
Technical Report
Number 895

Computer Laboratory

UCAM-CL-TR-895
ISSN 1476-2986

Artificial error generation
for translation-based

grammatical error correction

Mariano Felice

October 2016

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2016 Mariano Felice

This technical report is based on a dissertation submitted
October 2016 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Hughes Hall.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Artificial error generation for translation-based
grammatical error correction

Mariano Felice

Summary

Automated grammatical error correction for language learners has attracted a
lot of attention in recent years, especially after a number of shared tasks that have
encouraged research in the area. Treating the problem as a translation task from
‘incorrect’ into ‘correct’ English using statistical machine translation has emerged as
a state-of-the-art approach but it requires vast amounts of corrected parallel data
to produce useful results. Because manual annotation of incorrect text is laborious
and expensive, we can generate artificial error-annotated data by injecting errors
deliberately into correct text and thus produce larger amounts of parallel data with
much less effort.

In this work, we review previous work on artificial error generation and investigate
new approaches using random and probabilistic methods for constrained and general
error correction. Our methods use error statistics from a reference corpus of learner
writing to generate errors in native text that look realistic and plausible in context.
We investigate a number of aspects that can play a part in the error generation
process, such as the origin of the native texts, the amount of context used to find
suitable insertion points, the type of information encoded by the error patterns and
the output error distribution. In addition, we explore the use of linguistic information
for characterising errors and train systems using different combinations of real and
artificial data.

Results of our experiments show that the use of artificial errors can improve
system performance when they are used in combination with real learner errors, in
line with previous research. These improvements are observed for both constrained
and general correction, for which probabilistic methods produce the best results.
We also demonstrate that systems trained on a combination of real and artificial
errors can beat other highly-engineered systems and be more robust, showing that
performance can be improved by focusing on the data rather than tuning system
parameters.

Part of our work is also devoted to the proposal of the I-measure, a new evaluation
scheme that scores corrections in terms of improvement on the original text and
solves known issues with existing evaluation measures.

To my family and L.A.
In memory of Kika.

Acknowledgements

This piece of work is the culmination of a very intense period of my life, both on an
academic and personal level. Reaching this far would not have been possible without
the help and support of many people, who deserve to be mentioned in this short but
very important page.

First and foremost, I am especially grateful to my family, who have always
supported me in many different ways and given me the energy to go on. Everything
I do will always be for them. I am equally grateful to my dear L.A. for always being
there for me, whatever I do and wherever I go. You are a very important part of my
life. No more thesis now!

I am of course deeply indebted to my supervisor, Prof Ted Briscoe, for believing
in me and giving me very valuable advice and freedom to mature as a researcher.
I extend my gratitude to all the members of the ALTA Institute at the Computer
Laboratory for always being willing to share their knowledge with me and give me a
hand whenever I needed it. I am also particularly grateful my fellow PhD students
in the office: thank you for your kindness and all the group therapy! Special thanks
are due to Zheng Yuan for her constant support, endless fruitful discussions and
disinterested help; you are a very dear friend. My gratitude goes also to Christopher
Bryant for his generous revision of my thesis draft.

Thanks are also due to my examiners, Dr Paula Buttery and Prof Stephen
Pulman, for making my viva a very pleasant experience and providing me with very
valuable feedback.

Last, but not least, I would like to thank Cambridge English Language Assessment
for giving me the opportunity to pursue a degree in one of the most prestigious
universities in the world while I worked a topic that I really enjoyed. I am also
grateful to the Computer Laboratory for providing me with additional funding in
the last stage of my studies as well as to my college, Hughes Hall, for their financial
support to attend scientific meetings.

Contents

1 Introduction 15
1.1 English in the modern world . 15
1.2 Second Language Acquisition . 16
1.3 Grammatical errors . 16
1.4 Automatic error detection and correction 17

1.4.1 Challenges . 18
1.5 Research goals . 20
1.6 Thesis structure . 21

2 Background 23
2.1 Grammatical error correction systems 23

2.1.1 Early approaches . 23
2.1.2 Data-driven approaches . 24

2.1.2.1 Corpus-derived rules 24
2.1.2.2 Language models and n-gram counts 25
2.1.2.3 Classifiers . 26
2.1.2.4 Machine translation 28
2.1.2.5 Other approaches 32

2.2 Data . 32
2.2.1 Native data . 32
2.2.2 Learner data . 33

2.2.2.1 Cambridge Learner Corpus 34
2.2.2.2 NUCLE . 36

2.2.3 Artificial data . 36
2.2.3.1 Deterministic approaches 37
2.2.3.2 Probabilistic approaches 38

2.3 Shared tasks . 41
2.3.1 Helping Our Own 2011 & 2012 41
2.3.2 CoNLL 2013 & 2014 . 42
2.3.3 Other shared tasks . 43

10 CONTENTS

3 Evaluation methods 45
3.1 Previous work . 45

3.1.1 Traditional evaluation metrics 45
3.1.2 Evaluation in HOO 2011 & 2012 49
3.1.3 Evaluation in CoNLL 2013 & 2014: M2 Scorer 50

3.2 Towards a new evaluation method: I-measure 52
3.2.1 Annotation . 53
3.2.2 Alignment . 54
3.2.3 Metrics . 56

3.2.3.1 Weighted accuracy 57
3.2.3.2 Metric behaviour . 58
3.2.3.3 Measuring improvement 59

3.2.4 Experiments and results . 61
3.3 New directions: crowdsourced evaluation 63
3.4 Statistical significance . 66
3.5 Analysis and discussion . 67

4 Experiments on constrained error correction 71
4.1 Rationale . 71
4.2 Random generation . 72

4.2.1 Error type analysis . 77
4.3 Probabilistic generation . 79

4.3.1 Experimental set-up . 80
4.3.2 Error type analysis . 85

4.4 Analysis and discussion . 86
4.4.1 Comparison with systems in the CoNLL-2013 shared task . . 87

5 Experiments on general error correction 89
5.1 Experimental set-up . 89

5.1.1 Data . 89
5.1.2 Error patterns . 90
5.1.3 Generation method . 92
5.1.4 Generated datasets . 93

5.2 Experiments and results . 95
5.2.1 Base texts . 98
5.2.2 Context window . 99
5.2.3 Lexical vs. PoS patterns . 100
5.2.4 Generation mode . 101
5.2.5 Dataset size . 103
5.2.6 Upper bounds . 105

5.3 Comparison with systems in the CoNLL-2014 shared task 107

CONTENTS 11

6 Conclusions 111

Appendices 117

A CLC error taxonomy 119

B NUCLE error taxonomy 121

C Example I-measure annotation for the CLC 123

D Penn Treebank PoS tags 125

E CLAWS2 PoS tags 127

F CLC-train error type statistics 131

G Probabilistic AEG samples 133

References 135

12 CONTENTS

List of Abbreviations

Acc accuracy
AEG artificial error generation
BLEU Bilingual Evaluation Understudy
BNC British National Corpus
CEFR Common European Framework of Reference for Languages
CLC Cambridge Learner Corpus
CoNLL Conference on Natural Language Learning
EFCamDat EF-Cambridge Open Language Database
ESOL English as a Second or Other Language
EVP English Vocabulary Profile
F F-measure
FCE First Certificate in English
FN false negative
FP false positive
GEC grammatical error correction
GLEU Generalized Language Evaluation Understanding
HMM Hidden Markov Model
HOO Helping Our Own
I I-measure
JSD Jensen-Shannon Divergence
KLD Kullback–Leibler Divergence
L1 first language
L2 second language
LLC Longman Learners’ Corpus
LM language model
ML machine learning
MT machine translation
NLP Natural Language Processing
NUCLE National University of Singapore Corpus of Learner English
P precision
PoS part-of-speech
R recall

14 LIST OF ABBREVIATIONS

RASP Robust Accurate Statistical Parser
SLA Second Language Acquisition
SMT Statistical Machine Translation
SP Sum of Pairs
TN true negative
TP true positive
WAcc weighted accuracy
WAS Writer-Annotator-System

Chapter 1

Introduction

This thesis explores the use of techniques from the field of Natural Language
Processing (NLP) to aid written production in English as a Second or Other Language
(ESOL). In this introductory chapter, we review the importance of English as a
global language, the challenges for learners of the language and how technology fits
into the equation. The end of the chapter sets out our research objectives and gives
an outline of this dissertation.

1.1 English in the modern world

The English language has grown to become a lingua franca, a common global language
for business, work, education and research, which also permeates other aspects of our
lives. It is estimated that the number of speakers who have English as their native
language (or L1) is over 335 million whereas those who speak it as a second language
(or L2) account for 505 million (Lewis et al., 2015). However, depending on where
we draw the boundaries, the number of people who speak English at a ‘useful level’
can go up to 1.75 billion (Howson, 2013) or even as high as 2 billion (Crystal, 2008).
According to Crystal, for every one native speaker, there are three or four non-native
speakers, a ratio which is likely to increase.

The growing interest in English is also attested by the number of candidates
sitting recognised international examinations. Annual candidature for Cambridge
English’s main suite exams was over 1 million by 2002, over 2 million by 2007
and more than 4 million by 2013 (Hawkey and Milanovic, 2013). These figures
translate into a clear demand for courses and resources involved in foreign language
teaching. In the last decades, language learning has evolved from a rather ‘static’
drill-centred activity to an interactive experience focused on communication skills.
The advancement of technology has also opened up new possibilities, ranging from
distance learning to readily available online tools. It is generally believed that if we
can decipher how humans learn and process language, we will be able to develop
better technology to support the learning process.

16 CHAPTER 1. INTRODUCTION

1.2 Second Language Acquisition

Despite all the existing incentives and supporting material, learning a new language
is not a trivial task, even less so when it is undertaken in a conscious manner. The
field of Second Language Acquisition (SLA) seeks to discover and explain the way in
which humans learn a new language after the native language has been learned.

Krashen (1982, p. 10) makes a crucial distinction between acquisition and learning.
Acquisition is defined as ‘a process similar, if not identical to the way children develop
ability in their first language’ and is therefore ‘subconscious’ whereas learning concerns
the ‘way to develop competence in a second language’, the ‘conscious knowledge
of a second language’. Since the new language often comes after a first language
has solidified, individuals are likely to transfer forms and meanings of their native
language and culture to the foreign language and culture (Lado, 1957, p. 2). Thus,
in early stages of learning, a native Spanish speaker is likely to produce *I am lawyer
instead of the correct I am a lawyer.1

L1 influence is a well-known source of errors in non-native writing. Several studies
have shown that the errors induced by a learner’s native language are systematic and
can usually be predicted given their L1 (Berzak et al., 2015; Gass and Selinker, 1992;
Swan and Smith, 2001). For example, learners whose L1 does not have an article
system (such as Russian or Japanese) tend to have problems mastering articles in
English. It is also possible to infer a person’s L1 based solely on a sample of their
writing, a task known as native language identification. Its potential use in forensic
linguistics and tailored error feedback led to the organisation of a shared task in
2013, with 29 competing systems achieving a maximum overall accuracy of over 83%
(Tetreault et al., 2013).

Knowing a learner’s L1 can also be used to improve grammatical error correction
(GEC) systems. In particular, Rozovskaya and Roth (2011) have shown that using
L1-specific correction probabilities as priors for Bayesian approaches can improve
system performance and provide L1-adapted models without having to train a new
system for each native language .

1.3 Grammatical errors

Consciously or not, L2 learners progressively internalise the grammar of the target
language in order to produce well-formed sentences and communicate with others.
It is beyond the scope of this thesis to discuss whether grammar should be taught
explicitly or not but, given the scope of our research, we will assume it is still a
matter of concern for L2 learners and teachers. Learners aim to be more proficient
in their target language and teachers work towards helping them achieve that goal.

1By convention, ungrammatical constructions are preceded by an asterisk (*).

1.4. AUTOMATIC ERROR DETECTION AND CORRECTION 17

What constitutes an error in an L2-learning environment varies across authors
and periods. Corder (1967), cited by Ellis (2008, p. 961), describes an error as ‘a
deviation in learner language which results from lack of knowledge of the correct
rule’. For Gass and Selinker (1994, p. 66) errors are ‘red flags’ that ‘provide evidence
of the state of a learner’s knowledge of the L2’ while for James (1998, p. 78) an error
is ‘an instance of language that is unintentionally deviant and not self-corrigible by
its author’.

A distinction is often made between errors and mistakes in the SLA literature.
Ellis (2008, p. 971) defines Corder’s concept of mistake as ‘a deviation in learner
language that occurs when learners fail to perform their competence’, ‘a lapse that
reflects processing problems’. According to James (1998, p. 83), errors cannot be
self-corrected but mistakes can if the deviance is pointed out to the learner. As Brown
(2014, p. 249) explains, an error is ‘a noticeable deviation from the adult grammar of
a native speaker’ that ‘reflects the competence of the learner’. For example, *Does
John can sing? is likely to indicate incomplete knowledge of auxiliary verbs for
question formation. A mistake, on the other hand, is ‘a random guess or a slip’, ‘a
failure to utilize a known system correctly’. As Brown points out, all people make
mistakes, including native speakers. A common example is the inadvertent use of a
homophone instead of the intended word, such as there for their.

Although the error/mistake distinction seems crucial in SLA, it has been regarded
as purely ‘academic’ and not relevant for teachers (Bartram and Walton, 1991,
p. 20). A more comprehensive and practical definition is given by Ferris (2011, p. 3):
‘Errors are morphological, syntactic, and lexical forms that deviate from rules of the
target language, violating the expectations of literate adult native speakers’. This
definition is closer to the notion of grammatical error used in NLP, which includes
morphology, syntax and mechanical errors but largely excludes usage and spelling
mistakes (Leacock et al., 2014, p. 2). In fact, only spelling errors which constitute
a breach of syntactic or morphological rules are of interest for grammatical error
correction. Typical examples include wrong word forms (*breaked instead of broke),
confusion between homophones (it’s–its) and typographical errors that result in other
valid words which are wrong in the given context (sing–sign).

1.4 Automatic error detection and correction

Research on automatic GEC is based on the assumption that correcting errors is
beneficial for learners. However, there does not seem to be a general consensus on
this matter. In a controversial essay, Truscott (1996) claimed that error correction
was ineffective and harmful to second language learning and should be abandoned.
Although a number of studies are in line with his views (Cohen and Robbins, 1976;
Polio et al., 1998; Truscott and Hsu, 2008), most researchers in the field of second-
language learning rebutted such claims, proving that error feedback improves writing

18 CHAPTER 1. INTRODUCTION

accuracy either in the short or long term (Ashwell, 2000; Bitchener and Knoch, 2008,
2010; Ellis et al., 2008; Ferris, 2006; Sheen, 2007; van Beuningen et al., 2012). Similar
studies have also shown that automated feedback is helpful in reducing error rates
for both native and non-native speakers, highlighting the value of GEC systems
as writing assistants (Andersen et al., 2013; Attali, 2004; Chodorow et al., 2010;
Choi and Lee, 2010; Lavolette et al., 2015; Lipnevich and Smith, 2008; Nagata and
Nakatani, 2010; Shermis et al., 2008).

Corrective feedback can be direct, when the correct linguistic form is provided to
the students, or indirect, when they are told that an error has been made but it is
up to them to correct it (Ferris, 2011, p. 31). These notions are closely related to
two distinct subtasks within automated GEC: error detection and error correction.
Detection is only concerned with identifying pieces of text that are grammatically
incorrect. This can range from a binary output (e.g. whether a sentence is incorrect
or not) to the specific location and span of an error, including optional information
such as a type or a description. Correction, on the other hand, refers to the
actual suggestions given to fix an error (i.e. direct feedback), sometimes linked to
explanations or further examples.

Detection and correction are two different tasks but they are not always two
separate processes. Although it is generally understood that detection is a necessary
step before correction, many systems are aimed directly at correction with no explicit
detection, such as systems based on Statistical Machine Translation (SMT).

Just as there is debate about whether indirect feedback is better than direct
feedback (Ferris and Hedgcock, 2014, p. 287), there is also the question of whether
detection is actually more useful than correction. In fact, it may be easier for systems
to detect something that is incorrect rather than generate a suitable correction,
especially when errors are complex or systems are not confident about their corrections.
In such cases, detection alone may be preferred, as it is generally believed that learners
are more likely to benefit from a revision hint than from a wrong (and therefore
misleading) correction.

1.4.1 Challenges

There are a number of reasons why the error correction task is particularly challenging.
First of all, both native and non-native speakers write mostly error-free text, with
errors being the exception rather than the rule. For example, articles are used
incorrectly only about 10%–13% of the times among intermediate learners of English
(Han et al., 2006; Rozovskaya and Roth, 2010c), setting a very high baseline for the
task. In such circumstances, using a system with less than 90% accuracy will be
worse than leaving the text uncorrected, whereupon ‘doing nothing’ will remain the
wisest strategy.

1.4. AUTOMATIC ERROR DETECTION AND CORRECTION 19

Identifying error types in L2 writing is also crucial for the development of successful
error correction systems. Although there is some overlap between native and non-
native errors (e.g. misusing punctuation or confusing homophones), L2-learners
commit other types of errors that are rather infrequent among native speakers,
usually caused by the lack of clear-cut usage rules (e.g. collocations) or L1 grammar
transfers (Leacock et al., 2014, p. 17). In addition, correctness is sometimes judged
solely on the native language of the speaker, so the same utterance can be deemed
correct for native speakers but incorrect for L2-speakers. This is often the case for
creative use of language, where licence is only given to L1-speakers. As Prodromou
(2008, p. 232) puts it, ‘the language is mistake-proof for the L1-user ’ [original
emphasis].

