for the numerical optimisation presented in the previous
section. We have a set of Thompson sampled configurations and we need to discriminate
which should be selected by the inner optimisation for the cheap experiment to be per-
formed on. Initially we can select ones with high expected improvement of the overall

objective function. However, if we do this for a while, we run the risk of performing the
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same cheap experiment every iteration while discarding some configurations with lower

expected improvement but more informative cheap experiments.
I highlight below three possible alternatives.

Expected improvement’s expected improvement. Say, for example, that the best
value of the objective function found so far is 7, and the best configuration x, found by
the inner optimisation so far yielded expected improvement v = agi(x; | 17, G), then the

expected improvement’s expected improvement can be computed as:

apr-ei(x | n,v,G)

_ / maxx (0, apr(% | 7, 9o (%)) — ) p(gen(x) | G) dgen(x)

= /max (O,/maX(O,gobj (%) = 1)P(got; (%) | G, gen(x))dgon; (x) — V)

P(gen(x) | G)dgen(x).

Where g, and g,;; are predictions of the model G for the cheap experiment and objective
function respectively. The difficulty with this approach is that it requires performing
a double integral over the probabilistic model. We must sample possible values for the
outcome of the cheap experiment, and for each sample compute the expected improvement
of the overall utility function that would ensue. Depending on the model, this type of
double integral may be intractable to compute accurately in a reasonable time. Further,
it is not directly implementable in probabilistic programming, as it requires averaging

over a procedure which itself computes an average.

UCB inspired approach. As a second alternative, I propose an acquisition function
inspired by the upper confidence bound acquisition function, introduced in Section 2.2.2.
It assumes that we have a scalar metric for the model’s standard deviation of the outcome
of the cheap experiment o, (x). This may not be straightforward to design when the cheap
experiment results in multiple observations f.,(x) = f C(,? (x), féi) (%), f C(Z) (x), although
in some cases, the root of the mean variance across predictions may be an appropriate

choice:

n

o) = | 3 (000) "

i=1

In the neural network example, we could simply use the standard deviation of the expected
runtime. We can then trade-off exploration and exploitation of the cheap experiment by

using the following function:

avcp-g1(x | 1,G) = ag(x | 1, G) + Kenoen(x).
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The first term is the expected improvement of executing the expensive objective function.
This is the quantity that we are trying to maximise. It is analogous to the p(x) term
of the upper confidence bound acquisition function. The overall expected improvement,
including the uncertainty about f.;(x), is equal to the average value of the expected

improvement after observing the outcome of f.,(x). The second term favours explorations.

The variable k., is an algorithm parameter which must be tuned to the particular setting
in which the optimisation will be run. This is also true of the equivalent variable of
the UCB acquisition function, but it is more important in this context as the units of
agr(x | 1,G) and o.,(x) may be different. Overall, this acquisition function selects
configurations with high expected improvement which also have some uncertainty about

the outcome of the cheap experiment.

One positive aspect of this approach is that it is applicable to contexts where we have
many cheap experiments with a range of costs, and hence we are performing multiple
nested Bayesian optimisations. If we had an even cheaper experiment f.2(x), we could

nest another Bayesian optimisation and maximise

aycp—ri(X | 1,G) = api(x | 1, G) + Kechon(X) + Kenz0cne (X)

in the inner most one.

Thompson sampling. One third and final alternative is to discard the acquisition
function and simply evaluate the cheap experiment on each Thompson sample. Although
wasteful, this approach will thoroughly explore the domain at a small overhead per iter-

ation.

Note that all three approaches described sit at different points in the trade-off between
accuracy of the selected configuration and computational complexity. All three should
eventually converge, but the earlier approaches will do so in fewer iterations with a high
overhead per iteration. When considering which to use for a specific problem, one should
consider the cost of the cheap experiment itself. If it is expensive, a higher overhead
per iteration will seem favourable. Otherwise, a higher rate of iterations may help the
model converge faster. This trade-off is not specific to the use of cheap experiments, it is
inherent to the numerical optimisation stage of any Bayesian optimisation. I discuss this

further in the next section on incrementally designing a Bayesian optimisation.

6.5 Incrementally building a bespoke auto-tuner with
BOAT

In this section I describe the general approach to building a bespoke auto-tuner with

BOAT. Like in other aspects of software engineering, premature optimisation [Knu74] is
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an easy pitfall to succumb to. Hence, I advocate that the correct way to build an auto-
tuner is to start with a naive solution and incrementally refine it so it converges in a

reasonable time.

Once a developer has defined the configuration space and the objective function of their
application, they should start by implementing traditional Bayesian optimisation using
a Gaussian process. This may involve only optimising a subset of the parameter space,

using x € RY, so that Gaussian processes can be applied.

Then, two key elements are needed to profile the convergence of an auto-tuner:

e A known good configuration.

e A log of behaviour of the objective function for that configuration.

As described in Section 2.2, there are two types of problems which may occur during a
Bayesian optimisation. The first step in improving the convergence of an auto-tuner is to

diagnose which of these issues is at fault for the poor convergence.

e The model fails to capture the objective function after a reasonable num-
ber of iterations. This can be diagnosed in two ways. In both cases, we compare
the model’s prediction with the objective function’s behaviour. First, by comparing
them on the known good configuration, using the objective function log. This al-
lows us to diagnose why good configurations are undervalued by the model. Second,
by comparing them on the configurations selected by the optimisation. Here, we
can diagnose what makes the model optimistic about sub-optimal configurations. If
a structured model is being used, then we can compare each model part’s predic-
tion with the corresponding observed behaviour, and hence diagnose the part of the
model that is at fault.

e The numerical optimisation fails to find promising configurations. This can
be diagnosed by evaluating the acquisition function of the known good configurations
and comparing it with the acquisition function of the best configuration found by the
numerical optimisation. If the known good configurations have higher acquisition
function value, then the numerical optimisation failed to converge. For example,
in Section 6.3, I mentioned that the DIRECT optimisation algorithm sometimes
failed to find configurations with high expected improvement on the Branin-Hoo
benchmark. I observed this by comparing the expected improvement of the known
optimum with the best one found by DIRECT.

There are two further issues that can happen when extending a Bayesian optimisation to

a structured Bayesian optimisation:
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e The ProbEngines fail to converge to adequate posterior distributions. This
can happen if the number of model parameters being sampled is too large when
compared with the number of particles used. Typically, this may happen if more
than five parameters are sampled in the model class’s constructor. An easy way to
diagnose this is to train multiple ProbEngine’s with the same data and see if there
predictions differ. If they do, it is likely the ProbEngines have degenerated and their

predictions are only based on few particles.

e The numerical optimisation stage becomes more expensive than the ob-
jective function. This can happen through decompositions if there are many

nested optimisations.

In the rest of this section, I list the different techniques that a developer can employ and
refer to the problem they tackle. This offers a summary of most of the methods presented
in this dissertation. I first discuss techniques to improve the model’s convergence. These

techniques

Increase the similarity of the model to the objective function. This was the
topic of Chapter 4. By capturing the developer’s true prior about the shape of the
objective function, we are able to converge towards the true objective function with less

empirical data.

Improve the model parameter’s prior distribution. A developer should check
that the inferred model parameters are sensible and not too far from the prior’s spectrum.
They can do so by measuring the average values of the model parameters after a few
iterations. This both improves the similarity of the model to the objective function and

makes it easier for the ProbEngine to converge to the correct posterior distribution.

Make the model finer grained and increase the number of runtime measure-
ments used. Once again, this will reduce the number of iterations needed for the
model to converge towards the objective function’s response surface. If there are already
multiple parts in the model, the developer should first diagnose which part is failing to

converge. Then, refine the models at fault.

Use cheap experiments. If the model converges too slowly, and some cheap exper-
iments are available and instructive about the behaviour of the objective function, then
they can be used in the manner described in Section 6.4. The number of iterations on the
inner Bayesian optimisation should be tuned. One heuristic to do so is to make the opti-
misation spend at least half of its time executing the overall objective function. Hence,
we can guarantee that the optimisation is at worst two times slower than without the use

of cheap experiments.
If the numerical optimisation fails to converge, two main techniques can be used.

Perform the numerical optimisations on samples from the model, and dis-

criminate between them wusing the expected improvement. This technique was
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discussed in Section 6.3. By making the numerical optimisation work on samples of the
model, we are making it work on a smoother objective function. This in turns makes it

more likely to converge to good values.

Decompose the numerical optimisation of the parameter space. Off-the-shelf
numerical optimisation algorithms will perform poorly on configuration spaces with more
than five parameters. Decompositions will help tackle the independence between param-

eters which will make the optimisation more likely to converge.
If ProbEngines fail to converge, two techniques can be employed.

Increase the number of particles used. A typical number of particles is 10,000 but
larger numbers can be used. In particular, one can use much larger number of particles
for the first few observations and reduce their number later on. This way, the model’s
prior is sampled with a large number of particles, most of which are discarded based upon

the first measurements.

Exploit the independence between different parts of the probabilistic model.
This was described in Section 4.2.4. This will help ProbEngines converge to the correct
posterior distribution. Runtime measurements are necessary to exploit the conditional

independence in the model.