Different types of errors require different correction strategies so it is often very
difficult to integrate them into a single system. The complexity of integration is
twofold. Firstly, there is the intrinsic complexity of each error type. Some errors are
easier to correct than others and this often corresponds with the number of possible
corrections (Bryant and Ng, 2015). Closed-class errors are limited to a predefined set
of alternatives (or confusion set) so they are, in principle, easier to deal with. Articles
are the most common example, where there are only four possible alternatives: no
article (Ø), a, an or the. Open-class errors involving verbs, adjectives and nouns
(such as collocations) operate on a much wider search space and thus carry higher
chances of introducing new mistakes if a wrong choice is made. This is one of the
reasons why most successful systems focus only on a limited number of error types,
especially those with closed-class sets such as articles, prepositions and verb tenses.

Secondly, there is the complexity of interacting errors or how the correction of one
error affects others. Some errors might be corrected in isolation while others might
depend on previous corrections. Combining corrections for all the errors in a sentence
is not a trivial problem. Even the pipelined solutions that correct one type after the
other need to figure out the optimal correction pipeline, which is not always possible
when there is one component per error type for a large typology (e.g. as few as 10
error types would yield 10! = 3, 628, 800 possible pipelines). In reality, the order in
which errors are corrected depends on each sentence and it would be wrong to assume
that a deterministic type-after-type pipeline is the optimal solution to all cases.

The number of errors in a sentence can also affect system performance. As
the number of errors in a sentence increases, so does correction complexity, since
the system must ensure all the corrections are compatible in the output. The co-
occurrence of many errors in a single sentence also means that the reliable context
on which a system bases its decisions is reduced, leading to lower confidence and
precision. This raises some fundamental questions about error correction: To what
extent can we correct a sentence? What is the maximum number of errors that make
a sentence worth correcting? Are some sentences beyond repair? When should we
discard a sentence completely and rewrite it from scratch?

20 CHAPTER 1. INTRODUCTION

Finally, given the infinite nature of language, it is impossible for a system to know
all possible well-formed sentences and make perfect judgements. Similarly, there
could be a potentially innumerable set of acceptable corrections for a given error, so
determining whether a correction is valid or not is almost as difficult as correction
itself. This is particularly important for system evaluation, where a given output
might not match the expected corrections but still provide a valid alternative.

1.5 Research goals

In the last few years, SMT has emerged as a powerful approach for general error
correction, achieving state-of-the-art performance over more traditional approaches
such as classifiers and language models. However, the success of SMT models
depends largely on the quantity and quality of training data (Gavrila and Vertan,
2011; Koehn et al., 2003; Suresh, 2010), which is currently very limited for this
task. A few proposals have tried to overcome this data scarcity problem by injecting
artificial errors into error-free text, thereby generating vast amounts of data with
minimum effort.

The quality and impact of artificial data can be affected by a number of factors,
such as the type of texts, errors and methods used for generation. In this thesis, we
set out to investigate different aspects of artificial error generation and how they
affect the performance of SMT-based GEC systems.

Our research objectives can be summarised as follows:

1. Exploit the potential of SMT systems for general error correction, not limited
to most common error types.

2. Find out whether system performance can be improved by focusing on data
rather than system engineering.

3. Analyse the variables involved in artificial error generation, discovering the
optimal settings that lead to higher quality data and better system performance.

4. Investigate different artificial error generation methods and recommend a
framework for the generation of artificial data for GEC purposes.

5. Review existing evaluation methods in the field and propose a new evaluation
scheme to overcome their limitations.

It is not the aim of this thesis to provide an in-depth study of SMT for GEC.
For this reason, we do not address issues such as optimal data structures, alignment,
decoding algorithms, tuning strategies or other technical aspects that are not explicitly
mentioned in our experiments. SMT is only used as a common experimental
framework for testing the performance of our artificial datasets, since it allows
us to build state-of-the-art GEC systems with minimal effort.

1.6. THESIS STRUCTURE 21

1.6 Thesis structure

The remainder of this thesis is structured as follows. Chapter 2 describes related work
on GEC. In Section 2.1, we give a historical overview of work in the field, from early
GEC systems to state-of-the-art data-driven approaches. Special attention is given
to the use of SMT systems for error correction purposes, since this is the approach
adopted for our experiments. In Section 2.2 we describe the type of data that is
typically used to build such systems, including native text, error-annotated learner
corpora and artificially-generated data. Here, we introduce the notion of ‘artificial
errors’, which form the cornerstone of this thesis. Finally, Section 2.3 describes a
number of organised competitions (or ‘shared tasks’) that have provided a common
environment for system development and testing, and have greatly contributed to
the advancement of research in the area.

Chapter 3 addresses the issue of system evaluation for GEC. In Section 3.1 we
review the most common approaches, from traditional evaluation measures to specific
scorers designed for the shared tasks. Given a number of limitations of these methods,
in Section 3.2 we propose the I-measure (Felice and Briscoe, 2015), a new evaluation
scheme to score corrections in terms of improvement over the original uncorrected
text. A few more recent approaches using crowdsourcing for system evaluation are
reviewed in Section 3.3 and a discussion of a suitable method for the computation of
statistical significance is included in Section 3.4. The chapter concludes with a few
considerations in Section 3.5.

Chapter 4 describes our first set of experiments, aimed at correcting only five
types of errors concerning articles and determiners, noun number, prepositions,
subject-verb agreement and verb forms. In Section 4.1 we explain our motivations for
investigating artificial errors and review some of its challenges. The following sections
present experiments on artificial error generation using the CoNLL-2013 shared task
datasets. Section 4.2 describes a random method that considers all errors to be
equally probable while Section 4.3 presents a probabilistic method that preserves the
original error frequencies. An analysis of the performance of both methods is given
in Section 4.4, including a comparison with participating systems in the CoNLL-2013
shared task.

Chapter 5 describes our second set of experiments, aimed at general error
correction (i.e. all types) using refined probabilistic methods. In Section 5.1 we
describe our experimental set-up, such as the training corpus, error generation
method and artificial datasets. Section 5.2 discusses the results of our experiments
and provides a separate analysis for each tested variable: base texts, context window
length, pattern type, generation mode and dataset size. Section 5.3 includes a
comparison between our systems and the submissions to the CoNLL-2014 shared task.

Chapter 6 presents our conclusions and discusses directions for future work.

22 CHAPTER 1. INTRODUCTION

Parts of this work have been previously published in the following articles, which
are referenced accordingly:

• Z. Yuan and M. Felice (2013). Constrained Grammatical Error Correction using
Statistical Machine Translation. In Proceedings of the Seventeenth Conference
on Computational Natural Language Learning: Shared Task. Sofia, Bulgaria:
Association for Computational Linguistics, pp. 52–61

• M. Felice and Z. Yuan (2014a). Generating artificial errors for grammatical
error correction. In Proceedings of the Student Research Workshop at the 14th
Conference of the European Chapter of the Association for Computational
Linguistics. Gothenburg, Sweden: Association for Computational Linguistics,
pp. 116–126

• M. Felice et al. (2014). Grammatical error correction using hybrid systems and
type filtering. In Proceedings of the Eighteenth Conference on Computational
Natural Language Learning: Shared Task. Baltimore, Maryland: Association
for Computational Linguistics, pp. 15–24

• M. Felice and Z. Yuan (2014b). To Err is Human, to Correct is Divine. In
XRDS 21 (1), pp. 22–27

• M. Felice and T. Briscoe (2015). Towards a standard evaluation method
for grammatical error detection and correction. In Proceedings of the 2015
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies. Denver, Colorado: Association for
Computational Linguistics, pp. 578–587

Chapter 2

Background

This chapter gives a brief historical overview of research in GEC. The first section
summarises the history of GEC systems, common approaches and the state of the
art. The second section describes some of the most popular datasets in the field,
including native, learner and artificial data. The final section gives an account of
relevant shared tasks and their contributions to the field.

2.1 Grammatical error correction systems

2.1.1 Early approaches

The first grammar-checking systems date back to the 1980s and were essentially
based on string-matching rules, such as The Writer’s Workbench (Macdonald et al.,
1982). Whenever a rule matches a given string in the text, the system flags up an
error and provides a correction. However, rules could be triggered in inappropriate
contexts and lead to false positives. For example, the system would suggest replacing
provided that with if even if the phrase is not used with that meaning, as in Joe
provided that book and Mary this one.

Other rule-based systems, such as Grammatik by Aspen Software and CorrecText
by the Houghton Mifflin Company, incorporated some basic linguistic analysis and
were eventually integrated into Microsoft Word and WordPerfect respectively in the
early ’90s. Among systems for language learners, ALEK (Chodorow and Leacock,
2000; Leacock and Chodorow, 2003), GRANSKA (Domeij et al., 2000) and ESL Assis-
tant (Gamon et al., 2009) are prime examples based on hand-crafted heuristic rules.

Finally, the use of parsers and sophisticated grammars enabled systems to perform
full syntactic analysis and identify grammatical violations using hand-coded rules
(Arppe, 2000; Heidorn et al., 1982; Johannessen et al., 2002; Richardson and Braden-
Harder, 1988). Typical examples include the identification of agreement errors and
sentence fragments from a parser’s output. Most, if not all, of today’s grammar
checking products employ this strategy, as it helps minimise the number of false

24 CHAPTER 2. BACKGROUND

positives. Many open-source solutions, such as AbiWord1, After the Deadline2 and
LanguageTool3 (Naber, 2003), also rely on a linguistic analysis of the input and
lists of error patterns, which are open to contributions from their users. Hand-
crafted rules are also common in the NLP research community (Boroş et al., 2014;
Bustamante and León, 1996; Ehsan and Faili, 2010; Flickinger and Yu, 2013; Gupta,
2014; Kunchukuttan et al., 2013; Lee and Lee, 2014; Sidorov et al., 2013; Wang
et al., 2014a; Wu et al., 2014; Xiang et al., 2013), although they are often superseded
by more powerful models. Apart from the quality of the rules themselves, much of
the efficacy of rule-based systems depends on the robustness of automatic tools to
process grammatically incorrect input (Leacock et al., 2014, p. 7).

2.1.2 Data-driven approaches

The emergence of statistical NLP in the late 1980s as a new way of dealing with
language led to a growing interest in the compilation and exploitation of corpora.
The corpus-based or statistical approaches to GEC use bodies of written text to
extract linguistic knowledge or build models with machine learning (ML) techniques,
as we explain the following sections.

2.1.2.1 Corpus-derived rules

As noted in Section 2.1.1, rules can be effective for error correction; however, the
process of identifying and coding error patterns can be intellectually demanding
and time consuming. Given an error-annotated corpus where incorrect phrases are
mapped to their correct versions, it is possible to automatically extract patterns
to identify and correct very frequent errors. For example, if we observe that the
bigram *people is is generally corrected to people are, we can create a rule for future
correction. This can be done at different levels, such as words, part-of-speech (PoS)
tags or dependency relations. However, care must be taken when extracting and
applying such rules, since, in reality, corrections are not deterministic and might
depend on larger context (e.g. Recruiting the right people is essential for success
does not require correction).

The rule-extraction technique was first used to build spellcheckers. Mangu and
Brill (1997) proposed a system that derived spelling-correction rules from the Brown
corpus (Francis and Kucera, 1979) and a collection of confusion sets. Park and Rim
(1998) and Byun et al. (2007) describe similar systems for Korean, although they use
different extraction criteria.

Others have derived rules to correct hyphen usage. Rozovskaya et al. (2011)
extracted mappings between hyphenated and non-hyphenated words from a corpus
of scientific papers, comparing the frequency of observed token sequences as one

1http://www.abisource.com/
2http://www.afterthedeadline.com/
3http://www.languagetool.org/

http://www.abisource.com/
http://www.afterthedeadline.com/
http://www.languagetool.org/

2.1. GRAMMATICAL ERROR CORRECTION SYSTEMS 25

word, with and without a hyphen. If one of these forms is at least 50% more frequent
than the others, a correction rule is created. Similarly, Cahill et al. (2013a) describe
two baselines for predicting missing hyphens, both based on patterns mined from a
corpus. The first of them predicts a missing hyphen if a bigram occurs hyphenated
more than 1,000 times in Wikipedia while the second system only does it when the
probability of the hyphenated form is greater than 0.66.

For general error correction, the rule-based word-level component of the Self
Assessment and Tutoring system (Andersen et al., 2013) uses patterns of unigrams,
bigrams and trigrams extracted from the Cambridge Learner Corpus (CLC). In
order to ensure high precision, the system only extracts n-grams which have been
annotated as incorrect at least five times and ninety per cent of the times they occur.
KNGED (Chang et al., 2014), a GEC system for Chinese, combines manual and
automatically extracted rules based on words and PoS tags which are used to correct
a broader range of error types.

2.1.2.2 Language models and n-gram counts

Language models (LMs) and n-gram frequency information are very useful for GEC,
since frequency is generally viewed as a good proxy for well-formedness. These
statistical representations of language have been used for different purposes in system
development. Firstly, they seem naturally suited for error detection, since we can
judge the grammaticality of a sentence or phrase from their estimated probabilities
(Heilman et al., 2014; Hernandez and Calvo, 2014; Lee et al., 2014; Lin and Chen,
2015; Okanohara and Tsujii, 2007; Wagner et al., 2007).

Secondly, they can also be used for correction, either by predicting words in a
given sequence or validating corrections (Bergsma et al., 2009; Islam and Inkpen,
2011; Kao et al., 2013; Lee and Lee, 2014; Wu et al., 2014; Xie et al., 2015; Zhang and
Wang, 2014). In this case, correction candidates are taken from predefined sets (e.g.
articles or prepositions) or generated ‘on the fly’ (e.g. by character-level operations
or phoneme similarity). If a corrected version of a sentence is scored higher than the
original by a LM, the proposed correction is assumed to be valid.

Finally, LMs and n-gram frequency can be used for ranking correction hypotheses,
which is especially useful to determine the best correction from a set of alternatives.
A typical use case is evaluating corrections from different systems or re-ranking
an SMT system’s n-best list of translations (Boroş et al., 2014; Felice et al., 2014;
Gamon, 2010; Prokofyev et al., 2014; Yuan et al., 2016).

In any case, LMs are rarely used in isolation but rather in combination with other
methods. For example, it is common to use sentence probabilities or perplexities as
features for ML classifiers.

When working with error-annotated corpora, LMs are normally trained on the
corrected versions of the data, so that judgements of test sentences are in accord with

26 CHAPTER 2. BACKGROUND

the style and grammar of the training set. However, the number of correct instances
in such datasets is often insufficient to build a fairly representative model of language,
so they are generally replaced or augmented with larger native corpora, such as the
British National Corpus or the English Gigaword corpus (see Section 2.2.1). One
particularly popular dataset is Google’s Web 1T 5-gram corpus (Brants and Franz,
2006), an enormous collection of n-grams collected from the web that is deemed
one of the most comprehensive and updated for language modelling purposes. The
availability of this dataset in other languages (Brants and Franz, 2009) is also a
valuable resource for developing GEC systems outside of English.

Given the dynamic nature of language, however, some systems have made use
of the web as corpus, retrieving n-gram counts from commercial search engines
(Elghafari et al., 2010; Fallman, 2002; Gamon and Leacock, 2010; Hermet et al., 2008;
Tetreault and Chodorow, 2009; Yi et al., 2008). While this ensures that systems
will keep pace with language change, it is not free of other problems. As noted by
Kilgarriff (2007), commercial search engines do not PoS-tag or lemmatise, counts are
in terms of pages (not instances) and results often vary between different systems, to
name only a few.

2.1.2.3 Classifiers

Machine learning classifiers are one of the most popular approaches to GEC. The main
reason for this is that the most frequent error types, such as articles and prepositions,
have limited confusion sets so their correction can be cast as a classification problem.
A classifier receives a number of features representing the context of the analysed word
or phrase in a sentence and outputs a predicted class that constitutes a correction. If
the prediction is the same as the original item, the text is considered correct and left
unchanged; otherwise, an error is flagged and the original word is replaced by the
predicted correction. For example, a classifier for article correction would analyse
each noun phrase in the text and predict the best class (i.e. article) from four possible
alternatives: no article, a, an or the. The output classes will depend on the adopted
strategy, so it is perfectly possible to use different reformulations to achieve the same
result. In our article correction example, we could use only three classes (no article,
indefinite, definite) and still encode the same information.

In order to build a classifier for error correction, the task must be framed as
a decision problem with a finite number of alternatives (i.e. classes). Some error
types, especially those involving closed-class words, are naturally well-suited for this
approach, since they only allow a fixed set of possible corrections, such as articles,
determiners, prepositions, subject-verb agreement, verb tenses, etc. Errors involving
open-class words (such as word choice errors) must be restricted to closed confusion
sets, which are generally compiled automatically from sample instances. Wu et al.
(2010) for example, trained a classifier to suggest the most appropriate verb in

2.1. GRAMMATICAL ERROR CORRECTION SYSTEMS 27

verb-object combinations, limiting predictions to 790 verbs. However, given the
‘open’ nature of content-word errors, classification is rarely used and other techniques,
such as those based on compositional distributional semantics, are preferred instead.