Decompositions may lead to a long numerical optimisation time. There are two approaches

to reduce this time.

Use Bayesian optimisation and reinforcement techniques in the numerical
optimisation. A developer can reduce the number of iterations needed by decompo-
sitions by using the structured Bayesian optimisation and reinforcement learning based
techniques described in Sections 5.4 and 5.5. This may reduce the cost of the numerical

optimisation.

Tune the number of Thompson samples used by the numerical optimisation.
There is a trade-off between the quality of the configurations evaluated on the objective
function and the duration of the numerical optimisation. Performing the numerical op-
timisation on more samples will increase the quality of the best one found at the cost
of a higher overhead per iteration. It makes sense to try and balance the time spent in
each of the two stages. One extreme example of this is the sort case study in which the
numerical optimisation takes orders of magnitude longer to execute than the objective
function. This is due to the difficulty of optimising decision trees. Hence, in that context

I use a single sample per iteration.

Together, these techniques offer ways to tackle the different issues that may occur with a
bespoke auto-tuner. In this dissertation, I have presented a number of abstractions which
makes the implementation of these techniques simple and intuitive. In the next chapter, I
evaluate bespoke auto-tuners built using these techniques on the three case studies. This

will allow me to defend the thesis of this dissertation — that using a small amount of
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domain specific information allows the construction of bespoke auto-tuners with higher

performance than off-the-shelf optimisers.

6.6 Summary

BOAT includes a number of tools and abstractions. In this chapter, I showed how to
combine them to build a bespoke auto-tuner. Implementing a structured Bayesian imple-

mentation requires declaring a number of components:

e Configuration space: the domain of the optimisation.

e Structured probabilistic model: the expected behaviour of the objective func-

tion.

e Sub-optimisation: a procedure to find the next configuration to evaluate. I argued
in this chapter that this was best achieved by generating Thompson samples and
discriminating between them with an acquisition function, such as the expected

improvement.
e Objective function: the function being optimised.

e Learning function: a procedure performing inference on the probabilistic model

given a new measurement.

Furthermore, I proposed a methodology to exploit cheap experiments by making them
part of the objective function of a sub-optimisation. A core advantage of this approach

is that the schedule of experiments is explicit, and hence easy to tune.

Finally, I discussed a methodology to build bespoke auto-tuners. The core idea is to start
with an overly naive auto-tuner, and then iteratively refine its components so that they

are more adapted to the problem at hand.
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CHAPTER 7

EVALUATION

In this chapter, I evaluate the use of BOAT via the three case studies originally presented
in Section 3.1.1: (i) the garbage collection case study in which I tuned configuration
flags to minimise the tail latency of a database, (ii) the sort case study in which I tuned
decision trees which dynamically dispatch arrays to appropriate sort procedures and (iii)
the neural network case study in which I tuned the scheduling of the training of a neural

network on a distributed cluster.

The case studies were designed to show a diverse range of contexts in which auto-tuning
is beneficial. They presented different challenges. The garbage collection case study
showed a situation in which off-the-shelf auto-tuners are amenable. Hence, the goal was to
demonstrate that bespoke auto-tuners improved convergence even in these simple settings.
The sort case study had a configuration space with many dependencies. It therefore
required the advanced use of decomposition methods. Finally, the behaviour of the system
in the neural network case study had many interacting components. Thus, it involved

building an elaborate probabilistic model.

For each case study, I built a bespoke auto-tuner using BOAT and evaluated its conver-

gence in a range of settings. This evaluation focuses on quantifying two properties:

1. The benefits of auto-tuning. Showing that one-size-fits-all configurations yield

sub-optimal performances.

2. The need for a bespoke auto-tuner. Showing that my auto-tuners reduce con-
vergence time when compared to off-the-shelf optimisers. I compare my performance
with OpenTuner [AKVT14] which dynamically adapts its optimisation algorithm
to ones that perform well, and Spearmint [SLA12] which implements traditional

Bayesian optimisation.

131
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7.1 Garbage collection case study

The garbage collection (GC) case study is the simplest of the three case studies presented
in this chapter. It only has three configuration parameters. Hence it did not require the
use of decomposition methods to perform the numerical optimisation. The goal of the
case study was to minimise the 99th percentile latency of a database application for a
range of workloads. Section 7.1.1 shows the design of the BOAT auto-tuner which is then

evaluated in Section 7.1.2.

This case study was designed and executed in collaboration with Michael Schaarschmidt
who narrowed the original experiment and configuration space and implemented a first

version of the optimisation.

7.1.1 Design of the BOAT autotuner

This subsection describes the construction of the BOAT auto-tuner used in this case study.

Configuration space. 1tuned the young generation size, survivor ratio and max tenur-
ing threshold flags of the CMS collector [YL96], which is used by default by Cassandra.

Objective function. 1 configured a single 8 core node to run Cassandra [Apal6] with
a 8 GB fixed heap space to model a medium-sized web application. I measured the 99th
percentile latency using the Yahoo! Cloud Serving Benchmark (YCSB) a popular and
well recognised database evaluation benchmark [CST*10] which has become the standard
for the benchmarking of NoSQL databases [RGVST12, AB13, KGE"15]. YCSB was run
on a 24 core machine co-located in the same network. Each experiment was run for 15
minutes. I ran three separate optimisations using YCSB workloads A (50% reads, 50%
updates), B (95% reads, 5% updates) and D (95% reads, 5% inserts) (workload C has

100% reads and is not GC-sensitive). YCSB workloads accessed 5 million records.

Model. My probabilistic model, introduced in Section 3.2.1, is composed of three semi-
parametric models. It predicts the rate and average duration of minor GCs as a function
of the flag values. It then predicts the 99th percentile latency as a function of these
statistics as well as the flag values. My analysis showed that the frequency at which

major GCs occurred was too low to have an impact on 99th percentile latency.

['included in the parametric part of each semi-parametric model some intuition about the
behaviour of the system. The GC rate model, described in section 4.3, models the rate of
GCs as inversely proportional to the size of the eden heap region. I also found that the
duration of minor GCs tends to increase with the size of the eden and the max tenuring
threshold parameter. This was declared in the GC duration model’s parametric part.
The 99th percentile latency tends to be affected by two properties of GCs: their average

duration and the fraction of time spent in GCs. The parametric part of the latency model
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Figure 7.1: Results for YCSB workloads A, B and D.

includes linear penalties for each of these two quantities. These models are too simplistic
to capture the full underlying behaviour of the computation, but they do grasp the overall
trend. This is sufficient to make the BOAT-based optimiser rapidly converge towards high

performance areas.

Numerical optimisation. The configuration space only has three parameters and
hence I do not use decompositions. I do use the approach of Section 6.3, in which I use
Thompson sampling to generate multiple good configurations and select the one which

maximises the expected improvement.

7.1.2 Results

Comparison with Cassandra’s default configuration. 1 ran the bespoke auto-
tuner for 10 iterations. After each optimisation, I re-evaluated the optimised configuration
and compared its 99th percentile latency with the default Cassandra configuration. The
results are shown in Figure 7.1. Error bars are too small to be displayed in the figure as
standard deviations were consistently below 1 ms (all results averaged over 3 runs). The
optimised configuration outperforms the Cassandra default configurations by up to 63%.
All optimisations converged to within 10% of the best found performance by the second

iteration, after 30 minutes.

I found that the optimised configuration used large eden size, making minor collections
longer but less frequent. After inspection I noted that this effectively improved the batch-
ing of the collection, therefore reducing the total work. Optimised configurations spent
well under 1% of their time performing minor collections, whereas in Cassandra default

configuration’s case, this was around 4%.

Comparison with other auto-tuners. The previous results show tuning does yield
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Figure 7.2: Convergence of the frameworks on workload B.

performance improvements over the default Cassandra configuration. I now consider
whether generic auto-tuners would be able to yield similar performance improvements
in the same timescale. Figure 7.2 compares the bespoke auto-tuner’s performance with
OpenTuner [AKV*14] and Spearmint [SLA12], which I ran for thirty iterations. I ran
each optimisation three times. For each iteration, I report the median, min and max
of the best 99th percentile latency achieved so far. We see that within two iterations,
the bespoke auto-tuner consistently found a high performance configuration, after thirty
minutes of optimisation. In contrast, it is only at the 16th iteration that one of the other

framework’s median value reaches a good performance, after four hours of optimisation.

This case study shows that adding only a little structure to an optimiser can reduce its
convergence time. The full probabilistic model fits in under 100 lines of C++ code. The
next section presents the sort case study, which required more structure in order for the

optimiser to converge.

7.2 Sort case study

In this case study, I optimised a sorting procedure based on std::sort. The std: :sort
implementation consists of a hybrid implementation of insertion sort and quicksort. A
single parameter specifies the balance between the two algorithms. As noted by Ansel
et al. [ACWT09], the optimal value of this parameter is dependent on the underlying
hardware architecture. Furthermore, because insertion sort performs better on almost

sorted arrays, the optimal parameter value is also dependent on the input array.