Classifiers can certainly be useful for general error detection (Izumi et al.,
2004, 2003) but their limitations make them unsuitable for general error correction.
Nevertheless, they have been successfully used to correct specific error types, such as:

• articles (Berend et al., 2013; Bosch and Berck, 2013; Dahlmeier and Ng, 2011;
Dahlmeier et al., 2012, 2011; De Felice and Pulman, 2008; Gamon, 2010; Han
et al., 2006; Jia et al., 2013; Kunchukuttan et al., 2014, 2013; Lee, 2004; Minnen
et al., 2000; Putra and Szabo, 2013; Quan et al., 2012; Rozovskaya et al., 2013;
Rozovskaya and Roth, 2010c; Rozovskaya et al., 2012; Sakaguchi et al., 2012;
Xiang et al., 2013; Yi et al., 2013; Zhang and Wang, 2014),

• prepositions (Bosch and Berck, 2013; Cahill et al., 2013b; Dahlmeier and Ng,
2011; Dahlmeier et al., 2012, 2011; De Felice and Pulman, 2008; Gamon, 2010;
Jia et al., 2013; Quan et al., 2012; Rozovskaya et al., 2013; Rozovskaya and
Roth, 2010b, 2011; Rozovskaya et al., 2012; Sakaguchi et al., 2012; Tetreault
et al., 2010; Xiang et al., 2013; Yi et al., 2013; Zhang and Wang, 2014),

• noun number (Berend et al., 2013; Bosch and Berck, 2013; Jia et al., 2013;
Kunchukuttan et al., 2014, 2013; Rozovskaya et al., 2013; Xiang et al., 2013;
Yi et al., 2013; Yoshimoto et al., 2013),

• subject-verb agreement and verb forms (Bosch and Berck, 2013; Jia et al., 2013;
Rozovskaya et al., 2013, 2014b),

• and others (Rozovskaya et al., 2014a, 2011; Wang et al., 2014a).

The most common classification techniques used in the literature include maximum
entropy models, naive Bayes and support vector machines, to name just a few.

As is common in ML, finding good discriminative features is a key issue, especially
when different error types are involved. Nevertheless, for the vast majority of
syntactically-motivated errors, features such as contextual word and PoS n-grams,
lemmas, phrase constituency information and dependency relations are generally
useful (Felice and Yuan, 2014b; Leacock et al., 2014; Rozovskaya et al., 2013, p. 104).

Finally, another important aspect of classifier design concerns a more conceptual
question: whether the correction problem should be modelled as a selection task.
In that case, a classifier is trained to predict the most appropriate word given the
context, ignoring the original one chosen by the writer and not using it as a feature.
The task thus resembles a ‘fill in the blank’ exercise, where corrections only occur if
the predicted word does not match the original. By contrast, modelling the problem
as a correction task using the source word as a feature can enlighten the model about
common confusions, leading to better performance (Rozovskaya and Roth, 2010c).

28 CHAPTER 2. BACKGROUND

Source

P(C)

Noisy channel

P(E|C)

Receiver
C E

Figure 2.1: The noisy channel model.

In this case, care must be taken to balance the training set, since the high proportion
of correct uses can make the classifier output the majority class (in this case, the
source word), leaving the text uncorrected.

2.1.2.4 Machine translation

The correction of grammatical errors using machine translation (MT), and in
particular SMT, has gained notable popularity in the last few years. Despite being
originally developed for translation between different languages, SMT has been
successfully applied to GEC, which is now seen as a translation problem from
‘incorrect’ into ‘correct’ English.

SMT is inspired by the noisy channel model (Shannon, 1948), which is
mathematically formulated in Equation 2.1:

Ĉ = arg max
C

P (C|E) = arg max
C

P (E|C)P (C)
P (E) = arg max

C
P (E|C)P (C) (2.1)

In this model, a correct English sentence C is said to be corrupted by a noisy
channel, resulting in an erroneous sentence E (see Figure 2.1). The goal of the model
is to recover the correct intended sentence Ĉ using a LM of correct sentences P (C)
and a model of distortion in the channel P (E|C) (a.k.a. the translation model).
Candidate sentences are generated by means of a decoder, which normally uses a
beam search strategy. As shown in Equation 2.1, the denominator P (E) is ignored
during computation since it is a constant for all correct sentences.

Unlike classifiers, which can be trained on native error-free corpora, SMT systems
require a parallel corpus of translated (or corrected) instances for training, aligned at
the sentence level. A LM is built on the set of corrected sentences although given the
limited size of error-annotated corpora, bigger collections of native text can be used
instead. The most common type of LM is an n-gram Markov model (Equation 2.2),
where the probability of a sentence (w1, . . . , wm) is computed from the conditional
probabilities of its words given their history (typically 2 to 5 words).

P (w1, . . . , wm) =
m∏
i=1

P (wi | w1, . . . , wi−1) ≈
m∏
i=1

P (wi | wi−(n−1), . . . , wi−1) (2.2)

2.1. GRAMMATICAL ERROR CORRECTION SYSTEMS 29

A translation model is built using probabilistic alignments of words and phrases
between the source and target sentences, known as the IBM Models (Brown et
al., 1993). The first of these models, IBM Model 1, estimates lexical translation
probabilities using the Expectation Maximisation algorithm, e.g.:

I look forward to hearing from you

I look farword to hear from you

IBM Model 2 adds an absolute word reordering model, so that translation
probabilities are also dependent on the position of the input and output words, e.g.:

It will not be too formal a party

It will be not too formal party

IBM Model 3 introduces the notion of fertility, which allows input words to
generate more than one word in the output, e.g.:

The show is about make-up and hairstyles

The show is about make up and hairstyles

IBM Model 4 improves on Model 3 by introducing a relative distortion model,
so that the position of the translation of a word is influenced by the position of the
translation of its preceding word in the input text. Finally, IBM Model 5 fixes a
deficiency problem in Model 3 and 4 which allowed translations of different words
to occupy the same position in the output text instead of filling vacant spaces. An
alternative to IBM Models is the Hidden Markov Model (HMM) for word alignment
which uses relative distortion but not fertility (Vogel et al., 1996).

These word-based models only allow one-to-many mappings and so are unable to
represent many-to-one or many-to-many translations that are common in real life.
This can be overcome by using phrase-based models, which use phrases (i.e. any
arbitrary sequence of words) as translation units, e.g.:

In my opinion , electricity is an important invention

From my point of view , electricity is an important invention

In phrase-based models, the translation model P (E|C) is further decomposed into:

P (ĒIj | C̄Ij) =
m∏
i=1

φP (Ēi | C̄i)d(starti − endi−1 − 1) (2.3)

30 CHAPTER 2. BACKGROUND

where φP (Ēi | C̄i) represents the translation probability of phrase Ēi given C̄i
(estimated from previous word alignments) and d(starti − endi−1 − 1) is a distance-
based reordering model (starti and endi−1 refer to the positions of the first and last
word of the source phrase that translates into the ith and (i − 1)th phrase in the
target). Phrase-based SMT models are trained on surface forms, so if test sentences
contain words that have not been seen during training (a.k.a. out-of-vocabulary
words), such words will remain untranslated (or uncorrected, in our case). This
can be mitigated by the use of ‘factored’ models, which allow the integration of
additional linguistic information at the word level, such as morphology and syntax.
As part of our experiments in Chapter 4, we foray into PoS-factored models, where
we use a PoS-tagged version of our datasets in an attempt to improve the accuracy
of translations (i.e. corrections). During training, the PoS-tagged version of the data
is used to build tables associating word forms to PoS tags (e.g. p(NN1 | house)),
generate PoS versions of the lexical phrases (e.g. always will be → will always be
becomes RR VM VB0 → VM RR VB0) and build a PoS LM. The lexical and
‘factored’ components are then efficiently combined during decoding, using the same
translation strategy as in ordinary phrase-based translation. For a more detailed
description of these and other SMT models, please refer to Koehn (2010, p. 314).

The benefits of using SMT for GEC are manifold. First, SMT does not require
expert knowledge but a parallel corpus of corrected text. This makes system de-
velopment much more straightforward than with other ML approaches that require
meticulous feature engineering. Second, there are no restrictions on error types (such
as closed-class or open-class errors) so it is naturally well-suited to general error correc-
tion. Finally, SMT systems can correct nested and interacting errors simultaneously,
avoiding pipelines of classifiers and complex combinations of individual results.

The use of SMT for GEC was pioneered by Brockett et al. (2006), who built a
system to correct errors involving 14 countable and uncountable nouns which are
often confusing for ESOL learners. Their training data comprised a large corpus of
sentences extracted from news articles which were deliberately modified to include
typical countability errors among Chinese learners. The resulting SMT system was
generally able to beat the standard Microsoft Word 2003 grammar checker, although
it produced a relatively higher rate of erroneous corrections.

Mizumoto et al. (2011) trained an SMT system for Japanese, using authentic
learner sentences corrected by native speakers on a social learning network website.
However, since the corpus was not annotated for error types, the resulting system
was not restricted to particular error types. Their results validated that SMT can
achieve high performance provided a sufficiently large corpus is used for training.
These claims were later supported by Mizumoto et al. (2012), who carried out
similar experiments on English text produced by Japanese students, and Behera and
Bhattacharyya (2013), who applied hierarchical phrase-based SMT to correct errors
in a corpus of essays written by non-native university students.

2.1. GRAMMATICAL ERROR CORRECTION SYSTEMS 31

Ehsan and Faili (2013) trained SMT systems for correcting grammatical errors
and context-sensitive spelling mistakes in English and Farsi, using artificial erroneous
sentences. A comparison between the proposed systems and rule-based grammar
checkers showed they are complementary, with a hybrid system achieving the best
performance.

SMT has also been a popular approach among participants in the latest GEC
shared tasks (see Section 2.3). Yoshimoto et al. (2013) built a translation system
to correct article and preposition errors based on the work by Mizumoto et al.
(2012), using the official training set plus additional corrected sentences from Lang-
8 (see Section 2.2.2). Our own submission (Yuan and Felice, 2013) employed a
PoS-factored SMT model to correct article, noun number, preposition, subject-verb
agreement and verb form errors. Training data included the official shared task corpus
(Section 2.2.2.2), parts of the CLC (Section 2.2.2.1) and artificially generated errors.

The top performing systems in the CoNLL 2014 shared task (see Section 2.3.2)
have demonstrated that SMT can yield state-of-the-art performance on general error
correction. Our winning system (Felice et al., 2014) is a pipeline of a rule-based
system and an untuned lexical phrase-based SMT system, which produces candidate
corrections. These corrections are then used to generate full corrected sentences which
are ranked by a web-based LM and finally filtered by error type. Our work showed
that an untuned SMT system can achieve state-of-the-art performance on the task,
while hypothesis re-ranking improves SMT output and type filtering can improve
final results. The third best system (Junczys-Dowmunt and Grundkiewicz, 2014)
used a phrase-based SMT model that included specialised features and was optimised
for F-score, concluding that parameter optimisation is essential. Kunchukuttan
et al. (2014) also explored tuning on F0.5 to increase precision, but results showed it
worsened performance. Other participating teams using SMT models include Wang
et al. (2014b), who trained factored models encoding word stem, prefix, suffix and
PoS information; and Wu et al. (2014), who used a basic phrase-based model to
correct interacting errors.

SMT-based GEC systems have also been proposed for Chinese (Zhao et al., 2014,
2015) and Arabic (Bouamor et al., 2015; Bougares and Bouamor, 2015; Jeblee et al.,
2014; Mostefa et al., 2015, 2014; Tomeh et al., 2014).

Other approaches using MT for error correction have not aimed to train SMT
systems but rather use them as auxiliary tools. One such example is the use of
round-trip translations (i.e. translations into a pivot foreign language and back into
English) for correcting preposition errors in learner writing (Hermet and Désilets,
2009; Madnani et al., 2012). Conversely, the noisy channel approach has been used
for GEC without framing the task as an MT problem. These approaches make use
of a beam search decoder to produce a sentence-level correction from the output
of other components (Buys and Merwe, 2013; Dahlmeier and Ng, 2012a; Park and
Levy, 2011; West et al., 2011; Wilcox-O’Hearn, 2013).

32 CHAPTER 2. BACKGROUND

Despite their success in GEC, SMT-based systems suffer from a few shortcomings.
For example, they tend to produce locally well-formed phrases with poor overall
grammar, they exhibit a predilection for changing phrases to more frequent versions
(even when the original is correct), they are unable to process long-range dependencies
and they are hard to constrain to particular error types. Last but not least, the
performance of SMT systems depends largely on the amount of parallel data used
for training, which is very limited for GEC. A common solution to this problem is to
generate artificial datasets, where errors are injected into well-formed text to produce
pseudo-incorrect sentences, as described in Section 2.2.3.

2.1.2.5 Other approaches

Apart from the most common approaches, there have been efforts to tackle
error detection and correction using other techniques, including: integer linear
programming to enforce grammatical compatibility between corrections (Rozovskaya
and Roth, 2013; Wu and Ng, 2013), compositional distributional semantics to correct
content word combinations (Kochmar and Briscoe, 2013) and, more recently, deep
neural networks for different error types (Sun et al., 2015; Xie et al., 2016).

2.2 Data

Modern GEC systems are generally built using data-driven approaches, where
knowledge is extracted from sample texts rather than explicitly coded by experts (see
Section 2.1.2). The type of corpora used for training can vary, depending on factors
such as the purpose of the system, the error types addressed and the availability of
datasets. The following sections outline the three main types of data that are often
used in the field, with a detailed description of the corpora used in our work.

2.2.1 Native data

Before the first error-annotated datasets became available, GEC systems were trained
on native corpora, typically news text. Well-formed sentences can only be used to
learn models of correct usage, so errors are flagged only when there are discrepancies
between the models’ predictions and the evaluated text. Error-free corpora are also
essential to build LMs.

Some of the most popular datasets used in GEC are collections of newspaper
text, such as English Gigaword (Parker et al., 2011) or the Wall Street Journal
corpus (Fallman, 2002). Unfortunately, news articles do not resemble real learner
text so many types of constructions that are common among learners will not be
properly represented in these corpora, such as the use of the first person, questions,
salutations and valedictions, etc. The British National Corpus (BNC)4, on the other

4http://www.natcorp.ox.ac.uk/

http://www.natcorp.ox.ac.uk/

2.2. DATA 33

hand, is a more ‘balanced’ dataset. This 100-million-word corpus contains samples
of written and spoken British English from the late 20th century, including extracts
from newspapers, books, academic literature, letters, and school and university essays,
among other genres.

The web has also been used as a source of normative text. Wikipedia is probably
the most used resource, including its ‘simple English’ version to a lesser extent. This
latter dataset might in fact be more appropriate to model learner writing, given the
lower proportion of complex structures and technical terms. Some more innovative
uses of Wikipedia for GEC are based on the extraction of corrections from article
revisions (Cahill et al., 2013b; Grundkiewicz and Junczys-Dowmunt, 2014). However,
care must be taken when using these edits, as many of them are purely stylistic or
content-related rather than grammatical. Two other popular resources are ukWaC
(Baroni et al., 2009), a 2-billion-word collection of web pages from the .uk domain,
and the Google Web 1T 5-gram corpus (Brants and Franz, 2006), containing over
3.7 billion n-grams and their counts collected from the web.

2.2.2 Learner data

The growing popularity of corpus linguistics as a way of studying language from
empirical evidence has paved the way for the creation of many specialised corpora.
Granger (2003a) defines ‘learner corpora’ (also called ‘inter-language’ or ‘L2 corpora’)
as ‘electronic collections of authentic foreign or second language data’. These
collections have become very valuable resources for studying language development
and assist the creation of educational resources, from printed learning material to
software applications (Antoniadis et al., 2006; Gillard and Gadsby, 1998; Granger,
2003a; Tono, 2003).

The usefulness of learner corpora depends largely on their annotation. This can
be done at various levels and typically covers background learner information (e.g.
age, sex, nationality, L2 proficiency), script-level information (e.g. genre, prompt,
score) and detailed error annotation. The latter involves the adoption of guidelines
for marking and correcting errors, which are often corpus-dependent, as well as a
suitable error typology, if errors are to be classified into categories. Error annotation
can be a painstaking process so most available datasets are generally not annotated
for errors.

Given its status as the world’s most learnt L2, it is no surprise that most learner
corpora are for English. The Longman Learners’ Corpus (LLC)5 is one of the earliest
examples, which amounts to c. 10 million annotated essays and exam scripts written
by students of different nationalities. The information in the LLC is a valuable
resource for in-house lexicographers and textbook authors tailoring their material to
the students’ needs (Gillard and Gadsby, 1998).

5http://www.pearsonlongman.com/dictionaries/corpus/learners.html

http://www.pearsonlongman.com/dictionaries/corpus/learners.html

34 CHAPTER 2. BACKGROUND

The International Corpus of Learner English (ICLE) (Granger, 2003b) is another
popular dataset comprising argumentative essays written by upper-intermediate and
advanced students with a wide range of L1s. The current version of the corpus
contains around 3 million words but lacks error annotations.

Two of the largest error-annotated learner corpora have emerged from
collaborative projects at the University of Cambridge: the CLC (described in
Section 2.2.2.1) and the EF-Cambridge Open Language Database (EFCamDat)
(Geertzen et al., 2012). EFCamDat contains over 70 million words in 1.2 million
essays written by nearly 175 learners with a variety of L1 backgrounds. These texts
correspond to assignments submitted to EnglishTown (now EF English Live6), an
online courseware platform by EF Education First, and span across all levels of the
Common European Framework of Reference for Languages (CEFR)7.

In recent years, a series of corpora have been automatically compiled from Lang-
8,8 a language exchange website where native speakers correct short compositions
submitted by learners from around the world. These corpora9 are available for many
languages and have found favour with the NLP community (Junczys-Dowmunt and
Grundkiewicz, 2014; Mizumoto et al., 2012; Sakaguchi et al., 2013; Sawai et al., 2013;
Yoshimoto et al., 2013). A thorough list of ‘Learner Corpora Around the World’ is
maintained online by the Centre for English Corpus Linguistics at the Université
Catholique de Louvain.10 Detailed surveys of available learner English corpora are
provided by Pravec (2002) and Schiftner (2008). In what follows, we describe two
major error-corrected learner corpora that are used for our experiments.

2.2.2.1 Cambridge Learner Corpus

The CLC is a proprietary collection of non-native English texts compiled by
Cambridge University Press and Cambridge English Language Assessment (Nicholls,
2003). Since its inception in 1993, the corpus has grown to include 52.2 million
words across 200,000 exam scripts written by students from 148 L1 backgrounds,
and continues to expand. Each of the scripts in the collection has been written in
response to an examination prompt and includes metadata such as the student’s age
and L1, prompt indexes and scores. Genres represented in the data include letters,
articles, reports and short stories, among others.

All these scripts come from ESOL examinations in the A2–C2 range of CEFR
levels and have been transcribed verbatim, retaining all original errors. A portion of
the corpus (about 25.5 million words) has been manually error-coded by two experts

6http://englishlive.ef.com
7The CEFR provides a framework for the assessment of language proficiency, defined by six

levels of attainment: A1–Breakthrough (beginner), A2–Waystage (elementary), B1–Threshold (inter-
mediate), B2–Vantage (upper intermediate), C1–Effective Operational Proficiency (advanced) and
C2–Mastery (proficient). Details can be found in its original specification (Council of Europe, 2001).

8http://lang-8.com/
9http://cl.naist.jp/nldata/lang-8/

10http://www.uclouvain.be/en-cecl-lcworld.html

http://englishlive.ef.com
http://lang-8.com/
http://cl.naist.jp/nldata/lang-8/
http://www.uclouvain.be/en-cecl-lcworld.html

2.2. DATA 35

Since the <NS type="RP"><i>internet</i><c>Internet</c></NS> was
introduced, many of us <NS type="TV"><i><NS type="RV"><i>wouldn’t
have imagined</i><c>couldn’t have imagined</c></NS></i><c>can’t
imagine</c></NS> <NS type="UD"><i>the</i></NS> <NS type="FN"><i><NS
type="IN"><i>lifes</i><c>lives</c></NS></i><c>life</c></NS> without
<NS type="RA"><i>this</i><c>it</c></NS>.

Figure 2.2: A sample annotated sentence from a public portion of the CLC. The
original version *Since the internet was introduced, many of us wouldn’t have imagined
the lifes without this. is corrected to Since the Internet was introduced, many of us
can’t imagine life without it.

according to a taxonomy of 80 error types specifically designed for the CLC (see
Appendix A). The adopted annotation scheme uses the following notation, which
permits nested errors:

<NS type=CODE><i>error</i><c>correction</c></NS>

Each error code is composed of two letters. The first of them indicates the
general type of error from among F (wrong word form), M (something missing),
R (replacement), U (unnecessary word or phrase) and D (wrong word derivation).
Types M, R and U can occur in isolation. The second letter in the code indicates
the word class of the required correction, including A (pronoun), C (conjunction),
D (determiner), J (adjective), N (noun), Q (quantifier), T (preposition), V (verb) and
Y (adverb). Other special codes are introduced for errors beyond these categories,
such as ‘AG’ for agreement and ‘S’ for spelling errors.

This coding system allows researchers to look at different cross sections of the
data by specifying only one of the two letters in the error code. For example, ‘*T’
can expose all preposition errors, regardless of their cause. Figure 2.2 shows a sample
annotated sentence from the CLC.

A subset of essay scripts from the CLC corresponding to the First Certificate
in English (FCE), a main-suite examination at the B2 level, was made publicly
available11 for non-commercial purposes in 2011 (Yannakoudakis et al., 2011).

The dataset comprises 1,244 anonymised scripts from 2000 and 2001 written
by learners with sixteen different L1s. Each of the scripts contains answers to two
writing tasks between 120 to 180 words and includes the age group and L1 of the
student along with an overall mark given by the examiners. The prompts eliciting
these assignments are also provided.

The FCE data has been used for several purposes, including GEC (Dale et al.,
2012; Felice et al., 2014; Rozovskaya et al., 2014b; Seo et al., 2012; Yuan and
Felice, 2013), native language identification (Brooke and Hirst, 2012a,b; Bykh and
Meurers, 2014; Bykh et al., 2013; Kochmar, 2011) and automated essay scoring
(Yannakoudakis et al., 2011).

11http://ilexir.co.uk/applications/clc-fce-dataset/

http://ilexir.co.uk/applications/clc-fce-dataset/

36 CHAPTER 2. BACKGROUND

S There is hundred of ways that an idea can originate from .
A 1 2|||SVA|||are|||REQUIRED|||-NONE-|||0
A 2 3|||Wform|||hundreds|||REQUIRED|||-NONE-|||0
A 5 6|||Wci|||from which|||REQUIRED|||-NONE-|||0
A 10 11|||Prep||||||REQUIRED|||-NONE-|||0

Figure 2.3: A sample annotated sentence from NUCLE. The prefix S specifies
the original sentence while the prefix A indicates annotations. Each annotation
contains the start and end token offset of the error (zero-based), a given type, a
correction, an indication of whether the correction is strictly required, an extra field for
supplementary data and the annotator’s ID at the end. In this example, the resulting
corrected sentence is There are hundreds of ways from which an idea can originate.

2.2.2.2 NUCLE

The National University of Singapore Corpus of Learner English (NUCLE) comprises
1,414 essays written in English by non-native undergraduate students at the National
University of Singapore (Dahlmeier et al., 2013). The essays were written in
response to prompts about a wide range of topics (such as healthcare, technology and
environmental pollution) and are over 500 words in length on average. The corpus
includes error annotations provided by 10 native English instructors (although none
of the sentences were multiply annotated), based on an initial taxonomy of 27 error
types. The original corpus is a collection of SGML files annotated at the character
level although an equivalent but simpler tokenised plain-text format is generally
used instead for compatibility with the M2 Scorer (see Section 3.1.3). An example
annotated sentence using this simplified format is shown in Figure 2.3.

The NUCLE corpus is freely available for research purposes and was used as
the official training data in the CoNLL 2013 and 2014 GEC shared tasks (see
Section 2.3.2). The latest version, NUCLE 3.2, classifies errors into 28 types, after
the addition of a separate category for preposition errors (Ng et al., 2013). The
current error typology is shown in Appendix B.

2.2.3 Artificial data

The scarcity of error-annotated data in the early years of GEC has made researchers
consider alternative ways of training their systems. As noted in Section 2.1, many
have resorted to native well-formed text that is used to build models of correct
language; however, erroneous test data is still needed for evaluation.

A simple strategy to overcome this problem is the deliberate injection of errors in
well-formed sentences as a replacement for genuine erroneous text. In fact, evaluating
on artificial test sets is quite common in error detection and correction tasks, such
as spelling correction (Bigert, 2004; Fossati and Di Eugenio, 2008; Wilcox-O’Hearn
et al., 2008; Wilcox-O’Hearn, 2014), sentence grammaticality judgements (Islam and
Inkpen, 2011; Wagner et al., 2007, 2009) and pronunciation error detection (Herron
et al., 1999; Kanters et al., 2009; Zhao et al., 2012). As noted by Dickinson (2010),

2.2. DATA 37

using artificial datasets for evaluation has at least one advantage over real learner
text, in that the errors and their corrections are known in advance.

Using artificial errors as training data is a more complex matter. Data-driven
approaches to GEC typically require large collections of positive and negative
instances for training so the effects of artificial generation become more evident. In
order to learn useful patterns, systems should be given errors that are plausible in
specific contexts and resemble actual learner errors. As explained in Section 1.2,
errors committed by non-native speakers are not random but largely influenced by
their L1s. Thus, any replication of learner errors should be based on a prior analysis
of real data in order to mimic them realistically.

Artificial error generation (AEG) allows researchers to create very large error-
annotated corpora with little effort and control variables such as topic and error types.
A number of AEG methods have been proposed for GEC, including deterministic
and probabilistic approaches, which we review below.

2.2.3.1 Deterministic approaches

In this category, we include approaches that generate errors in systematic ways which
do not make use of learner error distributions. These methods invariably create an
error for every relevant instance in a given corpus (e.g. an article or preposition)
and replace them with another from a predefined set of alternatives. In some cases,
the selection of a replacement is random, but in others it is still predefined and not
based on empirical error probabilities.

In their pioneering work, Izumi et al. (2003) described a system trained on
artificial data to correct article errors made by Japanese learners of English. A
corpus was created by replacing a, an, the or the zero article with a different option
chosen at random in more than 7,500 correct sentences, which was then used to train
a maximum entropy model. Results showed an improved detection rate for omission
errors but no change for replacement errors when compared to using just the original
corpus. In addition, precision rose significantly while recall remained the same.

Sjöbergh and Knutsson (2005) created an artificial corpus of split compounds and
word order errors, two of the most frequent types among non-native Swedish speakers.
A system trained on these synthetic instances was then used to detect errors in real
learner data, outperforming state-of-the-art grammar checkers. Unlike Izumi et al.
(2003), the authors found that artificial errors increased recall but lowered precision.

Brockett et al. (2006) described the use of an SMT system for correcting a set of
14 countable/uncountable nouns which are often confused by learners of English. A
training corpus was built using sentences from news articles that were deliberately
modified to include typical countability errors observed in a Chinese learner corpus.
However, their approach was still deterministic, since they used hand-coded rules to
change quantifiers (e.g. much → many), generate plurals (e.g. advice → advices)
and insert unnecessary determiners.

38 CHAPTER 2. BACKGROUND

Lee and Seneff (2008) created an artificial corpus of verb form errors by changing
verbs in error-free text to a different form (bare infinitive, to-infinitive, third person sin-
gular present, past, -ing participle and -ed participle). The authors then investigated
how these errors affected parse trees and used this information to improve the cor-
rection of subject-verb agreement, auxiliary agreement and complementation errors.

Ehsan and Faili (2013) used SMT with AEG to correct grammatical errors and
context-sensitive spelling mistakes in English and Farsi. Training corpora were
obtained by injecting artificial errors into well-formed treebank sentences using
predefined error templates. Whenever an original sentence from the corpus matched
one of the templates, a pair of correct and incorrect sentences was generated. The
process was repeated multiple times if a sentence matched more than one error
template, thereby generating many pairs for the same original sentence. A comparison
between the proposed systems and rule-based grammar checkers showed that they
are complementary, with a hybrid system achieving the best performance.

2.2.3.2 Probabilistic approaches

A few researchers have explored probabilistic methods in an attempt to mimic real
data more accurately. Wagner et al. (2007, 2009), for example, created a corpus
of artificial errors by distorting sentences from the BNC. Errors were generated
probabilistically for the four most frequent error types observed in a corpus of
ungrammatical sentences. Experiments with a number of methods (including PoS
n-grams and decision trees) showed that artificial data is effective in detecting the
targeted errors, with only poorer performance on missing words. Accuracy was also
found to drop when testing on real learner texts as opposed to synthetic test data,
confirming that training and test data should be as similar as possible.

A general approach to AEG is presented by Foster and Andersen (2009), who
describe a tool (GenERRate) for generating errors based on given patterns. The tool
operates on an input corpus of well-formed sentences and an error analysis file, which
can be hand-coded or created automatically from an error-annotated corpus. This
analysis file contains a list of operations to generate errors, such as deleting an article,
changing the tense of a verb or moving words within the sentence. If users specify a
proportion for each operation, the tool will attempt to create errors until the required
proportion is achieved or all the sentences in the input corpus are exhausted. When
no frequency information is specified, the tool behaves deterministically, trying to
inject one error per type in each of the available sentences.

A replication of the experiments in Wagner et al. (2009) using GenERRate showed
an improvement in accuracy, suggesting that the proposed method can produce
artificial errors more accurately. In a second set of experiments, the authors created a
new corpus mimicking errors in the CLC, which was then used to train a classifier to
detect grammatical sentences. Evaluation on a held-out portion of the CLC showed
a decrease in accuracy when compared to training on real errors; however, much of

2.2. DATA 39

this loss was recovered when both types of data were used, suggesting that artificial
errors could be used to augment real learner data. Still, performance was better
when using learner data on its own, so it is likely that the recovered performance
is actually due to genuine data. Yet, the generic operations defined in GenERRate
make it possible to generate errors of any type, unlike previous methods.

The formulations by Rozovskaya and Roth (2010c) constitute perhaps the most
sophisticated work on probabilistic AEG, including elaborate methods for creating
article (Rozovskaya and Roth, 2010c) and preposition errors (Rozovskaya and Roth,
2010b, 2011) based on statistics from an ESOL corpus. Errors were injected into
Wikipedia sentences following different strategies:

General Target words (e.g. articles) were replaced with others of the same class
with probability x (varying from 0.05 to 0.18). Each new word was chosen
uniformly at random.

Distribution before correction (in ESOL data) Target words in the error-free
text were changed to match the distribution in a learner corpus before
annotation is performed.

Distribution after correction (in ESOL data) Target words in the error-free
text were changed to match the distribution in a learner corpus after annotation
is performed.

L1-specific error distribution Errors were injected according to observed
confusions for the given L1. More specifically, if we estimate P(source|target)
from an error-annotated corpus (i.e. the probability of an incorrect source
word being used when the correct target is expected), we can generate more
accurate confusion sets where each candidate has an associated probability
depending on the observed word. For example, if a group of learners use the
preposition to in 10% of cases where the preposition for should be used (i.e.
P(source=to|target=for)= 0.10), we can replicate this error by replacing the
occurrences of the preposition for with to with a probability of 0.10. When
the source and target words are the same, P(source=x|target=x) expresses the
probability that a learner produces the expected word.

Experiments using the aforementioned methods produced better results than
using uniform distributions where all errors and corrections are equally probable.
In particular, classifiers trained on artificially generated data outperformed those
trained on native error-free text (Rozovskaya and Roth, 2010c, 2011). However,
previous work has shown that using artificially generated data as a replacement for
non-native error-corrected data can lead to poorer performance (Foster and Andersen,
2009; Sjöbergh and Knutsson, 2005). This would suggest that artificial errors are
more useful than native data but less useful than annotated non-native data.

40 CHAPTER 2. BACKGROUND

Rozovskaya and Roth (2010c) also controlled other variables in their experiments.
On the one hand, they only evaluated their systems on sentences that had no spelling
mistakes so as to avoid degrading performance. This is particularly important when
training classifiers on features extracted with linguistic tools (such as parsers or
taggers) as they could provide inaccurate results for malformed input. On the
other hand, the authors worked on a limited set of error types (mainly articles and
prepositions) which are closed word classes and therefore have reduced confusion sets.
Thus, it would be interesting to investigate how their ideas extrapolate to open-class
error types, like verb form or content word errors.

Because errors are generally sparse (and therefore error rates are low), replicating
errors based on observed probabilities can easily lead to low recall. In order to
address this issue during AEG, Rozovskaya et al. (2012) proposed an inflation
method that boosts confusion probabilities in order to generate a larger proportion of
artificial instances. This method has been shown to improve F-scores when correcting
determiners and prepositions and has since been adopted by other researchers (Felice
and Yuan, 2014a; Putra and Szabo, 2013; Rozovskaya et al., 2013, 2014a).

Dickinson (2010) presented a probabilistic approach to generate artificial syntactic
and morphological errors for Russian. Errors were created using different random
methods subject to constraints derived from a prior error analysis (such as PoS
properties). The resulting dataset was evaluated on PoS-tagging accuracy in an
attempt to study the robustness of taggers on malformed input.

Imamura et al. (2012) replicated the probabilistic method by Rozovskaya and
Roth (2010c) in order to generate artificial incorrect sentences for Japanese particle
correction, with inflation factors ranging from 0.0 (no errors) to 2.0 (double error
rates). Their results showed that the performance of artificial corpora depends largely
on the inflation rate but it can be improved via domain adaptation.

In a more exhaustive study, Cahill et al. (2013b) investigated the usefulness of
automatically-compiled sentences from Wikipedia revisions for correcting preposition
errors. A number of classifiers were trained using error-free text, automatically-
compiled annotated corpora and artificial sentences based on error probabilities from
Wikipedia revisions and Lang-8. Their results revealed that artificial errors provide
competitive results and perform robustly across different test sets. A learning curve
analysis also showed that system performance increases as more training data is used,
both real and artificial.

More recently, some teams have also reported improvements by using artificial
data in their submissions to the CoNLL 2013 & 2014 shared tasks (see Section 2.3.2).
Rozovskaya et al. (2013, 2014a) applied their inflation method to train a classifier for
determiner errors that achieves state-of-the-art performance while Yuan and Felice
(2013) and Felice et al. (2014) used naively-generated artificial errors within an SMT
framework to increase recall.

2.3. SHARED TASKS 41

2.3 Shared tasks

Many of the recent advances in GEC have emerged from a series of competitions or
shared tasks that have encouraged researchers to develop error correction systems.
These efforts have also helped to provide an organised framework for research in the
field, which includes publicly available test data and the use of specific evaluation
metrics. Below we review GEC shared tasks for English and touch on similar tasks
for other languages and purposes.

2.3.1 Helping Our Own 2011 & 2012

The Helping Our Own (HOO) 2011 shared task was designed to promote the
development of automatic tools that could assist non-native speakers of English in
writing scientific papers in the field of NLP (Dale and Kilgarriff, 2011). Participants
were given a training set consisting of 19 text fragments taken from papers in the
ACL Anthology (Bird et al., 2008). Fragments were an average of 940 words in
length and contained a total of 1,264 edits to correct errors and infelicities, provided
by two professional copy-editors (Dale and Narroway, 2011). A similar set containing
1,057 edits was given for testing. Errors were annotated following the CLC error
annotation scheme, with most of them involving articles, prepositions, punctuation
and wrong word choice.