To tackle a complex input distribution, where some of the arrays may be almost sorted

and others not, I defined a decision tree parameter space, as presented in Section 3.3.2.
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Queries of the tree can scan the first elements of the input array, at a computational
cost, and inspect how sorted they are. Leaves of the tree specify a value for block_size.
The optimal tree configuration is dependent on the input distribution of arrays and the

underlying hardware.

Configuration space. 1 optimised decision trees of maximum depth 4. Queries at
each branch of the tree have two configuration parameters. First, scan_length which
sets the length for which an input array will be scanned by the query. When scanning
an array, the query counts the number of adjacent pairs of elements that are unordered.
Second, threshold which is compared with the number of unordered of elements counted
so far — from the root of the decision tree. If an array has more unordered elements
than threshold, it is dispatched to the right sub-tree. Otherwise, it is dispatched to the
left sub-tree. The leaves contain a single parameter block_size specifying the point at
which quicksort will stop recursing and insertion sort will be used instead. For simplicity,

block_size is constrained to be a power of two.

Objective function. For each experiment, I used 1000 arrays as a representation of an
input distribution. My procedure to generate random arrays takes as input three param-
eters: A\, x,, and o and generates each array independently. It samples the length of the
array from length ~ Poisson(\) and samples a parameter rd_changes ~ Pareto(x,,, ).
It then generates a sorted array of that length and applies rd_changes random mutations
to it.

When evaluating a configuration’s performance, the objective function outputs the deci-
sion tree to code, compiles it, and runs it on the input distribution. For each array, it

measures the total time of the procedure as well as the time to sort the array at the leaf.

Model. The model predicts the average time required to sort the 1000 arrays for a given
configuration. It does so by modelling each array’s performance individually. It models
the path of arrays down the decision tree, predicting the time required to perform the
scan at each branch using a linear model called ScanModel. At the leaves, it predicts the
time to sort an array using a semi-parametric model called SortModel. The parametric
part of SortModel is only concerned with the quadratic part of insertion sort. It predicts
the array’s sort time as a function of gy, the number of unordered elements in the

array, and bs;, the value of the block_size parameter at the leaf:
time(bsy, Ugrray | 01, 02) = 61 bsz Ugrray

where ¢, and 05 are two parameters of the probabilistic model. The non parametric model
uses a treed Gaussian process, as described in Section 4.5, to model the difference between
the parametric model and the observed sort times. It takes as input wgprey, bs; and the

length of the array.

Note that very little structure was added into the parametric part of SortModel. I initially
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length | x,, «
Distribution I 10000 2 0.5
Distribution II 10000 | 500 1.5
Distribution III | 30000 | 20 0.7
Distribution IV | 100000 | 2 0.5
Distribution V| 100000 | 100 0.5
Distribution VI | 30000 | Random shuffle

Table 7.1: Hyper-parameters of each input distribution.

designed the model to be more complex, taking into account the computational complexi-
ties of insertion sort and quicksort. What I found was that this model performed poorly as
the true execution procedure was too intricate to be accurately modelled parametrically.
This illustrates the point that, when designing a bespoke auto-tuner, one should always
start with the simplest possible implementation and add structure incrementally. In the
end, the parametric model I settled on was sufficient to prevent the optimisation from
exploring very poor regions of the configuration space. Configurations executing insertion

sort on unsorted arrays were discarded. However, it did little modelling work.

Numerical optimisation. The numerical optimisation of the decision trees is the
most complex one of the three case studies. It effectively performs Thompson sampling.
First, it samples a model and uses it to predict — for each array and each valid block_size

value — the associated sort time.

Then, I used the approach inspired by reinforcement learning that was described in Section
5.5 and evaluated in the context of this case study in Section 5.6. The procedure uses a
probabilistic model which predicts the best average sort time achievable by a tree, given
a distribution of arrays and a maximum depth for the tree. I designed a semi-parametric
model for this task. It takes as input a list of arrays along with their predicted sort time
for each block_size. It computes the best possible average sort time — if each array used
its best block_size value — and the worst possible sort time — if all arrays were forced to
use the same block_size value. Then, based on statistics of the array distribution and

the maximum depth of the tree, it predicts a value between these two bounds.

As explained in Section 6.3, I used a single model sample per iteration of the Bayesian
optimisation, effectively performing Thompson sampling. This was done to reduce the cost
of the numerical optimisation which dominates the overall optimisation. The exploration
properties of the procedure were therefore worse than that of the other two case studies.
Some of the configurations selected for evaluation were known to be unlikely to perform

well. Hence, I ran each optimisation for twenty iterations.

Comparison to std::sort. I applied my auto-tuner to arrays generated by the seven
distributions presented in Table 7.1. Figure 7.3 shows the normalised average sort time

of each optimised implementation on each distribution.
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Figure 7.3: Normalised average sort time of the optimised decision trees on each array dis-
tribution. Times are normalised per row, using the best achieved average sort time for that
distribution. Results obtained on an Intel Core i7-3770, with 8 hyper-threads.

It is worth noting three points. First, the optimised configuration systematically outper-
forms std: :sort (right column). This is because std: : sort’s implementation was tuned
to be efficient on purely random arrays, and hence it fails to achieve optimal performance
in other contexts. Even for purely random arrays (Distribution VI), its performance is
sub-optimal because its block_size value is not adapted to the underlying machine. The
decision tree optimised on Distribution VI had no branches. In its single leaf, it had the

optimal value for block_size.

Second, for each input distribution, the corresponding optimised implementation had the
best performance (the white diagonal), confirming that we were able to tune the decision
trees accordingly. Third, no implementation performed well on all input distributions (no

white column) suggesting a “one size fits all” approach is not appropriate here.

Comparison with other auto-tuners. Figure 7.4 compares the bespoke auto-tuner’s
performance with OpenTuner [AKV'14] and Spearmint [SLA12], which I ran for sixty
iterations on array Distribution IV. I ran each optimisation three times. For each iteration,
I report the median, min and max of the best average sort time achieved so far. We see
the bespoke auto-tuner quickly converged to good configurations. On the other hand, the
off-the-shelf auto-tuners still had high variance and poor median performance after 60

iterations.
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Figure 7.4: Convergence of the frameworks on array Distribution IV. Experiments were carried
on an m4.xlarge EC2 instance.

I discuss two aspects of this experiment. First, the variance of the bespoke auto-tuner
best achieved performance. There is a significant difference between the median best
achieved performance (512ps) and the maximum best achieved performance (585ps). I
attribute it to the variance due to EC2’s virtualisation. The optimisation that achieved
the worst result also performed significantly worse than the other two optimisations on

the first iteration, despite them using the same initial configuration.

Second, the total runtime of the optimisation. The BOAT based auto-tuner suffers from
an overhead of approximately 15 minutes per iteration due to the numerical optimisation.
This dominates the overall optimisation cost. An entire optimisation took approximately
six hours to complete. However, the other auto-tuners ran in approximately the same
time. Their total optimisation time was around four hours. This is because they evaluated
configurations which applied insertion sort to large unsorted arrays. Hence, I expect that
my bespoke auto-tuner would finish its optimisation significantly faster than the other
frameworks when applied on a distribution with larger arrays, or fewer almost sorted

arrays.

This concludes the sort case study. The main take away message from this case study
is that complex decomposition approaches were successful at finding efficient configura-
tions. When initially tackling this case study, I had considered the use of heuristic tree
optimisation methods. However, the results were significantly poorer. In particular, op-
timised implementations often did not perform best on their input distribution. Hence,

the equivalent of Figure 7.3 did not show a white diagonal.
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7.3 Neural networks scheduling case study

I now present my neural network case study. Neural networks have seen a surge of
interest in recent years, and many frameworks have been proposed to facilitate their
training [CKF11, Thel6, JSDT14, AAB*15, CLL*15]. In this case study, I built a be-
spoke auto-tuner on top of TensorFlow, a recent framework for distributed machine learn-

ing [AABT15].

The API offered by TensorFlow to machine learning applications is low-level. Users must
manually set which of their available machines should be used and how much work each
should do. TensorFlow offers no automated approach to balance workloads in a distributed
setup. This task is especially difficult in heterogeneous settings, where the optimal load
of a machine depends on its computational power. Further, the synchronisation cost of

machines can be high, and hence the slowest workers should not be used at all.

Using BOAT, I built a bespoke auto-tuner that balances a TensorFlow workload. The
tuner takes as input a neural network architecture, a set of available machines and a batch
size (an algorithmic parameter described in the next subsection). It then performs ten
iterations, each time evaluating a distributed configuration, before returning the one with

highest performance. The tuning always finishes within two hours.

The next subsection gives a background of the computation used to train neural networks

in a distributed setting.

7.3.1 Training Neural Networks with Stochastic Gradient De-

scent

Stochastic Gradient Descent. Neural networks are typically trained with backprop-
agation using Stochastic Gradient Descent (SGD). Each iteration, a random batch of
samples from the training set is drawn. The number of samples is called the batch size.
Using each sample independently, an estimate of the gradient of the network parameters
with regard to a loss function is computed. This is done via backpropagation. Gradient

estimates are aggregated and used to update the neural network parameters.