The participating teams were allowed to build their systems using additional
resources and submit up to 10 different ‘runs’, so that they could provide alternative
system outputs.

Evaluation was performed in terms of precision, recall and F-score (see
Section 3.1.1) at three different levels: detection (the system determined that an edit
was necessary), recognition (the system correctly identified the extent of an edit) and
correction (the system provided one of the corrections in the gold standard). ‘Bonus’
scores were given to systems that matched optional edits. For detailed information,
refer to Section 3.1.2. The six systems that took part in the task used different
approaches, with the best system using a pipeline of classifiers (Rozovskaya et al.,
2011). The maximum F1-scores obtained for detection, recognition and correction
were 36.6, 33.7 and 30.6 respectively, reflecting the difficulty of the task.

The second edition of the shared task, HOO 2012, focused only on article and
preposition errors (Dale et al., 2012). This time, the training data was a subset of
the public FCE corpus, containing 1,000 exam scripts for training and 100 for testing.
Evaluation was performed at the same three levels as in the previous year, with the
exception that recognition also involved the correct identification of error types.

The fourteen participating teams were again allowed to submit up to 10 ‘runs’
plus additional annotations for errors that were rightly corrected by their systems
but not included in the gold standard. System performance varied widely across
error types and evaluation levels. The best two systems used a pipeline of classifiers.

42 CHAPTER 2. BACKGROUND

On the one hand, the NUS system (Dahlmeier et al., 2012) achieved the best scores
for correction, both before (F1 = 28.7) and after revisions (F1 = 37.83), when it
also scored highest for recognition (F1 = 42.52). The UI team (Rozovskaya et al.,
2012), on the other hand, scored higher for detection (F1 = 40.2) and recognition
(F1 = 35.39) before revisions but only highest for detection (F1 = 43.24) afterwards.

2.3.2 CoNLL 2013 & 2014

These shared tasks were organised as part of the Conference on Natural Language
Learning (CoNLL). The first edition in 2013 focused on five error types: articles
and determiners, noun number, prepositions, subject-verb agreement and verb form
errors (Ng et al., 2013). The training data provided for the task included 1,397
essays from the NUCLE corpus, which were written in English by students at the
National University of Singapore (see Section 2.2.2.2). Essays were corrected by
professional English instructors and only one official correction was given for each
annotated error. A preprocessed version of the data containing only the 5 relevant
error types, out of the total 27 in the original typology, was also provided. The test
data comprised 50 new essays written in response to two prompts, one of which did
not overlap with prompts in the training data.

Systems were allowed to use additional resources as long as they were publicly
available. Evaluation was performed using the MaxMatch (or M2) Scorer, which
computes precision, recall and F1 on automatically extracted phrase-level edits (see
Section 3.1.3). As in HOO 2012, teams were given the chance to submit alternative
corrections after the first evaluation round.

The task attracted submissions from 17 teams that employed different correction
strategies. The top performing system (Rozovskaya et al., 2013) used a set of
classifiers and achieved an overall F1-score of 31.20 and 42.14 before and after
alternative answers were considered, respectively.

The second edition of this shared task (Ng et al., 2014) extended correction to all
28 types in updated versions of the training and test data. The new test set contained
corrections from two independent expert annotators. Based on the assumption that
precision is more valuable than recall in GEC environments, system evaluation was
changed to use F0.5, weighting precision twice as much as recall.

A total of 13 teams submitted their systems’ output. Our hybrid system (Felice
et al., 2014), integrating rule-based and SMT components with LM ranking and
type filtering, scored first (F0.5 = 37.33) and second (F0.5 = 43.55) before and after
alternative corrections. The runner-up (Rozovskaya et al., 2014a), a combination
of ML classifiers addressing only 9 error types, achieved the second (F0.5 = 36.79)
and first place (F0.5 = 45.57) respectively. Results on this task revealed that SMT
approaches could be highly competitive and achieve state-of-the-art performance, as
two out of the three best performing systems used such models.

2.3. SHARED TASKS 43

The test sets used in the CoNLL shared tasks remain freely available, serving as
common datasets for future comparisons.

2.3.3 Other shared tasks

Similar shared tasks have also been organised for languages other than English. The
NLP-TEA-1 (Yu et al., 2014) and NLP-TEA-2 (Lee et al., 2015) shared tasks focused
on Chinese grammatical error diagnosis. The tasks concerned two aspects: 1) binary
error detection, where a sentence is classified as correct or incorrect, and 2) error
identification, which classifies an incorrect sentence as having only one error from
the given typology (redundant word, missing word, word disorder and incorrect word
selection).

The QALB-2014 (Mohit et al., 2014) and QALB-2015 (Rozovskaya et al., 2015)
shared tasks focused on automatic text correction for Arabic, originally for native
speakers but later extended to include learner text. The training and test data
included errors from many categories (e.g. spelling, punctuation, word choice,
morphology, syntax and usage) but systems were not required to classify them, only
to correct them.

Other proposed shared tasks not directly focused on GEC can also be relevant
for this purpose, such as the ones for Automated Evaluation of Scientific Writing
(AESW) (Daudaravicius et al., 2016) and Automatic Post-Editing (APE) for MT
(Bojar et al., 2015).

44 CHAPTER 2. BACKGROUND

Chapter 3

Evaluation methods

This chapter gives an overview of evaluation methods for GEC. The first section
describes early approaches based on traditional metrics, such as precision, recall
and F-measure. In the second section, we propose the I-measure, a new evaluation
method that overcomes the limitations of previous approaches. In the third section,
we review recent work on the use of crowdsourcing as a means to produce human
rankings and develop more accurate metrics. Finally, we summarise the status quo
and discuss the problems inherent in evaluation metrics for GEC.

3.1 Previous work

3.1.1 Traditional evaluation metrics

GEC systems are generally evaluated by comparing their output (a hypothesis) with
corrections in a gold standard (a reference). This comparison is often made in terms
of the ‘edits’ that the system and gold standard propose to produce a corrected
version of the source text. For example, for the sentence *I like swim, some possible
correction edits are (swim → swimming) and (swim → to swim). Edits can be
expressed in many ways but they are most often phrases or tokens.

When using a gold standard, each system edit can be classified as a true positive
(TP), a false negative (FN), a false positive (FP) or a true negative (TN); sometimes
depending on whether detection or correction performance is being evaluated:

• A TP is a ‘hit’, a match between the system and the gold standard. For
detection, flagging the error will suffice but for correction, the system’s
hypothesis must also match the gold standard correction exactly.

• A FN is a ‘miss’, an error annotated in the gold standard that the system failed
to catch. For correction, this includes cases where an error is detected but the
provided correction does not match the gold standard.

46 CHAPTER 3. EVALUATION METHODS

Writer Annotator System
TN X X X
FP X X Y
FN X Y X
TP X Y Y
* X Y Z

Table 3.1: Classification under the WAS evaluation scheme (Chodorow et al., 2012).

Writer She love skying in the alps
Annotator She loved skiing in the Alps .
System She loves skying on the Alps
Detection TN TP FN FP TN TP FN
Correction TN FP+FN FN FP TN TP FN

Table 3.2: An example of token-level WAS evaluation.

• A FP is a ‘false alarm’, a correction proposed by the system that is not in the
gold standard.

• A TN is a correct piece of text that is duly preserved by the system. In
other words, it is an item that is correctly identified by the system as not
needing correction. Because most words in learner text are generally correct,
TNs constitute the majority class. These edits are normally ignored and not
included in the gold standard.

This classification, referred to as the Writer-Annotator-System (WAS)1 evaluation
scheme in GEC (Chodorow et al., 2012), is summarised in Table 3.1. An example is
given in Table 3.2.

As noted by the authors, classification varies for detection and correction when
all three values are different (the last row in Table 3.1). For detection, this case is
always a TP while for correction it is both a FP for Z (because Writer 6= System)
and a FN for Y (because Annotator 6= System). This will become more relevant
when we introduce a new measure in Section 3.2.

As in other areas of NLP, these counts are used to compute the traditional metrics
of precision (P), recall (R) and F-measure (F). Definitions of P and R are given in
Equation 3.1 and 3.2 respectively.

P = TP
TP + FP (3.1) R = TP

TP + FN (3.2)

Equation 3.1 shows that P is the proportion of actual errors among the ones
predicted by the system. It can thus be seen as a measure of ‘purity’ or ‘quality’,

1The authors use different terminology, where ‘writer’ refers to the source (original text),
‘annotator’ to the reference correction (gold standard) and ‘system’ to a system’s correction
hypothesis.

3.1. PREVIOUS WORK 47

indicating how good or reliable detection (or correction) is in general. The lower the
number of ‘false alarms’, the higher the precision. R gives the proportion of errors
captured by the system out of all the errors in the text, and is therefore a measure
of ‘coverage’. As more errors are successfully detected (or corrected), recall will be
higher. The trade-off between P and R is a well-known problem in information
retrieval, as it is difficult in practice to achieve high scores in both metrics at the
same time (Buckland and Gey, 1994).

Computing P and R for our example in Table 3.2 yields P = 2/(2 + 1) = 2/3 and
R = 2/(2 + 2) = 1/2 for detection, and P = 1/(1 + 2) = 1/3 and R = 1/(1 + 3) = 1/4
for correction. As expected, scores are lower for correction, since it requires stricter
matching.

P is typically considered more important than R in GEC for at least two
reasons. First, finding a large number of errors is not as important as providing
good corrections. This is crucial in a learning environment, where we would much
rather catch fewer errors than mark correct usage as incorrect. As noted by Leacock
et al. (2014, p. 11), a system should ‘minimize false positives, which are notoriously
annoying for users’. Second, P can be a useful indicator of the effect of the system
on the source text. In particular, whenever P > 0.5, the error rate decreases (and
therefore accuracy increases, see below), so the original text is improved. This is
because, in theory, applying more correct edits than incorrect edits will yield a
positive balance. However, in practice, this depends on the edits, especially if they
are phrases of variable length.

In other scenarios, however, R might be preferred. For example, teachers using
GEC systems as a tool for preliminary correction may prefer to check a large number
of potential errors rather than leave some errors uncorrected. Likewise, users who
need to proofread very important documents might also be willing to review a few
false positives to ensure no error has slipped.

We can also compute F to get a unified measure of performance, as shown in
Equation 3.3:

Fβ = (1 + β2)× P× R
(β2 × P) + R (3.3)

Parameter β is a positive real that controls the importance of R with regard to
P. The most common definition (F1, or simply F) equals the harmonic mean of P
and R, where both values are considered equally important (Equation 3.4):

F1 = 2× P× R
P + R (3.4)

For our example, this gives F1 = 4/7 for detection and F1 = 2/7 for correction.
Because P, R and F are built upon TPs, they can only give meaningful results if

TP ≥ 1, that is, if the system gets at least one correction right. Consequently, the
difference between a ‘do nothing’ baseline and a system that only makes the text

48 CHAPTER 3. EVALUATION METHODS

worse is indiscernible. The axiomatic definition of P and R when their denominators
are zero might also pose problems if the metrics are analysed in isolation (e.g. P = 1
might occur by definition). Finally, these metrics do not provide a clear indication of
how the error rate varies after applying a system’s corrections.2

These limitations can be overcome by using accuracy (Acc), which computes the
proportion of correct cases over the total number of cases, as shown in Equation 3.5:

Acc = TP + TN
TP + TN + FP + FN (3.5)

However, Acc can easily be dominated by TNs in problems where the majority
of cases belong to the negative class (Manning and Schütze, 1999, p. 269). This is
also the case in GEC, where errors constitute a minority. For example, if article
errors occur only 15% of the time in a given corpus, leaving the text uncorrected
will achieve an accuracy of 85%. In our particular example, Acc = 4/7 for detection
and Acc = 3/7 for correction.3

Acc can only be computed in cases where we can enumerate all TNs, which
is why it has been mostly used for article and preposition errors (De Felice and
Pulman, 2008; Rozovskaya and Roth, 2010c). Extending this approach to other
error types involves the identification of all relevant instances or positions where
an error can occur, which is not always easy and renders the evaluation process
costly, language-dependent, and possibly inexact.4 An easier way to circumvent
this problem is to define a clear-cut unit of evaluation, such as tokens, and evaluate
output regardless of type.

Despite these issues, the use of Acc can be advantageous to GEC. Correcting
errors in a piece of text implies reducing the initial error rate, or, in other words,
increasing accuracy.5 Therefore, Acc provides a straightforward way of comparing
performance, even if the values seem inflated. If a system achieves higher Acc than a
baseline, it is reducing the number of errors and thus improving the original text.

In addition, it is arguable that TNs are irrelevant and should not be considered.
Unlike in information retrieval, for example, where the whole document collection
is usually unknown to the user (so TNs are perhaps less relevant), the sentences fed
into a GEC system are provided by users who expect all of their writing to be judged.

2However, Rozovskaya and Roth (2010c) propose the following formula to compute post-system
error rates from an initial (base) error rate and a system’s P and R:

ErrorRatesys =ErrorRatebase × (P + R − 2PR)
P

3Considering some tokens as both a FP and a FN complicates the computation of Acc for
correction. Here, we have counted such cases only once in the denominator but we propose a more
elaborate solution in Section 3.2.

4Some relevant instances may be easy to define (e.g. for article errors, all potential noun phrases;
for verb form errors, all verbs; and so on) but what are the relevant instances for idiom errors?

5Error rate = 1 − Acc.

3.1. PREVIOUS WORK 49

Aspect P R

Detection # detected edits
spurious edits + # detected edits

detected edits
gold edits

Recognition # recognised edits
system edits

recognised edits
gold edits

Correction # valid corrections
system edits

valid corrections
gold edits

Table 3.3: Definition of evaluation metrics for the HOO 2011 & 2012 shared tasks.
The ’with bonus’ versions include the number of missing optional edits in both the
numerator and denominator for all aspects and metrics.

In this context, TNs are relevant because they indicate what parts of the text are
already correct, allowing users to focus on problematic regions. Thus, Acc seems a
more appropriate measure for our purposes although P, R and F are often preferred.

3.1.2 Evaluation in HOO 2011 & 2012

The HOO 2011 & 2012 shared tasks included evaluation for the following three
aspects:

Detection: Whether the system determines that a correction is needed at some
point in the text. A ‘lenient’ matching is used in this case, where a system edit
is only required to have some overlap with a gold-standard edit.

Recognition: Whether the system matches the exact span of a required correction
(i.e. strict alignment). Recognition in the 2012 edition also requires matching
the correct error type.

Correction: Whether the system provides a correction that matches one in the
gold standard.

Evaluation was carried out in terms of ‘edits’, which could be explicitly defined
by the systems or extracted automatically by comparing a system’s hypothesis to
the source text. These system edits were then compared to the ones in the gold
standard and classified accordingly for each of the above categories. Some edits were
marked as optional in the gold standard, so systems were not required to match them
although they helped to earn ‘bonus’ points. Unnecessary changes (i.e. FPs) were
considered ‘spurious’ edits. More details on the datasets, alignments and edits are
given by Dale and Narroway (2011). P and R were computed as shown in Table 3.3,
with and without ‘bonus’. F1 (Equation 3.4) was also reported.

As noted by the organisers of the shared task, this scoring scheme has a major
deficiency: if a system’s edits are equivalent to the ones in the gold standard (i.e.
they produce the same correction) but are composed differently (e.g. one edit versus
two edits), no credit is assigned to the system. Table 3.4 illustrates this situation.

50 CHAPTER 3. EVALUATION METHODS

Source I hope that these informations will be useful.
System hypothesis I hope that this information will be useful.
System edits (these informations → this information)
Gold edits (these → this), (informations → information)

Table 3.4: Mismatch between system and gold standard edits producing the same
corrected sentence.

3.1.3 Evaluation in CoNLL 2013 & 2014: M2 Scorer

In order to mitigate the problems with previous approaches, a new evaluation
tool was adopted for the CoNLL 2013 & 2014 shared tasks. This new tool, called
MaxMatch or M2 Scorer (Dahlmeier and Ng, 2012b)6, employs an efficient algorithm
to compute phrase-level edits and score systems based on the maximum overlap with
the gold standard.

The M2 Scorer starts by generating the best alignment between the source
sentence and a system’s hypothesis using Levenshtein distance. A lattice is created
showing the alternative paths that convert the source sentence into the hypothesis.
System edits are then extracted from this lattice according to the following criteria.

First, annotators can correct errors in different ways, often including unmodified
parts of the original sentence (e.g. word → a word).7 To allow for unmodified tokens
in the edits but prevent them from spanning an unreasonable extent of the sentence,
a parameter u is used to specify the maximum number of unchanged tokens allowed
in an edit. By default, this parameter is arbitrarily set to 2.

Second, to solve mismatches between equivalent edits (see Table 3.4), the M2

Scorer applies a transitive rule. This makes it possible to combine edits and maximise
the chance of matching the gold standard, e.g. (ε → a) + (word → word) ⇒ (word
→ a word). The shortest maximally-matching edit sequence is computed from the
lattice using an efficient search algorithm. P and R are then computed as follows:

P =
∑n
i=1 |ei ∩ gi|∑n
i=1 |ei|

(3.6)

R =
∑n
i=1 |ei ∩ gi|∑n
i=1 |gi|

(3.7)

where {e1, ..., en} represent system edits and {g1, ...,gn} represent gold-standard
edits. The intersection of both sets includes edits that have the same token offsets
and where ei’s correction is included in gi. F1 is also computed using its standard
definition (Equation 3.4).