Higher batch sizes lead to more parallelism, but lower batch sizes can result in better ac-
curacy of the final neural network [Kril4, KMN*16]. We cannot quantify in advance the
impact of the batch size on accuracy, as it depends on the training data, but the experi-
ments presented in this section expose the trade-off between batch size and computational

speed.

Distributed SGD. The parameter server architecture [DCM™'12] typically used for
distributed SGD employs two types of tasks:
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e Parameter Server tasks synchronise the gradients at every iteration and update
the neural network’s parameters. Each parameter server task is associated with a

section of the parameters, e.g. the first layer.

e Worker tasks compute the gradient estimates. FEach worker is assigned a set of
inputs. Each iteration, the worker fetches the updated parameter values from the
parameter servers. It then computes the gradient estimate using the inputs it has
been assigned. Finally, it sends these gradients back to the relevant parameter

server.

Typically, stochastic gradient descent is implemented synchronously. A barrier after each
iteration forces workers to compute gradient estimates using the same parameter values.
Some systems implement asynchronous SGD [RRWN11], which removes this barrier and
lets workers compute gradients on stale parameter versions. This improves computa-
tional performance, especially with large numbers of workers, but can hurt convergence
and decrease the final result quality [CMBJ16]. In this case study, I only consider the

synchronous version.

7.3.2 Tuning Distributed Stochastic Gradient Descent

When used to train neural networks, SGD can take hundreds of thousands of iterations,
requiring days to complete. However, since the same computation is at performed every
iteration, we can evaluate the computational performance of an SGD implementation by
only running a few iterations. The goal in this case study is to optimise the distributed
scheduling of a neural network in order to minimise the average iteration time, in a total

optimisation time that is small compared to the training time.

Configuration Space. 1 tuned the scheduling of a parameter server architecture to
minimise the average iteration time. Given a set of machines, a neural network architec-

ture and a batch size, the auto-tuner optimises:

e work: vector of boolean parameters, specifies which subset of machines should be

used as workers.

e ps: vector of boolean parameters, specifies which (possibly overlapping) subset of

machines should be used as parameter servers.

e inputs: number of inputs allocated to each worker and device. Given a working
machine m, inputs,, refers to the number of inputs allocated to that machine. The
total number of inputs across all machines must sum up to the batch size. Further-
more, given a device d on a worker machine, inputsy refers to the number of inputs
allocated to that device. For a working machine m, the sum of inputs allocated to

its devices must sum up to inputs,,.
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There are effectively two boolean configuration parameters per machine specifying whether
it should be a worker and/or a parameter server. There are also one to two integer param-
eters per machine, depending on whether it has a GPU, specifying its number of inputs.
In my experiments, I tuned the scheduling over 10 machines, setting 30-32 parameters.
In the largest experiment there are approximately 10% possible valid configurations, most

of which lead to poor performance.

Note that the auto-tuner only considers system parameters. The computation performed
will be the same independently of the configuration used. In particular, the selected

configuration does not affect accuracy.

Objective function. To measure the performance of a setting, the objective function
first turns the configuration into python code executing TensorFlow. Then, it performs
twenty iterations of SGD. The first few iterations often show a high variance in perfor-
mance and hence it returns the average time of the last 10 iterations. I found this was
enough to get accurate measurements, and that repeating configurations showed little

underlying noise.

7.3.2.1 Probabilistic model of distributed SGD

The probabilistic model takes as input three arguments: work, inputs and ps_size. The
first two are the configuration parameters described above. The vector ps_size contains
floats specifying the size of the parameters hosted on each machine. This is 0 for non

parameter server machines.

This is more informative than ps, the set of machines used as parameter server, which is
what the auto-tuner directly controls. When given the list of parameter server machines,
the python framework attempts to distribute the load in a uniform way. However this is
still done at the granularity of individual tensors and hence some imbalance remains. For

any setup, the python framework can be queried to get the resulting load distribution.
The model constitutes of three parts.

Individual device computation time. For each device - CPU or GPU — on a worker
machine, I modelled the time needed for it to perform its assigned workload. This time
should be near linear with respect to the number of inputs. However, SIMD architectures
benefit from parallelism in the computation and hence, as the number of input grows, the
performance per input of the computation sometimes increases. I explore this behaviour
in more details in Section 7.3.4.2. T used a Gaussian process to model the time per input

as a function of the number of inputs.

computation_time(d) = inputs,; X GPg(inputs,)

I fitted one individual device model per type of device available (e.g. c4.4xlarge CPU, or
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Nvidia GPU K520).

Individual machine computation time. For machines with multiple devices, the
gradient estimates were summed locally on the CPU before being sent to the parameter
servers. The cost of transferring data to and from the GPUs and aggregating the gradients
is non negligible and hence I modelled it as well. T used a Gaussian process to map the
difference between the maximum time needed by any device on the machine and the total

time needed by the machine. For a machine m

computation_time(m) = max computation_time(d) + GP,({inputs, : d € m})
em

Communication time. 1 modelled the communication time as a semi-parametric
model. The parametric model learns a connection_speed parameter per type of machine

(e.g. EC2 instance type). It predicts the total communication time as

transfer(m)

max :
m € machines connection_speed,,
where transfer(m) is the amount of data that must be transferred each iteration by

machine m. It can be computed using:

1
Etmnsfer(m) =ps,, X (|work| — I(work,,))+

I(work,,) x (network_size — ps,,)

where |work| is the total number of workers and network_size is the size of the entire
neural network. The first terms model the amount of data m must transfer as a parameter
server. The second, the amount of data it must transfer as a worker. The preceding !/
models the fact that there are two transfer windows per iteration, one to send neural

network parameters, the other to send gradients.

I used a single communication time model for the entire cluster. Finally, the model pre-
dicts the total time of an SGD iteration as the sum of the maximum predicted individual
machine time and the communication time. The full model fits under 500 lines of C++

code.

Since the probabilistic model simulates individual device and machine computation times,
it benefits from real measurements of these properties. The objective function therefore
also measures, for each experiment, the time needed by all devices and machines to

perform their assigned workload.
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Figure 7.5: Top decompositions of the neural network case study.

7.3.2.2 Numerical optimisation

At each iteration, the numerical optimisation Thompson samples 100 configurations. It
then selects the one with the best expected improvement. To perform the numerical

optimisation on a model sample, I used a hierarchical decomposition.

On the highest level, I used a simulated annealing procedure to optimise the boolean
values of the work and ps configuration parameters, which specify which machines are
workers and which are parameter servers. This is illustrated in Figure 7.5. I made the
objective function of simulated annealing use memoisation to avoid repeating the same

sub-optimisation multiple times.

On a second level, I optimised the number of inputs allocated to each machine. 1T did so
using the decomposition technique for load balancing described in Section 5.3.2, which
itself uses two levels. It creates a fictitious parameter maz_computation_time and opti-
mises its value. The loads of the workers are then optimised individually, so that each
worker processes as many inputs as possible while still performing its computation in a
time shorter than max_computation_time’s value. max_computation_time can be opti-
mised with a simple binary search. If all the inputs get allocated it is reduced, otherwise

it is increased.

Finally, on the bottom level of the decomposition, I optimised the load balance between
different devices on a worker using the DIRECT algorithm. Note that the load balance
optimisation technique that I use across workers would not work here as the device ag-
gregation model may predict that, for example, it is beneficial for the GPU to finish its
computation before the CPU.
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Instance Type | # Hyperthread GPU i& pelésettlég
g2.2xlarge 8 1K520 | 0 | 1 2
cd.2xlarge 8 / 6 1 3 5
cd.4xlarge 16 / 5 [ 3 5
c4.8xlarge 36 / 5 1 3 1

Total 10 | 10 | 10

Table 7.2: Machine and setting specifications.

7.3.3 Results

Experimental Setup. 1 evaluated the auto-tuner on Amazon EC2 using TensorFlow
version v0.8. There are three inputs to the tuning procedure. The machines available,

the neural network being trained and the batch size.

I constructed three machine settings, described in Table 7.2, which are designed to recreate
heterogeneous environments. FEach contains 10 machines of varying computational power.
Settings B and C contain one and two GPU instances respectively. While neural networks

perform most efficiently on GPUs, I tried to design realistic settings where a variety of
CPUs and GPUs were available.

I evaluated each of the three hardware setting with the three neural networks referenced
in Table 7.3, using four batch sizes for a total of thirty-six experiments. The four batch
sizes for each network were selected to explore the trade-off with processing speed. Recall
that batch size is an algorithmic parameter equalling inputs per iteration, and that lower

batch sizes tend to improve final result accuracy at the cost of less parallelism.

A few trade-offs are important to note:

e The size of the neural network varies by almost an order of magnitude from Google-
Net(26.7MB) to AlexNet(233MB). Since the parameters of the network need to
be exchanged between parameter servers and worker machines every iteration, we
should expect this to have an influence on the communication part of the protocol.
Specifically, we should expect that configurations optimised for the AlexNet network

use fewer workers than those optimised for GoogleNet.

e The type of the network has an impact on its performance. While the GPUs in-
stances used systematically outperform the CPU instances, perceptron architectures
tend to show a smaller gap in performance than convolutional ones. Hence we should
expect configurations tuned for SpeechNet to make more use of CPU machines than

those optimised for the similar sized AlexNet.