6Available at http://www.comp.nus.edu.sg/~nlp/sw/m2scorer.tar.gz
7These should be exceptions, since annotation guidelines should discourage the inclusion of

unmodified words in an edit. Edits should include the minimum string required to correct an error
but this was not the case in NUCLE.

http://www.comp.nus.edu.sg/~nlp/sw/m2scorer.tar.gz

3.1. PREVIOUS WORK 51

Finally, since participating teams were allowed to submit alternative corrections,
the M2 Scorer was designed to take multiple annotations into account. In particular,
for each sentence in the gold standard, the scorer evaluates its alternative sentence-
level annotations and chooses the one that maximises cumulative F. This is a simple
approach where each hypothesis is matched with the most similar full-sentence
annotation but is unable to ‘mix and match’ individual cross-annotator corrections.
For this reason, system performance can often be underestimated, as combining
corrections from different annotations will not gain any credit.

A number of changes were introduced in the CoNLL 2014 shared task. To
accommodate the notion that P is preferred over R in GEC, the β parameter in
Equation 3.3 was changed from 1 to 0.5, weighting P twice as highly as R. The
definition of F0.5 is shown in Equation 3.8.

F0.5 = (1 + 0.52)× P× R
(0.52 × P) + R (3.8)

Additionally, the new test set included corrections from two annotators, making
it the first publicly available dataset to include multiple alternative annotations.

The M2 Scorer became the de facto standard for GEC evaluation, especially for
comparison with previous work. It was also adopted as the official evaluation scorer
in the QALB-2014 (Mohit et al., 2014) and QALB-2015 (Rozovskaya et al., 2015)
shared tasks, which continued to use F1.

However, the M2 Scorer suffers from a number of limitations, some of which are
inherent in the definitions of traditional metrics:

(a) There is a limit to the number of unchanged words allowed in an edit (u = 2
by default), which is arbitrary and affects final results.

(b) Given that the computed metrics rely on TP counts, a baseline system that
does not propose any correct edits will not produce informative results (P = 1
by definition, R = 0 and F = 0). The actual error rate and consequent potential
for text improvement are not taken into account.

(c) It is not possible to discriminate between a ‘do nothing’ baseline system and
other systems that only propose wrong corrections, as they will all yield F = 0.

(d) System performance is underestimated when using multiple annotations for
a sentence, since the scorer will choose the one that maximises F instead of
mixing and matching all the available individual corrections (see Table 3.5).

(e) Partial matches are ignored (see Table 3.6).

(f) Phrase-level edits can produce misleading results, as they may not always
reflect effective improvements (see Table 3.7).

52 CHAPTER 3. EVALUATION METHODS

Source Annotator 1 Annotator 2
This machines is
designed for help people .

(This → These), (is → are),
(help → helping)

(machines → machine),
(for → to)

System hypothesis System edits P R F0.5
These machines are
designed to help people .

(This → These), (is → are),
(for → to)

0.67 0.67 0.67

Table 3.5: The M2 Scorer is unable to mix and match corrections from different
annotators.

Source Gold edits
Machine is design to help people . (Machine → Machines),

(is design → are designed)

System hypothesis System edits P R F0.5
Machine is designed to help people . (design → designed) 0.00 0.00 0.00

Table 3.6: Partial matches are ignored by the M2 Scorer.

(g) The lack of a TN count (i.e. the number of non-errors) precludes the
computation of accuracy, which is useful for discriminating between systems
with F = 0.

(h) There is no clear indicator of improvement on the original text after applying
the suggested corrections, since an increase in P, R or F does not imply a
reduction in the error rate (see Section 3.2.3.3).

(i) It is not clear how values of F should be interpreted (especially for F0.5), as
there is no known threshold that would signal improvement. Ranking by F does
not guarantee that the top systems make the source text better. Comparing
systems with the ‘do nothing’ baseline will not help either, since the latter will
always yield F = 0 and make any system look better in comparison.

(j) Detection scores are not computed.

In addition, Leacock et al. (2014, p. 44) discuss key issues concerning system
evaluation, such as the estimation of TNs and good practices for reporting results,
which are currently not addressed by the M2 scorer.

3.2 Towards a new evaluation method: I-measure

A better evaluation method should address the issues described above and use a
measure that is meaningful and easy to interpret. In this section, we propose the
I-measure,8 a new method that aims to resolve these problems.

8An open-source implementation is available at https://github.com/mfelice/imeasure.

https://github.com/mfelice/imeasure

3.2. TOWARDS A NEW EVALUATION METHOD: I-MEASURE 53

Source Gold edits
Machine is design to help
people .

(Machine → Machines), (is → are), (design → designed)

System hypothesis System edits P R F0.5
The machine is designed
for helping people .

(Machine is → The machine is),
(design → designed),
(to help people → for helping people)

0.33 0.33 0.33

Machines is a design on
the helping of the people .

(Machine → Machines),
(is design to help → is a
design on the helping of the)

0.50 0.33 0.45

Table 3.7: The M2 Scorer evaluates systems based on the number of edits, regardless
of their length and their effect on the final corrected sentence. The first hypothesis
is better than the second despite having a lower F0.5-score.

Our proposed method uses tokens as the unit of evaluation (instead of phrase-level
edits used by previous approaches), which provides a stable unit of comparison and
facilitates the computation of TNs. As a result, we are able to provide a solution for
problems 3.1.3.(a), 3.1.3.(e), 3.1.3.(f) and 3.1.3.(g).

The following sections describe the three pillars of our method: a new annotation
scheme, sentence alignment and metrics.

3.2.1 Annotation

We define a gold standard format where each sentence is annotated with a set of
errors and their possible corrections. A sentence can contain zero or more errors,
each of which includes information such as a type, a flag indicating if a correction
is required, and a list of alternative corrections proposed by the annotators. We
consider an error requires correction if all the annotators provide a correction for it.

Unlike in other annotation schemes, each error is defined by its locus (regardless of
the position of the incorrect tokens in the sentence) and all its alternative corrections
must be mutually exclusive. In other words, corrections are grouped whenever they
refer to the same underlying error, even if the tokens involved are not contiguous.
Listing 3.1 shows a sample XML annotation for the sentence in Table 3.5 while
Appendix C shows an example conversion for a sentence in the CLC (whose original
annotation is shown in Figure 2.2).

Because all the correction alternatives are now mutually exclusive, we can directly
combine them to generate all possible valid gold standard references. For example,
the annotation in Listing 3.1 would produce the following four references:

These machines are designed for helping people .
These machines are designed to help people .
This machine is designed for helping people .
This machine is designed to help people .

54 CHAPTER 3. EVALUATION METHODS

<sentence id="1" numann="2">
<text>

This machines is designed for help people .
</text>
<error-list>

<error id="1" req="yes" type="SVA">
<alt ann="0">

<c start="0" end="1">These</c>
<c start="2" end="3">are</c>

</alt>
<alt ann="1">

<c start="1" end="2">machine</c>
</alt>

</error>
<error id="2" req="yes" type="Vform">

<alt ann="0">
<c start="5" end="6">helping</c>

</alt>
<alt ann="1">

<c start="4" end="5">to</c>
</alt>

</error>
</error-list>

</sentence>

Listing 3.1: An example annotated sentence.

By mixing and matching corrections from different annotators, we avoid the
performance underestimation described in 3.1.3.(d).

3.2.2 Alignment

In order to compute matches for detection and correction, we generate a token-level
alignment between a source sentence, a system’s hypothesis, and a gold standard
reference. Three-way alignments are a special case of multiple sequence alignment, a
well-known string matching problem in computational biology (Mount, 2004).

We generate an exact (globally optimal) alignment using a dynamic programming
implementation of the Sum of Pairs (SP) alignment (Carrillo and Lipman, 1988),
shown in Listing 3.2. Under this model, the score of a multiple alignment is the sum
of the scores of each pairwise alignment, so that a globally optimal alignment has
minimum SP score.

Time and space complexity of the dynamic programming implementation for k
strings of length n is O(nk), which is acceptable for three average-length sentences
but can quickly become impractical for a larger number of sequences. In our test
sets, average sentence length ranges from 15 tokens in FCE-test to 23 tokens in the
CoNLL-2014 test set. Sentences in the first dataset contain an average of 2.56 errors
and have been corrected by only one annotator whereas sentences in the second
dataset contain an average of 4.76 errors and have two alternative annotations. This

3.2. TOWARDS A NEW EVALUATION METHOD: I-MEASURE 55

Initial alignment Desired alignment
(S)ource X Y X Y
(H)ypothesis – Z Z –
(R)eference X – X –

Table 3.8: Initial and desired alignments showing differences in the placement of gaps.

poses the CoNLL-2014 test set as our worst case scenario, where each sentence
produces roughly 25 = 32 alignments with an average time and space complexity of
O(233) each. In practice, however, computation is typically faster, since complexity
is reduced to O(n2) any time two sentences are equal (e.g. source = reference, at
least 10% of cases in the CoNLL-2014 test set) and O(n) when the three sentences
are the same (i.e. source = hypothesis = reference, the trivial case).

In computational biology, edit costs are defined in terms of mutation probabilities,
which are irrelevant to our task. However, we can find new optimal costs by defining
a set of constraints that are meaningful for error correction:

(a) Matches have zero cost (cmatch = 0).

(b) Gaps (insertions or deletions) are more costly than matches (cgap > cmatch).

(c) Mismatches (substitutions) are set to be more costly than gaps (insertions or
deletions) so as to maximise matches (cmis > cgap).

Given these constraints, we can set cgap = 1 and cmis = 2; however, this will not
necessarily keep gaps aligned (see Table 3.8). To ensure this, we must place a new
constraint on the SP algorithm so that a gap-aligned version (desired alignment) has
a lower cost than a gap-unaligned version (initial alignment):

(X, –) + (–,X) + (X,X) + (Y, Z) + (Z, –) + (Y, –) > (X, Z) + (Z,X) + (X,X) + (Y, –) + (–, –) + (Y, –)

cgap + cgap + cmatch + cmis + cgap + cgap > cmis + cmis + cmatch + cgap + cmatch + cgap

4cgap + cmis > 2cmis + 2cgap
2cgap > cmis

Therefore 2cgap > cmis > cgap > cmatch. For our implementation, we adopted
cgap = 2 and cmis = 3, the minimum integer weights that fulfil this condition.

There can be more than one optimal alignment for a given set of strings. Some
of these alignments will look more intuitive than others (see Table 3.9) but they are
equally optimal for our evaluation method and will produce the same final results.
For this reason, there is no need to extend the algorithm to find the most natural
alignment.

56 CHAPTER 3. EVALUATION METHODS

/* Initialisation */
cmatch := cost of match
cmis := cost of mismatch
cgap := cost of gap

D[0, 0, 0] := 0

D1,2[i, j] := edit_distance(S1[1..i], S2[1..j])
D1,3[i, k] := edit_distance(S1[1..i], S3[1..k])
D2,3[j, k] := edit_distance(S2[1..j], S3[1..k])

/* Recurrences for boundary cells */
D[i, j, 0] := D1,2[i, j] + (i + j) * cgap,
D[i, 0, k] := D1,3[i, k] + (i + k) * cgap,
D[0, j, k] := D2,3[j, k] + (j + k) * cgap,

/* Recurrences for non-boundary cells */
for i := 1 to n1 do

for j := 1 to n2 do
for k := 1 to n3 do

begin
if (S1[i] = S2[j]) then cij := cmatch
else cij := cmis;
if (S1[i] = S3[k]) then cik := cmatch
else cik := cmis;
if (S2[j] = S3[k]) then cjk := cmatch
else cjk := cmis;

d1 := D[i-1, j-1, k-1] + cij + cik + cjk;
d2 := D[i-1, j-1, k] + cij + 2 * cgap;
d3 := D[i-1, j, k-1] + cik + 2 * cgap;
d4 := D[i, j-1, k-1] + cjk + 2 * cgap;
d5 := D[i-1, j, k] + 2 * cgap;
d6 := D[i, j-1, k] + 2 * cgap;
d7 := D[i, j, k-1] + 2 * cgap;

D[i, j, k] := Min(d1,d2,d3,d4,d5,d6,d7);
end;

Listing 3.2: The Sum of Pairs dynamic programming
algorithm for the alignment of three sequences, S1, S2 and
S3 (adapted from Gusfield (1997)).

3.2.3 Metrics

Once we have an optimal alignment between a source, a hypothesis and a reference,
we can collect the necessary counts for our metrics. The limitation in 3.1.3.(j) is
addressed by computing these metrics for both detection and correction.

We adopt an extended version of the WAS evaluation scheme (see Table 3.1)
where each token alignment is classified as a TP, TN, FP or FN. As noted by
Chodorow et al. (2012), cases where source 6= hypothesis 6= reference are both a FP
and a FN for correction, so we introduce a new FPN class to count such cases and
adjust our metrics accordingly. Our extended WAS scheme is shown in Table 3.10.

With these counts, we can compute token-level P, R and Fβ using their standard
definitions. However, as mentioned in Section 3.1.3, the F-measure does not shed

3.2. TOWARDS A NEW EVALUATION METHOD: I-MEASURE 57

S Their is wide spread usage of technology . A A A A A A A A
H There is widespread use of technology . ⇔ B A B B - A A A
R There is widespread use of technology . B A B B - A A A
S Their is wide spread usage of technology . A A A A A A A A
H There is widespread use of technology . ⇔ B A B - B A A A
R There is widespread use of technology . B A B - B A A A

Table 3.9: Two equally optimal alignments under the SP alignment model.

Tokens Classification
Source Hypothesis Reference Detection Correction

a a a TN TN
a a b FN FN
a a - FN FN
a b a FP FP
a b b TP TP
a b c TP FP, FN, FPN
a b - TP FP, FN, FPN
a - a FP FP
a - b TP FP, FN, FPN
a - - TP TP
- a a TP TP
- a b TP FP, FN, FPN
- a - FP FP
- - a FN FN

Table 3.10: Our extended WAS evaluation scheme.

light on the error rates in the data and is unable to discriminate between a ‘do
nothing’ baseline and other systems unless TP > 0. Because we now have a TN
count, we can compute Acc instead as in Equation 3.9 and thus solve problems
3.1.3.(b) and 3.1.3.(c).

Acc = TP + TN
TP + TN + FP + FN− FPN (3.9)

Since we consider TNs relevant for GEC, accuracy seems a more appropriate
measure of correction quality than F-score.

3.2.3.1 Weighted accuracy

Acc treats all counts equally, which has two main side effects. First, a system that
introduces the same number of TPs and FPs will have the same accuracy as the ‘do
nothing’ baseline, in which case we would prefer to keep the original text and rank
the system lower, in accord with the choice of F0.5 in the CoNLL 2014 shared task.
Second, Acc is also unable to discriminate between systems with different TP and
TN counts if their sum is the same, e.g. TP = 4,TN = 6 vs TP = 7,TN = 3.

58 CHAPTER 3. EVALUATION METHODS

1 2 3 4 5 6 7 8 9 101112131415

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

w

W
A

cc

All correct
Above baseline
Baseline
Below baseline
All incorrect

Figure 3.1: Effect of w on WAcc.

It is clear that for error correction these counts should be weighted differently. In
particular, we would like to:

• Reward correction more than preservation (i.e. weightTP > weightTN).

• Penalise unnecessary corrections more than uncorrected errors (i.e. weightFP >
weightFN).

We can reformulate Acc to satisfy these conditions by including a weight factor
w > 1, leading to weighted accuracy (WAcc):

WAcc = w · TP + TN
w · TP + TN + w ·

(
FP− FPN

2

)
+
(
FN− FPN

2

) (3.10)

= w · TP + TN
w · TP + TN + w · FP− w · FPN2 + FN− FPN

2
(3.11)

= w · TP + TN
w · (TP + FP) + TN + FN− (w + 1) · FPN2

(3.12)

Note that FPN cases are now distributed equally between FPs and FNs, so that
the introduction of w will not affect their proportions.

Higher values of w will reward and penalise systems more heavily, bringing those
below the baseline closer to the lower bound and those above the baseline closer to
the upper bound (see Figure 3.1). As w increases, differences between WAccsys and
its bounds become less pronounced, which is why we adopt w = 2 (the minimum
integer value that satisfies the condition). Regardless of w, WAcc will always reduce
to Acc for the ‘do nothing’ baseline.

3.2.3.2 Metric behaviour

Before we set out to evaluate and compare systems, we must understand how metrics
behave and to what extent they are comparable.

3.2. TOWARDS A NEW EVALUATION METHOD: I-MEASURE 59

System Chosen references P R F0.5
S1 1.2, 2.1, 3.1 0.60 0.20 0.43
S2 1.2, 2.1, 3.1 0.80 0.05 0.20
S1 1.1, 2.1, 3.2 0.30 0.30 0.30
S2 1.1, 2.1, 3.2 0.30 0.40 0.32

Table 3.11: S1 outperforms S2 in terms of overall F0.5 but S2 outperforms S1 when
evaluated on different references.

System TP FP TN FN P R F0.5 Acc WAcc
Baseline 0 0 6 4 1.00 0.00 0.00 0.60 0.60

S1 4 1 5 0 0.80 1.00 0.83 0.90 0.87
S2 1 0 6 3 1.00 0.25 0.62 0.70 0.73
S3 1 1 5 3 0.50 0.25 0.42 0.60 0.58
S4 4 6 0 0 0.40 1.00 0.45 0.40 0.40

Table 3.12: An increase in P, R or F does not necessarily translate into an increase
in Acc, assuming all systems are evaluated on the same set of references.