I reference experiments using a shortened name, for example, C-AlexNet-28 refers to the

experiments of scheduling AlexNet on Setting C with a batch size of 28.
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Neural Network name | Input Type Network Type | Size (MB)
GoogleNet [SLJT15] Image Convolutional 26.7
AlexNet [Kril4] Image Convolutional 233
SpeechNet [SFD14] Audio Perceptron 173
Ops (Millions) | Batch size range
1582 20— 29
714 28 — 2l
45.3 213 — 216

Table 7.3: The three neural networks used in the experiments. Size is the size of the parameters
which must be transmitted to and from workers each iteration. Ops is the number of floating
point multiplications per input. The name “SpeechNet” is introduced here for clarity — this
network was recently proposed for benchmarking [Chi].

Comparison with simple configurations. To show the importance of tuning, I

compared the optimised configurations with two simple configurations

e Uniform Devices: Time per iteration when splitting the load uniformly across
devices. In this context, each machine is used both as a worker and as a parameter

server.

e Uniform GPUs: Time per iteration when splitting the load uniformly across
GPUs. This only applies to Settings B and C as Setting A does not have a GPU. In
this context, only machines with GPUs are used as parameter servers. I empirically

found this to be the best parameter server placement.

Figure 7.6 shows the outcome of each experiment. The optimised configurations signifi-
cantly outperformed simple configurations on most experiments. The greatest improve-
ment, in the context of C-SpeechNet-216, shows a speed-up of 2.9x. Looking at the results

closely shows that two factors lead to better performance:

e Better load balancing: Comparing “Uniform Devices” configurations with the
optimised configurations on GoogleNet shows this well. Both used all available de-
vices but the optimised configurations are significantly faster due to better balancing

of the workload across workers.

e Better selection of workers: Common wisdom says that GPUs are far superior
for computation on neural networks, but in multiple cases performance was increased

by over 2x by adding CPU machines and tuning the system correctly.

Furthermore, there are a number of insights that can be gathered from Figure 7.6 on how

the different contexts impacted the optimised configurations.
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Figure 7.6: Normalised time per input (lower is better) of simple and optimised configurations on each experiment. Within each sub-graph, results
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CHAPTER 7. EVALUATION 147

e Impact of batch size: In each experiment, increasing the batch size systematically
resulted in the use of a greater (or equal) number of workers. This is what is expected
— increasing the batch size increases the amount of computation with no change on

the communication cost.

e Impact of network size: We see that the optimised configuration of smaller
networks, like GoogleNet, took advantage of all machines as they incurred a low
communication overhead. In comparison, AlexNet and SpeechNet were only able
to leverage extra machines when there was enough work to perform, i.e. when the
batch size was large. GoogleNet is by far the smallest network and hence it had
a low communication cost, always taking under 20% of the iteration time. In the

context of the larger AlexNet and SpeechNet, this rose up to 40%.

e Impact of the neural network type: The optimised configurations of Speech-
Net used more machines than those of AlexNet for a similar computation cost. For
example, C-AlexNet-2!! and C-SpeechNet-2!% had similar performances in the GPU
only setting, but SpeechNet improved significantly with more CPU machines. Part
of this can be explained by the fact that SpeechNet is slightly smaller in size, and
hence has a lower communication cost. The major factor, however, is the reduced
gap in between CPU and GPU performance on the perceptron type of neural net-
work architecture. The optimised configurations for AlexNet on setting B placed
approximately 3.4 times more inputs on the available GPU than on each c4.8xlarge
CPU. For SpeechNet on the same setting, this ratio was 1.6

Each of these items confirms the intuition that “one size fits all” approaches are not

appropriate, as optimised configurations are influenced both by hardware and workload.

Finally, it is interesting to note the exposed trade-off between batch size and processing
speed. Recall that batch size is an algorithmic parameter and lower batch sizes tend
to produce better accuracy of the final neural network. Each sub-graph of Figure 7.6
shows how much was gained, in terms of processing rate, by increasing the batch size and
hence the parallelism of the computation. With my auto-tuner, users can find optimised
configurations for different batch sizes and easily explore this Pareto-front, hiding the

details of the configuration used.

Comparison with other auto-tuners. 1 now consider whether the benefits of auto-
tuning could have been achieved with an off-the-shelf optimisation tool. Figure 7.7
compares the performance of the bespoke auto-tuner with OpenTuner [AKV*14] and
Spearmint [SLA12], which were each ran for thirty iterations. Each optimisation was ran
three times, I report for every iteration the median, min and max performance of the best

configuration found so far.

The bespoke auto-tuner significantly outperformed generic auto-tuners. The median best

configuration achieved by OpenTuner is 8.71s per SGD iteration, more than twice as slow



148 7.3. NEURAL NETWORKS SCHEDULING CASE STUDY

%100_000 - OpenTuner ||
£ 50 ¢~ Spearmint
+J €]

= R + BOAT

o

et

g T 5-0-0-0-0-0-4

:‘5" 10! i1l 1%%%1&1@@@@@@@00_
A

- 5

0

(O]

m

0 5 10 15 20 25 30
I[teration

Figure 7.7: Convergence of the frameworks on C-SpeechNet-216.

as BOAT’s median time (4.31s), and not much faster than the Uniform GPUs configu-
ration (9.82s). The reason this tuning task is difficult is because the space of efficient
configurations is extremely narrow — assigning one of the workers too much work creates

a bottleneck and yields poor performance.

All of the experiments finished the ten iterations within two hours. As neural networks
training typically lasts over a week, the performance gains largely outweigh the tuning
overhead, making this auto-tuner practical in realistic settings. The largest experiments
involved 32 dimensions. I expect that the auto-tuner retain the same convergence in larger

settings as there would be a proportional increase in the number of runtime measurements.

7.3.4 Querying the learnt models

One of the advantages of optimising configurations with a structured probabilistic model is
that, after the optimisation, we can query the model to understand the system’s behaviour.
In this subsection, I explore two properties of the learned models. First, I analyse the
communication model inferred after the optimisation of A-AlexNet-2!°. Then, I query

the individual machine models inferred from optimising B-GoogleNet-27.

7.3.4.1 Querying the communication model

A surprisingly important aspect of the tuning is the ability of the optimiser to detect
machines with fast network connections and to use them as parameter servers. I investi-
gate the impact of parameter server placement in the context of A-AlexNet-210. Table 7.4
shows the details of the optimised configuration. Note that only three of the six available

worker machines are used as parameter servers. Figure 7.8 shows the breakdown of the
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2.88s(60.6%)

1.875(39.4%)

Communication Time

Figure 7.8: Distribution of the computation and communication costs in the optimal found
configuration of A-AlexNet-210.

c4.2xlarge c4.4xlarge c4.8xlarge
PS |[N|N|N|N N N N Y(19MB) | Y(147MB) | Y(67MB)
Work | N | N | N | N |Y(96) | Y(96) | Y(180) Y(180) Y(236) Y(236)

Table 7.4: Optimal configuration of A-AlexNet-219. First row describes whether a machine is
used as a parameter server — in brackets is the size of the parameters hosted on that machine.
As mentioned in section 7.3.2, this is a quantity the auto-tuner can observe but does not control
directly. It is dependent on the number of parameter server machines. The second row shows
whether a machine is used for work — in brackets is the number of inputs scheduled on that
machine.

costs for that model. Communication is an important part of the execution, taking 39.4%

of the total runtime.

I am able to query the model on different configurations and observe their predicted
impact. For example, I find that using all six working machines as parameter servers is

predicted to increase the communication time from 1.87 to 2.74 seconds.

I investigate the parameters inferred by the model. Table 7.5 shows the distribution of
network connection speeds inferred by the model against the ones advertised by Amazon
for the same instances [Ama]. Although the model’s inferred parameters do not directly
match the advertised values, they do follow the correct trend. Furthermore, they were
sufficiently accurate to make the optimisation converge to a good configuration in which
the majority of the neural network’s parameters were placed on instances with fast network

connections.

Instance Type | Modelled time per GB(s) | Advertised time per GB(s)[Ama]
c4.2xlarge 4.12 +0.69 8.0
c4.4xlarge 3.25 + 0.69 4.0
c4.8xlarge 2.22 +0.45 2.0

Table 7.5: Connection factors inferred by the model after 10 iterations of A-AlexNet-2'°.
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Computation Time

Communication Time

Figure 7.9: Distribution of the computation and communication costs in the optimal found
configuration of B-GoogleNet-27.

c4.2xlarge c4.4xlarge
PS Y (5.20MB) | Y(3.52MB) | Y(3.71MB) N N N
Work Y(8) Y(8) Y(8) Y(13) | Y(13) | Y(13)
c4.8xlarge g2.2xlarge
Y(7.05MB) | Y(3.68MB) | Y(3.54M) N
Y(12) Y(12) Y(12) Y (4-CPU | 25-GPU)

Table 7.6: Optimal configuration of B-GoogleNet-128. First row describes whether a machine
is used as a parameter server, and if so, the size of the parameters it holds. Second row shows
whether it is used for work, and if so, the number of inputs scheduled on each of its devices.

7.3.4.2 Querying the individual machine model

Table 7.6 shows the optimised configuration for B-GoogleNet-27. The breakdown of costs
for that setting is shown in Figure 7.9. There are two surprising features of this optimised

configuration which I discuss here.

First, the parameter server placement in the optimised configuration seems sub-optimal —
c4.4xlarge machines could be used instead of c4.2x1large as they have higher bandwidth.
However, it is unlikely that this improvement would have a significant impact. The
best average communication time that I observed across GoogleNet experiments was 0.12

seconds, only 0.01 seconds faster than this configuration.

Second, the auto-tuner assigned 12 inputs to each of the c4.4xlarge machines, which is
one more than the loads assigned to the more powerful c4.8xlarge machines. Querying
the model confirmed that for low input sizes c4.4x1large was predicted to have the higher
performance. I investigated this by performing a series of experiments on a c4.4xlarge
and c4.8xlarge instances. These results along with the model predictions are shown in
figure 7.11.

The experiments confirm that the auto-tuner was being sensible when placing one more
item on c4.4xlarge instances than on c4.8xlarge. For low batch sizes, the large number

of cores of c4.8x1large instances (36) leads to a significant overhead. This is despite there
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Figure 7.10: Inferred time to compute the gradient of GoogleNet by individual machines.
The shaded area shows the confidence interval. Note that the model is uncertain about the
regions far from the optimum. In the region of interest, 10 — 15 inputs, it gives a slight edge to
c4.4xlarge machines.
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Figure 7.11: Empirical time to compute the gradient of GoogleNet by individual machines.
Each data point is averaged over 50 iterations with a 10 iterations warm up. Error bars show
the uncertainty of the average.



152 7.4. SUMMARY

being large amounts of parallelism within the computation of the individual inputs. This
highlights the importance of auto-tuning — a rule of thumb approach would have likely

made a sub-optimal use of the machines available.

These results also highlight the benefits of BOAT’s grey box approach. Querying the
model offers an easy way to understand the decisions made by the optimiser, something
that would be difficult to achieve with a standard black box auto-tuner. This can help
systems developers diagnose inefficiencies and bottlenecks. In this particular example,
they may reconsider their implementation of convolutional neural networks on many core

machines.

7.3.5 Conclusion

In conclusion, I built a bespoke auto-tuner to optimise the distributed scheduling of the
training of neural networks using BOAT. In the majority of cases, the auto-tuner improved
performance over naive configurations. The auto-tuner was able to adapt to different
loads, network types and hardware. When applied to this task, standard auto-tuners

were not capable of converging to good configurations in a reasonable time.

An interesting outcome of the results was that, in mixed CPU and GPU clusters, using
CPUs could significantly improve performance. Finally, I showed the benefits of having a
structured probabilistic model of the system being optimised. I used it to understand the

trade-offs tackled by the tuned configurations and diagnose inconsistencies in the system.

7.4 Summary

This chapter presented the application of BOAT to the three case studies presented in

this dissertation. The main conclusions are as follows:

e In all cases, the bespoke auto-tuner surpassed the performance of its off-the-shelf
counterparts. It converged in fewer iterations to high performance configurations.
In some cases, the optimisation problems were too difficult for off-the-shelf auto-
tuners to converge in a reasonable time. On the other hand, the bespoke auto-tuner
consistently converged within ten to twenty iterations. This supports the thesis
made in this dissertation that the construction of bespoke auto-tuners makes auto-

tuning applicable in previously unexplored contexts.

e Optimised configurations can show significant performance improvements over ‘one-
size-fits-all” approaches. In the garbage collection case study, optimising garbage
collection flags reduced Cassandra’s 99th percentile latency by up to 69% over de-
fault settings. In the neural network case study, the optimised configurations re-

sulted in speed-ups of up to 2.9x compared to simple alternatives.
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e For simple optimisation problem, such as the garbage collection case study, adding
only a little structure was shown to reduce convergence time. Hence bespoke auto-

tuners can be a sensible choice in simple settings.

e For optimisation problems with complex configuration spaces, such as the sort case
study, the decomposition approaches proposed in Chapter 5 were shown to be suc-

cessful at tackling the numerical optimisation stage of a Bayesian optimisation.

e The probabilistic models used by BOAT can be queried to profile the system’s be-
haviour. In the neural network case study, I used them to deduce the effective
network bandwidth of different EC2 instances. I also diagnosed that, in some con-

texts, machines with more CPU cores had worse performance.

Together, these results show that BOAT can be used to build bespoke auto-tuners with
good convergence properties. In the next chapter, I discuss similar approaches that are
used in the context of computer systems.
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CHAPTER &

RELATED WORK

This chapter discusses approaches used in the context of computer systems that are related
to BOAT. What distinguishes BOAT from most of the works presented in this chapter is
that BOAT is designed for iterative optimisation. Given an objective function, a bespoke
auto-tuner will repeatedly evaluate the objective function to find a good configuration. I

discuss applications of iterative optimisation to computer systems in Section 8.1.

Many systems instead perform preemptive optimisation (Section 8.2). They receive a
query at runtime and optimise some aspect of its schedule to maximise performance.
This is more difficult as the runtime behaviour of a query cannot be known in advance.
Hence, they rely on simple performance models, sometimes coupled with historical traces.
Some systems will also continuously monitor their current performance to adapt their

configuration runtime. I briefly discuss these approaches in Section 8.3.

Preemptive and runtime optimisation approaches are complementary to the ones pro-
posed in this dissertation. Runtime decisions are necessary to respond to a changing
environment. However, to solve trade-offs such as the balance between decision making
and actual computation, a static approach is more appropriate. This is what BOAT aims

to offer.

Section 8.4 discusses the applications of decompositions to network scheduling and opti-

misation. Finally, Section 8.5 briefly reviews related work in probabilistic programming.

8.1 Iterative optimisation of programs

This section discusses approaches which, like BOAT, perform an iterative optimisation.
I first discuss generic auto-tuning frameworks (Section 8.1.1). I then review some uses of
auto-tuning in computer systems (Section 8.1.2). Finally, I mention compilers that are

able to perform an iterative optimisation (Section 8.1.3).

155
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8.1.1 Generic auto-tuners

This subsection highlights PetaBricks [ACWT09] and OpenTuner [AKV*14], two signifi-

cant contributions in the space of generic auto-tuners.

PetaBricks is a language and compiler which allows users to express algorithmic choice.
Users implement a PetaBricks program which allows for a range of valid implementa-
tions. The PetaBricks compiler then performs an iterative optimisation to find a high
performance implementation of the program on the target machine. The compiler turns
the original program into parallel C++ code and evaluates a variety of implementations
before selecting the one with the highest performance. This optimisation is performed

using an evolutionary algorithm.

One of PetaBrick’s features as a general purpose autotuner is that it natively reasons
about algorithms that are applied on collections of elements such as arrays and matrices.
It leverages this by evaluating the performance of some configurations on reduced sized

inputs at a fraction of the cost.

An extension to the PetaBricks language allows it to leverage input features. This way, a
decision tree can be built to dispatch inputs to appropriate configurations [DAV*15]. This
is similar to the configuration space I used in my sort case study and, indeed, the authors
apply the extension to the problem of sorting. However, due to the use of PetaBricks’
parallel runtime, the results are not directly comparable to the ones presented in this

dissertation.

OpenTuner is a python library for auto-tuning. Users implement a python class with a
number of parameters that should be optimised, along with an objective function. Unlike
PetaBrick, the configuration space does not allow for the recursive parameters such as

trees.

To select the next configuration to evaluate, OpenTuner uses one of its many optimisation
algorithms, such as evolutionary algorithms, or the Nelder-Mead method [NM65]. A top-
level meta-optimiser iteratively learns which algorithms perform well on the problem at
hand and select them more frequently. All configuration-evaluation pairs are stored in a

database that is shared among algorithms.

One of OpenTuner’s main conclusions is that the optimisation should be adapted to
the problem at hand. For example, OpenTuner distinguishes between different types
of parameters. Categorical parameters are represented differently from integers. When
optimisation algorithms are executed, these properties are exposed. This is different from
traditional optimisation which usually maps a configuration into a vector of real numbers.
Similarly, the optimisation algorithm that is most used is the one that performs best on
the specific problem. In both these cases, the optimisation is adapted to the problem

at hand. This conclusion motivates the work presented in this dissertation. In order
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to perform the optimisations efficiently, we must leverage the structure specific to the

problem at hand.

It is worth noting that PetaBricks and OpenTuner were both designed to optimise pro-
grams with execution times not exceeding the seconds scale. Hence, they were able to
try thousands of different configurations in a reasonable time. This is different to the
problems tackled in this dissertation for which the optimisation budget did not exceed

twenty evaluations of the objective function.