Table 3.10 indicates that the metrics will always produce the same results for
detection and correction unless source 6= hypothesis 6= reference for at least one
position in the alignment. A ‘do nothing’ baseline will always produce the same
results for both aspects, since source = hypothesis for all positions.

Whenever a gold standard allows for alternative corrections, references that
maximise the target metric should be chosen. Nevertheless, we note that the
(maximum) score obtained by a system only applies to a given set of chosen references
and is therefore only directly comparable to results on the same reference set. To
illustrate this, consider two systems (S1 and S2) evaluated on a gold standard
containing 3 sentences with 2 correction alternatives each (i.e. six possible references:
1.1, 1.2, 2.1, 2.2, 3.1 and 3.2 respectively). Table 3.11 shows that, while S1 achieves
a higher maximum score than S2, comparing their F0.5 scores directly is not possible
as they are computed on a different set of references. In fact, S2 could outperform S1
on other reference sets.

3.2.3.3 Measuring improvement

As noted in Section 3.1.1, whenever P > 0.5, the error rate decreases (and therefore
Acc increases) so the text should be improved.9 However, an increase in P, R or
F alone does not necessarily imply an increase in Acc or WAcc, as illustrated in
Table 3.12.

In order to determine whether a system improves the source text, we must
compare its performance (WAccsys) with that of the ‘do nothing’ baseline (WAccbase).
Since each WAccsys is computed from a different set of references, we must compute

9The P > 0.5 criterion also holds for Acc but not WAcc, as the latter modifies the original
proportions by introducing weights.

60 CHAPTER 3. EVALUATION METHODS

DEGRADATION AREA

-1.00

0 WAcca

IMPROVEMENT AREA

+1.00

1WAccb

0

WAccbase

Ia Ib

Figure 3.2: Graphical representation of improvement for two hypothetical systems, a
and b. Values of I are shown at the top while values of WAcc are shown at the bottom.

WAccbase individually for each system using its chosen references. This is done by
using the source sentence as the hypothesis in the existing alignment. Once we have
WAccsys and WAccbase for each system, we can compare them to determine if the
text has improved. When these two values are equal, there is no benefit to deploying
the system.

If we want to compare and rank systems, we need to measure how much the text
has been improved or degraded. This can be done using a baseline-normalised metric
that measures relative coverage of the area between the baseline and WAcc bounds
(see Figure 3.2). This metric, henceforth Improvement or I-measure (I), is defined as:

I =

bWAccsysc if WAccsys = WAccbase

WAccsys −WAccbase
1−WAccbase

if WAccsys >WAccbase

WAccsys
WAccbase

− 1 otherwise

(3.13)

where bxc stands for the floor function. Values of I lie in the [−1, 1] interval and
should be interpreted as per Table 3.13. The use of this metric provides a solution
to problems 3.1.3.(h) and 3.1.3.(i).

The idea of measuring performance in terms of degradation or improvement has
also been explored by Wagner (2012), although his method is radically different.
While he compares classifiers by representing TP and TN rates on a plane, we provide
a one-dimensional measure that compares a system with a baseline directly using a
weighted version of Acc.

The I-measure should be computed after maximising system WAcc at the sentence
level, so as to ensure all the evaluated hypotheses are paired with their highest scoring
references. Trying to maximise I directly can yield suboptimal results, as different
combinations of WAccbase and WAccsys can produce the same final result (but the
one with higher WAccsys is clearly preferred).

To facilitate reading, we report all measures as percentages from now on, so that
I-measure scores range within [−100, 100] and all the other metrics within [0, 100].

3.2. TOWARDS A NEW EVALUATION METHOD: I-MEASURE 61

Value Interpretation
1 100% improvement (100% correct text).

> 0 Relative improvement.
0 Baseline performance (no change).

< 0 Relative degradation.
−1 100% degradation (100% incorrect text).

Table 3.13: Interpretation of I values.

S: Staff in hospital can help rule out serious medical condition .
R1: Hospital staff can help rule out a serious medical condition .
R2: Staff in a hospital can help rule out any serious medical condition .
R3: Staff in hospitals can help rule out serious medical conditions .

Figure 3.3: Automatic grouping of overlapping corrections into error clusters.

3.2.4 Experiments and results

We tested our evaluation method by re-ranking systems in the CoNLL 2014 shared
task on grammatical error correction. Re-ranking was limited to the 12 participating
teams that made their system’s output publicly available.

For the gold standard, we used the shared task test set containing corrections
from the two official annotators as well as alternative corrections provided by three
participating teams. This version allowed us to generate many more references than
the original test set and thus reduce annotator bias.

In order to mix and match corrections from different annotators, we had to cluster
the original shared task annotations into groups of independent errors and mutually
exclusive correction alternatives. We applied an automatic process based on token
overlap, assuming that overlapping corrections from different annotators are mutually
exclusive (i.e. you can only apply one of them at a time). Figure 3.3 shows an
example where the phrase Staff in hospital has been corrected in three different ways:
Hospital staff, Staff in a hospital or Staff in hospitals. Because these corrections
overlap by at least one token, they are assumed to fix the same underlying error and
be mutually exclusive, so that illegal combinations such as *Staff in a hospitals are
not allowed.

This natural grouping of corrections into ‘clusters’ (the error elements in
Listing 3.1) reveals the number of independent errors in the sentence, so we can mix
and match corrections from each cluster safely to generate all valid grammatical
references. Unfortunately, some corrections cannot be grouped by token overlap and
require human intervention to determine if they are mutually exclusive. For the
example above, our automatic method would create three clusters, as it would not
know that a, any and conditions are alternative corrections for the same agreement
error and should be grouped into one single cluster (there is no overlap between them).

62 CHAPTER 3. EVALUATION METHODS

System Original annotations Mixed annotations
P R F0.5 ↓ P R F0.5 ↓

CUUI 47.66 33.87 44.07 47.57 39.60 45.73
AMU 44.68 29.44 40.48 44.56 33.49 41.80
CAMB 39.22 41.65 39.69 39.04 48.72 40.66
POST 36.39 29.13 34.67 36.39 33.79 35.84
NTHU 33.56 28.10 32.31 33.62 31.52 33.18
UMC 34.86 20.86 30.73 34.86 23.31 31.71
RAC 33.67 19.08 29.21 33.67 21.59 30.28
PKU 32.17 19.60 28.51 32.42 21.63 29.48
SJTU 28.00 7.08 17.60 28.00 7.46 18.06
UFC 73.08 3.26 13.83 73.08 3.39 14.31
IPN 9.16 3.87 7.20 9.16 4.09 7.34
IITB 30.30 1.74 7.07 30.30 1.81 7.31
BASELINE 100.00 0.00 0.00 100.00 0.00 0.00

Table 3.14: M2 Scorer results (in percentages).

System TP TN FP FN FPN P R F0.5 Acc WAcc WAccbase I ↓
UFC 19 13,062 7 665 2 73.08 2.78 12.06 95.13 95.09 95.03 1.35
BASELINE 0 13,078 0 673 0 100.00 0.00 0.00 95.11 95.11 95.11 0.00
IITB 11 13,057 26 668 4 29.73 1.62 6.65 94.98 94.82 95.06 −0.25
SJTU 54 12,947 114 649 8 32.14 7.68 19.64 94.51 93.79 94.89 −1.16
CUUI 290 12,697 337 553 34 46.25 34.40 43.27 93.82 91.86 93.91 −2.18
PKU 128 12,800 283 625 66 31.14 17.00 26.70 93.89 92.28 94.53 −2.38
AMU 219 12,761 322 556 41 40.48 28.26 37.26 93.94 92.06 94.39 −2.47
UMC 179 12,761 314 603 26 36.31 22.89 32.50 93.56 91.67 94.35 −2.84
IPN 25 12,848 251 680 40 9.06 3.55 6.91 93.53 92.00 94.88 −3.04
POST 231 12,588 454 574 46 33.72 28.70 32.58 92.88 90.23 94.17 −4.18
RAC 147 12,723 426 623 49 25.65 19.09 24.00 92.79 90.28 94.45 −4.41
CAMB 386 12,402 641 502 78 37.59 43.47 38.63 92.31 88.77 93.59 −5.15
NTHU 196 12,620 521 575 54 27.34 25.42 26.93 92.48 89.44 94.44 −5.29

Table 3.15: Results of our new evaluation method (in percentages). All values of I
are statistically significant (two-tailed paired T-test, p < .01). Rankings by I and
F0.5 are clearly distinct.

We developed a few heuristics to determine whether a sentence is likely to require
human intervention, for example if it has clusters containing corrections from only a
subset of the annotators (as in our previous example). These sentences were excluded
from the test set, leaving a subset of 711 sentences out of 1,312 (54.19%).

We restrict our analysis to correction, since that is the only aspect reported by
the M2 Scorer. Table 3.14 shows the results of the M2 Scorer using the original
annotations as well as a modified version containing mixed-and-matched corrections.
Results of our proposed evaluation method are included in Table 3.15.

As expected, rankings are clearly distinct between the two methods, as they use
different units of evaluation (phrase-level edits vs. tokens) and maximising metrics
(F0.5 vs. WAcc). Results show that only the UFC system is able to beat the baseline
(by a small but statistically significant margin), being also the one with consistently
highest P (much higher than the rest).

3.3. NEW DIRECTIONS: CROWDSOURCED EVALUATION 63

These rankings are affected by the fact that systems were probably optimised
for F0.5 during development, as it was the official evaluation metric for the shared
task. Rankings by F0.5 are almost identical for the two methods (Spearman’s rank
correlation is 0.9835 with p < .01), suggesting that there is a statistically significant
relationship between phrase-level edits and tokens, especially since phrases are only
1.12 tokens on average in this dataset.

Spearman’s ρ between both scorers (F0.5 vs. I) is −0.5330, which suggests they
generally produce inverse rankings. Pearson’s correlation between token-level F0.5

and I is −0.5942, confirming the relationship between rankings and our intuition that
F0.5 is not a good indicator of overall correction quality. While I reflects improvement,
F0.5 indicates error manipulation. We argue that I is better suited to the needs of
end-users (as it indicates whether the output of the system is better than the original
text) whereas F0.5 is more relevant to system developers (since they need to analyse
P and R in order to tune their systems).

Lastly, we verify that mixing and matching corrections from different annotators
improves R (see Table 3.14) and gives a better estimate of true performance.

3.3 New directions: crowdsourced evaluation

The use of automatic metrics to evaluate systems is standard practice in NLP;
however, they perform poorly in comparison with humans for text generation tasks
such as machine translation, summarisation or error correction, where many answers
can be valid. This fact has been recognised by the MT community, who conduct
manual evaluation of systems’ output in their annual workshops, but was not properly
considered in GEC until recently.

There are many aspects in which automatic evaluation falls behind human
judgements. Madnani et al. (2011), for example, observed that automatic metrics
are based on two strict categories (‘error’ and ‘OK’), when in reality grammatical
acceptability should be modelled as a continuum based on the proportion of human
raters that judge an instance as correct or incorrect. To prove their point, the authors
conducted an experiment on the detection of extraneous prepositions. They compiled
a corpus of 1,000 sentences (of which 500 had an extraneous preposition) and hired
20 anonymous workers on a crowdsourcing website to mark the errors.

The following weighted versions of ‘hits’, ‘misses’ and FPs were proposed:

Hw =
N∑
i

(cisys ∗ picrowd) (3.14)

Mw =
N∑
i

((1− cisys) ∗ picrowd) (3.15)

64 CHAPTER 3. EVALUATION METHODS

FPw =
N∑
i

(cisys ∗ (1− picrowd)) (3.16)

where N is the total number of instances, cisys is the class assigned by the system
(0 = OK, 1 = error) and picrowd is the proportion of human raters that classified
instance i as an error. Weighted versions of P and R are then computed as:

Pw = Hw
Hw + FPw

(3.17)

Rw = Hw
Hw + Mw

(3.18)

Two ad hoc detection systems were created and evaluated using the traditional
(unweighted) and weighted metrics. Results showed that the unweighted metrics
overestimated performance as they counted one whole point even for cases with low
agreement. On the contrary, weighted metrics gave less credit for contentious cases,
providing a fairer score. The new metrics were also said to be more stable, as a
change in the proportion of ratings does not have as big an impact as in the discrete
(unweighted) case.

As noted earlier, the use of datasets with only one annotation is a major limitation
in GEC and other text generation tasks, where there is often more than one correct
answer. To assess the effect of multiple annotations on evaluation, Bryant and Ng
(2015) compiled a new version of the CoNLL-2014 test data that included corrections
from 10 different human annotators. Experiments confirmed the intuition that system
performance increases as more annotations are added to the gold standard, doubling
F0.5 performance when moving from 1 to 9 annotators.

The authors also observed high variability between the annotations and questioned
the role of inter-annotator agreement in GEC, where low values are not indicative of
real disagreement but rather the result of multiple valid answers. To validate these
claims, each of the 10 annotations was evaluated individually using the remaining 9
as the set of references. The average of these individual results gave a realistic upper
bound of F0.5 = 72.58 on the task, far from the ideal F0.5 = 100. In light of this
result, Bryant and Ng (2015) propose scoring systems against the average human
performance instead of the theoretical maximum score, so that:

Ratio = Fsystem
0.5

Fhuman
0.5

(3.19)

Their study concludes that the apparent disagreement between annotators is
actually the result of each annotator’s bias towards a particular type of correction,
which also varies per error type (i.e. some error categories enjoy more agreement
than others).

3.3. NEW DIRECTIONS: CROWDSOURCED EVALUATION 65

Napoles et al. (2015) used crowdsourced judgements to produce a human ranking
of systems in the CoNLL 2014 shared task. Three native English speakers were asked
to rank hypotheses from the 12 participating systems plus the source and reference
sentences, from which pairwise judgements were later derived. The generated human
ranking was found to be considerably different from the official one produced by the
M2 Scorer, as well as rankings by other metrics such as the Bilingual Evaluation
Understudy (BLEU) (Papineni et al., 2002) or I-measure.

The authors then proposed a new evaluation measure that aims to maximise
correlation with human rankings. This new method, called Generalized Language
Evaluation Understanding (GLEU),10 is a modified version of the BLEU metric widely
used in MT, which computes n-gram precision over multiple references. Similar
to our I-measure, GLEU rewards TPs but penalises FNs (rather than FPs). The
definition of the metric is as follows:

p′n =
∑

n-gram∈C CountR\S(n-gram)− λ(CountS\R(n-gram)) + CountR(n-gram)∑
n-gram′∈C′ CountS(n-gram′) +∑

n-gram∈R\S CountR\S(n-gram)
(3.20)

CountB(n-gram) =
∑

n-gram′∈B
d(n-gram,n-gram′) (3.21)

d(n-gram,n-gram′) =
{

1 if n-gram = n-gram′

0 otherwise
(3.22)

BP =
{

1 if c > r

e(1−c/r) if c ≤ r
(3.23)

GLEU(C,R, S) = BP · exp
(

N∑
n=1

wn log p′n

)
(3.24)

where N indicates the maximum n-gram order (4 by default), λ is a penalising
factor for incorrectly changed n-grams (0.1 or 0 in their experiments), wn = 1/N
and C, R and S stand for the set of correction hypotheses, references and source
sentences respectively. BP is a brevity penalty factor that penalises hypotheses that
are considerably shorter than their references, as a way of controlling for recall.
Experiments with λ = 0 (GLEU0) and λ = 0.1 (GLEU0.1) show the former is better
correlated with human rankings, although it achieves a moderate Pearson’s r = 0.542
and Spearman’s ρ = 0.555. Although GLEU seems the best correlated metric for
GEC (at least on the evaluated dataset), it was found that all metrics deviate from
human rankings, which is perhaps caused by the fact that all error types are weighted
equally.

10Available at https://github.com/cnap/gec-ranking/

https://github.com/cnap/gec-ranking/

66 CHAPTER 3. EVALUATION METHODS

Rank Napoles et al. (2015) Grundkiewicz et al. (2015)
1 CAMB AMU
2 AMU RAC
3 RAC CAMB
4 CUUI CUUI
5 BASELINE POST
6 POST UFC
7 UFC PKU
8 SJTU UMC
9 IITB IITB

10 PKU SJTU
11 UMC BASELINE
12 NTHU NTHU
13 IPN IPN

Table 3.16: Differences in human rankings for systems in the CoNLL 2014 shared
task. BASELINE represents the source (uncorrected) text.

In a similar study, Grundkiewicz et al. (2015) also produced a human ranking
for systems in the CoNLL 2014 shared task. The method used to collect the human
judgements was similar to that of Napoles et al. (2015), with differences in the
sampling method and final ranking algorithm. Inter-annotator agreement was found
to be 0.29 (weak) while intra-annotator agreement was 0.46 (moderate). This is in
line with discoveries by Rozovskaya and Roth (2010a), who also report low inter-
annotator agreement (0.16 to 0.40) for sentences that were initially corrected by one
annotator and later revised by a second annotator.

The human ranking reported by the authors differs from the one in Napoles et al.
(2015) (see Table 3.16), as does the correlation of the M2 Scorer and I-measure with
this new ranking. Out of all the tested evaluated methods, the M2 Scorer was the
best correlated, although correlation was moderate. Varying the value of β in the
range [0.1, 1] reveals that maximum correlation with human rankings is achieved
for β = 0.18, weighting P much more than in the latest F0.5. Finally, MT metrics
were found to correlate negatively, which is surprising given the fact that they are
oriented towards precision.