8.1.2 Auto-tuners for system configurations

A number of auto-tuning frameworks have been developed to optimise the performance
of specific systems. In these works, estimating the performance of a configuration can be

done in a short time, allowing the auto-tuner to evaluate many configurations.

This approach is extensively used for numerical libraries so that they can adapt to the
underlying hardware. ATLAS [WD9S8] generates an optimised implementation of the
BLAS API [BDD*01] for linear algebra. Similarly, PHIPAC [BACD97] auto-tunes the
implementation of dense matrix multiplications, SPARSITY [IY01] and OSKI [VDY05]
optimise the implementation of sparse matrix kernels, FETW [FJ98] and UHFFT [MJ01]
generate optimised implementations of fast Fourier transforms and SPIRAL [PMS*04]
auto-tunes a range of digital signal processing procedures. In these works, the configu-
ration space is structured enough so that an almost exhaustive approach combined with

heuristics generates good implementations in a reasonable time.

Another area which has seen large amounts of auto-tuning work is the optimisation of
GPU code [SFLD15, NM09, MGJ13, GGXS*12]. For example, Steuwer et al. [SFLD15]
introduce a high-level language for GPU programming. They develop a set of rewrite
rules to transform programs written in their language to OpenCL code. The order in
which the rules are applied changes the resulting implementation. They search the space

of possible implementations by applying the rules in random, heuristically-guided orders.

It is rare to see iterative optimisation used for more complex systems as they are usually
more expensive to evaluate. Chopper [HNADAD15] explores the configuration space of the
Linux file system to reduce its tail latency. However, the goal was to generate an overall
improved implementation, not to tackle performance portability. Duan et al. propose
iTuned [DTBO09], which uses traditional Bayesian optimisation to tune the configuration

parameters of a database.

8.1.3 Iterative compilation

Optimising compilers use an implicit model of the runtime behaviour of the program to

select an optimised implementation. Some compilers can exploit runtime measurements
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from previously compiled versions of the program to refine this model [PH90, BKK™98,
ABCT06, CLM16]. This is sometimes referred to as profile-guided optimisation (PGO)
or feedback-directed optimisation (FDO). On a first iteration, the program is compiled
and its behaviour profiled. The program is then compiled again with the profile infor-
mation given to the compiler. This process can be repeated for multiple iterations. The
type of optimisation problems that I tackle with BOAT are more complex and profiling

information is not sufficient to deduce good configurations.

8.2 Preemptive optimisation of programs

In many contexts, a system takes as input a program or query to generate a correspond-
ing optimised implementation. This section discusses some of these approaches and their
relationship to BOAT. One fundamental difference is that BOAT based auto-tuners per-
form an iterative optimisation and hence repeatedly measure the performance of the same
program. On the other hand the approaches presented here have an implicit or explicit

model of the computation behaviour, which they use ahead of time to optimise it.

Optimising compilers. Perhaps the most common use of computer program optimi-
sation is via optimising compilers. They reason at a low-level about a program’s execution
to optimise its implementation [CT11]. While some of these optimisations yield strictly
faster programs, such as common sub-expression elimination [Coc70], other take into ac-

count an implicit model of a machine’s architecture [KKAO1].

Database compilers. In a similar way to traditional compilers, databases use perfor-
mance models to predict the behaviour of queries before their execution [Cha98, ZLC10].
They perform an optimisation over a complex configuration space to schedule the query,
but rely on the constrained scope of queries — which only use relational operators — to

make accurate predictions.

Some approaches also exploit historical data. For example, Wrangler [YAK14] uses sup-
port vector machines [Murl2] trained on previous executions. It predicts ahead of time
whether executing a task on a machine will lead to a straggler. Starfish [HLLT11] and
MRTuner [SZL*14] profile the execution of MapReduce tasks [DGO8] to optimise the
configuration parameters used for subsequent tasks. Once again, the simplicity of the
MapReduce framework makes it possible to accurately predict the behaviour of a query

ahead of time.

Cluster scheduling. 'The role of schedulers is to allocate resources to tasks. They
tackle the optimisation problem of allocating resources in the most performant or most
fair way. In some cases, this optimisation is implicit. For example, the Hadoop fair

scheduler [Had] uses a queue based approach to dispatch tasks.

Another approach is to use a cost model to evaluate the impact of scheduling decisions.
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Amir et al. propose E-PVM [AAB00] which uses such a model to schedule a single job.
Google’s Borg [VPK'15] uses a similar approach, with a different cost model designed
to reduce the fragmentation of tasks across machines. The Quincy scheduler [IPC*09]
also uses a cost model but considers all tasks and machines simultaneously. All resources
and tasks are mapped on a flow network. It uses a min-cost flow solver to find an
optimal schedule. This approach more accurately captures the optimisation problem
being tackled, although it is also more expensive. However, Firmament [GSG*16] shows

that it is possible to scale this method to modern datacenters.

The use of a cost model is similar to the approach presented in this dissertation. Both
use this model to perform an optimisation and make informed choices. However, in order
to make these choices in a reduced time, the models discussed here are simplified so that
they can be optimised in a short time. For example, min-cost flow solvers rely exclusively
on linear relationships. BOAT auto-tuners can perform optimisations over more complex

and expensive models, but will not converge in the sub-second time scale.

Cheap experiment based approaches. A recent trend in systems has been to per-
form a reduced execution of a program to infer its long term behaviour. For example,
the incoming query can be profiled on a reduced dataset or for a limited time. Then, a

statistical approach can be used to predict the query’s entire behaviour.

Paragon [DK13] is a data centre scheduler which uses collaborative filtering techniques
[Murl12] to classify incoming workloads and schedule them appropriately. The collabora-
tive filter models platform heterogeneity and the interference between co-located work-
loads. An incoming workload is executed for a few short-runs to determine its runtime
behaviour. The results are then compared with previously scheduled workloads to predict
how well the application will run on the different hardware platforms. In their subsequent
work Quasar [DK14], the authors generalise their approach to resource allocation, using

previous workload traces to predict how well an application will scale-up or scale-out.

In ProteusTM [DDK"16], Didona et al. use a similar approach to select an appropriate
transactional memory (TM) implementation for an application. It starts by profiling a
number of applications off-line to build a training set. At runtime, when a workload is
received, it uses Bayesian optimisation to explore the impact of TM implementations on
the application’s performance. It then uses the data observed throughout the optimisation

to recommend a TM implementation, using a collaborative filter and the off-line data.

Ernest [VYF*16] is a performance prediction framework for large scale data-analytics
applications. They design a parametric model to model an applications’ performance as a
function of the quantity of data and the number of machines used. Given a data analytics
application, they predict the application’s performance by first running it on a subset
of the data. They use optimal experimental design methodology [Puk93|, including the
experiment’s cost, to select the cheap experiment. The parametric model then predicts

the cost of running the full application based on the empirical measurements.
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These later approaches use generic probabilistic models to predict performance. This
works well when the domain of possible configurations is small enough. However, in high
dimensional settings, the curse of dimensionality will prevent a model from accurately
representing all possible configurations. BOAT tackles this by using bespoke models

which are engineered to resemble the system’s behaviour.

8.3 Runtime control and optimisation

In this section, I discuss systems that dynamically adapt their configuration or decisions
based on runtime measurement. In order to react well to their environments, these ap-
proaches require a high quality feedback function quantifying the system’s performance

in real time.

JIT compilers. Some Just-In-Time (JIT) compilers are capable of dynamically re-

compiling the application’s code based on its observed behaviour [GPF06, GES*09].

Runtime tuning frameworks and applications. Active harmony [cCHO02] is an
automated runtime tuning system. It allows an application to expose its configuration
knobs so they can be tuned at runtime. Underneath, it uses the Nelder-Mead simplex

method to search the domain of configurations.

Similarly, Heartbeat [HEST10] is a framework for runtime tuning. It decouples appli-
cations being tuned from the dynamic optimiser. PowerDial [HSC*11] uses Heartbeat
to dynamically tune configuration parameters to trade-off quality-of-service metrics with
power usage. Similarly, the Angstrom processor [HHK*12] is a multicore which monitors
the hardware state at a low granularity. It uses the Heartbeat framework to coordinate

some of its hardware properties, such as each core’s voltage.

Runtime control in systems. Computer systems often monitor the performance of
their assigned tasks to schedule them accordingly. ARIA [VCC11] and Jockey [FBK*12]
dynamically control the resources allocated to a job so it can meet its service level objec-
tive. They do so in the context of MapReduce [DGO8] and SCOPE [CJLT08] databases
respectively. They use an analytical model to predict a job’s remaining execution time
as a function of the resources allocated to it. The parameters of the model are estimated
from historical traces. This is a concept similar to the models used by database query

optimisers mentioned in the previous section.

Graph processing systems perform analytics tasks, such as PageRank [PBMW99], on large
graphs [MAB*™10, GLG"12, RMZ13]. Typically, the computation is scheduled in a fixed
way that cannot be adapted to the workload. However, Chaos [RBMZ15] uses a model
of the computation at runtime to adapt its behaviour. It uses a work stealing scheme to

balance the load onto multiple machines. The decision whether or not to steal is made by
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examining whether the model predicts this to be beneficial, based on a runtime estimate

of the amount of remaining work.

Self-adapting systems. Self-adapting or self-aware systems dynamically adapt their
configuration parameters, often via the use of control theory or reinforcement learning
approaches [ST09]. These methods have been applied to databases [CN07], memory
controllers [IMMCO8], hardware instruction sets [DR14] and data structures [EWA11]

among many others.

8.4 Decompositions and network scheduling.

When viewed under the lens of an optimisation problem, network protocol stacks can
be shown to perform an implicit optimisation decomposition [CLCD07, KMT98]. The
different layers of the stack vertically decompose a resource allocation problem, with
each layer’s protocol optimising a subset of the parameters. Furthermore, the protocols
themselves can be shown to perform a horizontal decomposition, where the different parts
of the allocation problem are optimised in a distributed fashion. In particular, the TCP/IP
and MAC protocols can be interpreted in this way, and the optimisation problem they
solve can be reverse engineered [WJLH06, LCCO06].

The decomposition methods used in this dissertation are somewhat different. They are

declared directly and hence do not rely on a protocol to implicitly optimise them.

8.5 Probabilistic programming

Probabilistic programming has seen a recent surge of interest after the development of
Church [GMR™08], the first Turing-complete probabilistic programming language. Since
then, multiple frameworks capable of performing inference on arbitrary probabilistic pro-
grams have been proposed [MSP14, TvdMW15, TKD*16]. They typically offer interfaces
to a variety of inference algorithms. They mark a change from frameworks which perform
inference on restricted classes of models [STB196, Plu03, CGHT16, MWGT]. In particu-
lar, Stan [CGHT16] uses Hamiltonian Monte Carlo techniques [Neall] to generate samples
from the posterior distribution. This leads to high inference performance on some models,

but restricts the domain of the inference to be a fixed set of continuous parameters.

Probabilistic-C++ is Turing-complete as it allows the use of arbitrary C++ code. It is
a lightweight implementation of the particle filtering method for probabilistic programs
that was recently proposed by Wood et al. [WvdMM14], and subsequently implemented in
Probabilistic-C [PW14] as well as other frameworks [MSP14, TvdMW15]. Markov chain
Monte Carlo is an alternative inference algorithm and was used in Church [GMR™08].

Slice sampling has also been applied to probabilistic programs [RG15].
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CHAPTER 9

CONCLUSION

The growth of complex computer systems has increased the need for high quality auto-
tuners that are capable of adjusting a system’s configuration parameters to a users setting,

and hence provide performance portability.

As T observed in Chapter 2, Bayesian optimisation — one of the more advanced auto-
tuning techniques — can fail in large dimensional spaces. To address this challenge, this
dissertation has proposed a general framework which allows a system developer to design
a bespoke auto-tuner for their system by exposing a small amount of domain specific

structure.

e In Chapter 3, I introduced structured Bayesian optimisation, an extension of the
Bayesian optimisation algorithm which leverages a user-given probabilistic model.
Bespoke models, which are key to all techniques presented in this dissertation, allow
the Bayesian optimisation to grasp the behaviour of the objective function after only
a few iterations, and hence find high performance configurations. I showed how
structured Bayesian optimisation was integrated within the BOAT framework. I
presented BOAT’s configuration space abstraction which enables the construction of
configuration spaces with complex dependencies between parameters. In particular,

it allows the construction of recursive configurations such as trees.

e Chapter 4 was concerned with providing tools for users to model their system’s
behaviour. I presented Probabilistic-C++, a high performance probabilistic pro-
gramming library. Probabilistic-C++ offers ways for users to exploit the indepen-
dence and conditional independence in their model to help the underlying inference
converge. I showed how Probabilistic-C++ can be used in practice to model a
system’s behaviour via the use of multiple independent semi-parametric models. I
presented two useful techniques for the modelling of computer programs execution.
First I showed how to perform inference on brief runtime measurements, which of-

ten exhibit a long tail in their distribution. I then presented a novel treed Gaussian
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process data structure with better computational complexity than traditional Gaus-
sian processes. Treed Gaussian processes can be used within Probabilistic-C++ as

a non-parametric model to perform inference on large datasets.

e In Chapter 5, I presented BOAT’s optimisation scheduling abstraction. The goal
of this abstraction is to enable the easy and structured use of optimisations within
optimisations. This has shown to be a useful technique in a number of contexts. In
particular, I showed how decompositions, a known set of techniques in numerical
optimisation, could be implemented in this way. I demonstrated, through the use of
examples from the case studies, how decomposition methods could be used in the

context of the numerical optimisation stage of a Bayesian optimisation.

e Chapter 6 combined the techniques of Chapters 5 and 6 for the design of be-
spoke auto-tuners. I presented a method, based on Thompson sampling, to perform
exploratory experiments while still being able to leverage decompositions. I also
showed how one may be able to use BOAT’s optimisation abstraction to leverage
informative experiments that are cheaper than the objective function. Finally, I
discussed a methodology to design an auto-tuner. I showed how, starting from a
simple auto-tuner, one can diagnose the issues harming convergence, and listed the

different ways in which these issues could be tackled.

e In Chapter 7, I discussed three case studies in which I applied BOAT to design
bespoke auto-tuners: (i) A garbage collection case study in which I optimised the
garbage configuration flags of a database application, (7i) a sort case study in which
I tuned the parameters of decision trees which dynamically picked an efficient im-
plementation of std: :sort based on the input array’s sortedness, and (7ii) a neural
network scheduling case study in which I optimised the distributed scheduling of a
neural network onto a heterogeneous cluster. In each case study, I demonstrated
that simple “one-size-fits-all” configurations yielded sub-optimal performance. I
then showed that bespoke auto-tuners had better convergence than off-the-shelf
frameworks. Finally, I discussed one of the benefits of using auto-tuners with struc-
tured Bayesian optimisation: the developer is able to inspect the learned model
after the optimisation to diagnose the underlying system behaviour. In a way, the

learned model can be seen as a high level profiler of the computation.

The contributions of this dissertation collectively serve to demonstrate the hypothesis
stated in Chapter 1. First, that optimisations problems can benefit from leveraging a
small amount of domain specific information. The abstractions offered by BOAT, pre-
sented in Chapters 3-6, allowed me to design multiple auto-tuners which significantly
outperforms their off-the-shelf counterparts. Second, that these contributions make auto-

tuning applicable in previously unexplored contexts. In particular, BOAT allowed me to
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apply auto-tuning to the distributed scheduling of neural networks, a context in which

auto-tuning was previously intractable.

Future work

The abstractions introduced by BOAT offer a structured approach to designing a bespoke

auto-tuner. There remains, however, many open questions. I discuss three:

How should we construct auto-tuners for the vertical optimisation of computer sys-

tems?

In many real-world contexts, systems are used in a stack where each system uses the
abstraction offered by the system below. In the case studies presented in this dissertation,
I optimised a single application’s performance. Ideally, however, each item in the stack
would include its own bespoke auto-tuner, and BOAT’s optimisation abstraction would
be employed — in the context of a concrete application — to optimise the entire stack at

once.

For example, consider the garbage collection case study in which I tuned the JVM garbage
collection flags of a database application. There were two separate parts of my corre-
sponding model. One predicting the JVM behaviour in terms of the rate and duration
of garbage collection, and the other predicting the database’s behaviour in terms of its
latency. Ideally, both models would be developed independently so that the garbage col-
lection models could be used to optimise any JVM application. How to design auto-tuners
that offer the right abstraction, both in terms of their probabilistic model and the nu-
merical optimisation of their parameters, is an open area of research. A context in which
this could be especially interesting is the optimisation of real-time statistical applications

which can trade-off accuracy for computations.

Should we consider the design of new, more flexible abstractions for systems which

will then vastly adapt their implementation to the application?

Although current systems have configurations parameters, their abstractions were de-
signed with performance portability in mind. In the presence of high performance auto-
tuners, we should consider whether more flexible and practical systems could be con-
structed, allowing for a vast range of underlying executions. As noted in Chapter 8, a
bespoke auto-tuner strongly resembles an optimising compiler. Both attempt to max-
imise the performance of a computation. Hence, we could imagine a generic system which

compiles complex applications to high performance executions.



166

Can some of the techniques presented in this dissertation be used for real-time opti-

misations?

In this dissertation, I have worked under the assumption that we were performing an
iterative optimisation, and hence were able to measure the objective function multiple
times before converging on a configuration. However, models of computations are also
used to make real-time decisions, such as to plan the execution of database queries. In
this case, the budget for the optimisation is lower than a single evaluation of the objective
function. One could consider using some of the tools presented in this dissertation, such as
Probabilistic-C++ or the use of decompositions, for the real-time scheduling of incoming

computations.

This raises a new question: how should exploration be performed at runtime? The offline
aspect of BOAT means that it is acceptable to perform exploratory experiments with
possibly poor performance. To be applicable at runtime, new exploration strategies would

have to be designed to guarantee a minimum quality of service.
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