3.4 Statistical significance

If we aim to adhere to good research practices, system evaluations should include
significance tests; however, this is not a common practice in the GEC literature. As
in other branches of NLP, this is due to the fact that test sets are often small and
evaluation measures rarely follow a normal distribution so common statistical tests,
such as t-tests, are not appropriate.

This problem could be overcome with the use of non-parametric methods (e.g.
Wilcoxon’s signed-rank test) but evaluation measures such as F often have too

3.5. ANALYSIS AND DISCUSSION 67

complex a form for these tests. Instead, researchers have turned to alternative
methods that calculate significance using multiple sampling on the test set and are
applicable to practically any evaluation measure. The most common methods are
randomisation tests and the bootstrap (Efron and Tibshirani, 1993), which have been
found to largely agree with each other (Smucker et al., 2007). For our experiments,
we adopt the bootstrap method, as it seems more intuitive and particularly suited for
small datasets and complex measures (Adèr et al., 2008, p. 373). The bootstrap has
been successfully used with a variety of measures in different NLP tasks, including
mean average precision for information retrieval (Smucker et al., 2007), BLEU for
MT (Berg-Kirkpatrick et al., 2012; Koehn, 2004) and many others (Berg-Kirkpatrick
et al., 2012). It is also recommended for system comparison in the GEC literature
(Leacock et al., 2014, p. 43) and is already being used by researchers in the field
(Grundkiewicz et al., 2015).

Assuming we have a test set with n instances that is a representative sample of
the population and two systems, A and B, that we want to compare, we first evaluate
both systems on the test set using the chosen evaluation measure and calculate the
difference between them. This is our observed difference. Next, we randomly draw n

instances from our test set with replacement, test both systems on this new data and
store the difference. This process is repeated a number of times (typically 1,000) until
we obtain a distribution of differences. For a 95% confidence interval (i.e. α = .05),
we ignore the lowest and highest 2.5% of the values in the distribution. There are
now three different criteria we can use to determine significance:

1. We can check if our confidence interval includes 0, in which case the observed
difference is not statistically significant.

2. We can shift the distribution of differences so that its mean is zero, thus
simulating the null distribution. If the observed difference is now less than the
lower bound of the new confidence interval or greater than its upper bound,
the observed difference is statistically significant.

3. Using the same simulated null distribution, we can compute a p-value as the
fraction of instances that have an absolute value equal to or greater than our
observed difference. If p-value ≤ α, the null hypothesis is rejected and we
conclude that the observed difference is statistically significant.

Statistical tests reported in this thesis followed the described procedure, using a
95% confidence interval and 1,000 iterations.

3.5 Analysis and discussion

A range of methods have been proposed to evaluate GEC systems but no entirely
satisfactory method has emerged as yet. Human rankings have been used as ‘ground

68 CHAPTER 3. EVALUATION METHODS

truth’ but the variability between annotators shows that there are often many valid
answers. In fact, even the human rankings generated independently by Napoles et al.
(2015) and Grundkiewicz et al. (2015) do not match (Spearman’s ρ = 0.8187, see
Table 3.16). According to the former, only 4 systems improve the original text while
according to the latter, this number rises to 10 (more than double). This reveals
that attempts to correlate automatic evaluation metrics with human rankings seem
forced, especially when inter-annotator agreement in the data used to generate these
rankings is already too low (e.g. ρ = 0.29 reported by Grundkiewicz et al. (2015)). It
would then seem inappropriate to claim that a metric which maximises correlation
with these judgements is objectively more accurate.

Our proposed method (I-measure) has been questioned for its low correlation with
human rankings; however, this is an inappropriate comparison, since the I-measure
has not been tuned to any particular dataset. By contrast, the best correlated
metrics (GLEU0 and the M2 Scorer with β = 0.18) have been optimised to maximise
correlation with human judgements on the CoNLL 2014 test set.

The I-measure can also be optimised by tuning the weights wi for each count in
Equation 3.12 or generalising the equation to use individual weights for each of the
counts, as shown below:

WAcc = w1 · TP + w2 · TN
w1 · TP + w2 · TN + w3 ·

(
FP− FPN

2

)
+ w4 ·

(
FN− FPN

2

) (3.25)

As noted by Grundkiewicz et al. (2015), the inclusion of TNs in the I-measure
makes it a conservative metric so unless changes are licensed in the gold standard,
they will be heavily penalised. This explains the radical change in rankings between
our metric and the rest. At the same time, this ensures that top-ranked systems really
make the source text better, which we argue should be the ultimate goal of GEC.

Our evaluation method overcomes many of the limitations of previous approaches
by using a stable unit of evaluation, weighting edit operations in line with the goals of
GEC and making the most of the available annotations. Values of F are always posi-
tive, with no clear interpretation or threshold that would indicate improvement of the
original text whereas the I-measure provides a meaningful indicator by analysing post-
system error rate (I < 0 for degradation, I = 0 for no change and I > 0 for improve-
ment). We also combine individual corrections from different annotators, as this im-
proves R and ensures systems get more accurate scores from the available annotations.

Our experiments show that I and F0.5 are inversely correlated and account for
different aspects of system performance. Choosing one metric over the other poses a
fundamental question about the aims of error correction, whether we prefer a system
that tackles few errors but improves the original text or one that handles many more
errors but degrades the original. We believe that, from a user perspective, a system
that reliably improves the text is more desirable.

3.5. ANALYSIS AND DISCUSSION 69

System hypotheses Best
F0.5 I

a. The son was died after one year ’s treatment and a couple got divorced later after
that .

×
b. The son had died after one year ’s and the couple got divorced later after that . ×
a. Although there might be a lot of challenges along the way in seeking medical

attention , such as a financial issues , everyone should be given right of knowing
their family ’s inherented medical conditions .

×
b. Although there might be a lot of challenges along the way in seeking medical

attention , such as finance , everyone should be given the right of knowing their
family ’s inherented medical conditions .

×
a. Taking Angeline Jolie , for example , she is famous but she still reveal the truth

about her genetic testing to the development of her breast cancer risk . ×
b. Taking Angeline Jolie for example , she is famous but she still revealed the truth

about her genetic testing on the development of her breast cancer risk . ×

Table 3.17: Example hypotheses produced by two error correction systems (a and
b). The last two columns indicate the highest-scoring hypothesis from each pair
according to each evaluation metric.

GLEU I
Source Can a elephant live without tusks ? 48.10 0.00
Hypothesis 1 live without tusks ? Can an elephant 53.73 −69.89
Hypothesis 2 Can a elephant without tusks live ? 0.00 −41.67
Hypothesis 3 Giraffes are in danger of extinction . 0.00 −100.00
Reference Can an elephant live without tusks ? 100.00 100.00

Table 3.18: Differences between GLEU and I-measure (in percentages).

Table 3.17 shows a few examples where the M2 Scorer differs from our method, re-
vealing how the I-measure is able to pick hypotheses in accord with (at least our) intu-
itions. For a detailed review of the problems with earlier metrics, refer to Section 3.1.3.

Metrics such as GLEU are not without problems either. By treating each sentence
as a bag of n-grams, the enforcement of grammaticality is somewhat diluted, since
points are given for matching n-grams without much consideration for their position in
the sentence. As a result, GLEU seems fairly insensitive to word order, as illustrated
by Hypothesis 1 in Table 3.18. It seems also unable to discriminate between incorrect
sentences that have significant overlap with the source and completely random text
(see Hypothesis 2 and 3 in Table 3.18).

Finding a single metric that solves all problems is elusive, since most metrics
work well in some cases but fail in others. Ideally, we should be able to achieve a
balance but finding independent evidence to support one correction over another is
also difficult, since the notion of sentence quality is somewhat subjective (Bryant
and Ng, 2015). Sentences can be corrected in many different ways and the fact that
a given correction is not matched by any of the references does not necessarily mean
that it is not valid. Therefore, we must accept that any metric used in such scenarios
will not be perfect.

70 CHAPTER 3. EVALUATION METHODS

Automatic evaluation metrics that are based on comparisons with a gold standard
are essentially distance metrics and so are inherently limited by the number of
available references. It is then naive to expect that they will correlate well with
human judgements which are based on free interpretations of quality, as the metrics
will always be constrained to the given set of references.

Judging hypotheses without looking at the source or reference sentences is a
distinct task, more similar to sentence quality estimation for MT output (Blatz
et al., 2004; Specia et al., 2009). This could be potentially useful for GEC as it
would ameliorate the issue that any set of gold standard references will underspecify
the set of possible corrections. Meanwhile, we strongly believe that the proposed
I-measure can be a suitable metric for GEC, provided that the gold standard includes
a representative set of references.

Given that there is no consensus on evaluation, we report the three main evaluation
metrics (M2 Scorer, I-measure and GLEU) in all our forthcoming experiments. This
will allow us to view system performance from different perspectives and develop a
clearer notion of metric behaviour.

Chapter 4

Experiments on constrained
error correction

This chapter describes our approach to AEG and presents a first series of experiments
on a limited number of error types. The first section discusses the role of artificial
errors as training data. The second and third sections describe experiments using
random and probabilistic methods in the context of the CoNLL-2013 shared task.

4.1 Rationale

As explained in Section 2.2.3, artificial errors can be used as a replacement for
real learner errors in cases where such data is insufficient or unavailable. This is
particularly important for SMT, which requires a large amount of parallel data to
generate efficient translation models and, unlike classifiers, cannot be trained on
error-free data alone. Artificial errors have been shown to improve error correction
performance, especially when used in conjunction with genuine error-annotated
learner data (Foster and Andersen, 2009). In addition, they have been found to be
more useful than error-free text (Rozovskaya and Roth, 2010c).

The biggest challenge in AEG is how to generate errors that resemble real-life
learner errors which look plausible in their given context. In principle, this means
that we should avoid generating random errors but focus on observed patterns and
distributions, in the hope that they will improve performance. The experiments in
this thesis aim to investigate this hypothesis.

It can be argued that generating realistic errors is just as hard as correcting them,
since the effort and knowledge required to generate artificial errors could well be used
to build a correction system instead. However, building an efficient error correction
system requires not only a set of error correction patterns but additional complex
knowledge about when and how to apply them. In this regard, ML approaches (and
SMT in particular) provide a framework for learning such models automatically from
a collection of samples, so investing in data seems a sensible decision.

72 CHAPTER 4. EXPERIMENTS ON CONSTRAINED ERROR CORRECTION

Dataset # sentences # tokens
NUCLE 57,151 1,161,567
EVP 18,830 351,517
CoNLL-2013 test 1,381 29,207

Table 4.1: Datasets used in our random generation experiments.

AEG has two main advantages. First, it provides an economic and efficient way
of producing error-tagged data, which would otherwise require manual annotation
and can be difficult to obtain. Second, it allows us to control variables such as genre,
error types, distributions, topic, text complexity, etc. However, as summarised in
Section 2.2.3, the effect of artificial errors on system performance has not always been
consistent so we aim to investigate this further throughout the rest of this thesis.

In this chapter, we describe a series of early experiments on a limited set of
error types using data from the CoNLL-2013 shared task which aim to test some
initial intuitions. These include random (Section 4.2) and probabilistic generation
(Section 4.3). The insights gained in this chapter are used to guide our second round
of experiments, following the most effective methods and promising paths. It must be
noted that each experiment is self-contained, so direct comparisons between results
are not always possible.

4.2 Random generation

The most basic approach to generating artificial errors is to inject them at random
in error-free text. In order to test the usefulness of this method, we performed a
series of experiments using data from the CoNLL-2013 shared task where we tried to
augment the original training corpus (NUCLE) with random artificial errors. The
CoNLL-2013 shared task focused on the correction of only five error types: articles
and determiners (ArtOrDet), noun number (Nn), prepositions (Prep), subject-verb
agreement (SVA) and verb form errors (Vform). As our reference corpus, we used a
version of NUCLE containing only these error types.

To minimise the effect of genre and style on the generated data, we used error-
free sentences written by learners as our base texts (i.e. the texts where we will
inject errors). This data is a publicly available portion of the CLC, formed by all
the corrected learner sentences featured on the English Vocabulary Profile (EVP)
website.1 These sentences were produced by learners with different backgrounds and
levels of proficiency sitting a variety of ESOL examinations. The size of each dataset
used in our experiments is given in Table 4.1.

In general, our approach to AEG is based on the extraction of errors and their
corrections from a reference corpus. Each error and correction is extracted using
a context window of 0, 1 or 2 tokens to the left and right, and added to a list of

1http://www.englishprofile.org/wordlists

http://www.englishprofile.org/wordlists

4.2. RANDOM GENERATION 73

Type Pattern Example
Lexical has → have temperature has risen →

temperature have risen
to be used → to be use technology to be used →

technology to be use
during → for during the early 60s →

for the early 60s
PoS NN → NNS information → informations

DT NNP → NNP the US → US
NN VBZ VBN → NN VBP VBN expenditure is reduced →

expenditure are reduced

Table 4.2: Sample error patterns extracted from NUCLE.

Context window # PoS patterns # lexical patterns
0 1,386 5,700
1 6,402 14,568
2 12,623 15,640

Table 4.3: Number of patterns by type extracted from NUCLE.

error patterns in the opposite direction (i.e. correct → incorrect). Each of these
patterns can also include its frequency in the reference corpus, which is useful if we
want to replicate errors keeping their original proportions. For random generation,
we adopt a uniform distribution (where all error patterns are considered equally
likely) so frequency information is ignored. Two types of patterns are extracted from
NUCLE: lexical patterns (in terms of surface forms) and PoS patterns (in terms of
PoS tags). Table 4.2 shows some examples. The total number of patterns extracted
from NUCLE is presented in Table 4.3.

For each correct sentence in our base texts (EVP), we generate a pseudo-source
sentence by applying zero or more error patterns. All the decisions in this process are
uniformly random. We first decide whether lexical patterns will be applied, in which
case all the relevant error patterns (from the longest to shortest context) are run
through the sentence and applied zero or more times with equal probability. This
process is repeated with PoS patterns on the same sentence. Thus, lexical patterns
and longer contexts take precedence over PoS patterns and shorter contexts, in order
to ensure that we use the most useful information first. A sentence can then be
distorted by zero or more patterns of different type and context size. The injection
of errors is incremental and non-overlapping. Pseudocode for the random generation
process is given in Listing 4.1 and a graphical example in Figure 4.1.

A parallel corpus is built using the pseudo-source sentences and the original
(correct) versions as target sentences. Since we know what tokens have been
deliberately changed to produce the artificial errors, we can also output the
corresponding error annotations, although this is not necessary for SMT. Error
statistics for each dataset are shown in Table 4.4. Despite being generated with a
random method, the EVP dataset shows a fairly accurate error distribution although

74 CHAPTER 4. EXPERIMENTS ON CONSTRAINED ERROR CORRECTION

for each sentence in base-texts do
pseudosource := sentence;
target := sentence;
for each type in (lex, pos) do

if random(0, 1) > 0.5 then
for context := 2 to 0 step -1 do

for each pattern in patterns[type][context] do
while pseudosource.matches(pattern.correct) do

if random(0, 1) > 0.5 then
pseudosource.replace(pattern.correct,

pattern.incorrect);
yield pseudosource, target;

Listing 4.1: Pseudocode for random AEG.

original
sentence An Internet connection literally means having the world at your fingertips .

error
patterns an → the NN → NNS the → Ø PREP DT NN → PREP NN

error
injection An Internet connection literally means having the world at your fingertips .

resulting
sentence The Internet connections literally means having world at fingertips .

Figure 4.1: An example of the artificial error injection process.

it does exhibit a considerably higher sentence error rate (i.e. the percentage of
incorrect sentences in the corpus).

The resulting artificial EVP corpus was used to train SMT systems both in
isolation and in combination with NUCLE. Word alignments were generated with
Giza++ (Och and Ney, 2003), which implements IBM Models 1-5 and the HMM
Model. The final word alignments are built from the intersection of bidirectional
runs of Giza++ (from source to target and target to source) plus some additional
alignment points from the union of both runs. LMs for the target language were
built from the corrected sentences in our parallel corpus using up to 5-grams. For
this purpose, we used the IRSTLM Toolkit (Federico et al., 2008) with modified
Kneser-Ney smoothing, a refinement of Kneser and Ney’s algorithm that uses three
different discounting values depending on the original sequence count (Chen and
Goodman, 1998).

All our systems were built using the Moses decoder (Koehn et al., 2007), which
uses a translation table that associates each phrase pair with five different scores:

• direct and inverse phrase translation probabilities (φ(C|E) and φ(E|C)),

• direct and inverse lexical weighting (lex(C|E) and lex(E|C)), an estimation
of the reliability of the phrase translation based on its component lexical
probabilities, and

4.2. RANDOM GENERATION 75

Dataset Sentence Error type distribution
error rate ArtOrDet Nn Prep SVA Vform

NUCLE 19.75% 42.08% 23.89% 15.19% 9.65% 9.18%
EVP 84.93% 40.39% 23.82% 16.36% 7.97% 11.45%
CoNLL-2013 test 60.68% 42.00% 24.10% 18.93% 7.55% 7.43%

Table 4.4: Error statistics for each dataset.

• phrase penalty, a constant (ρ = 2.718 by default) that controls the preference
for fewer (longer) phrases (ρ < 1) or more (shorter) phrases (ρ > 1).

Default parameters were used for training in all cases. For word alignment, this
includes 5 iterations of IBM Model 1, 0 of Model 2, 5 of Model 3, 3 of Model 4, 0 of
Model 5 and 5 of the HMM Model. For decoding, the default weights defined in Moses
were used (and no tuning was performed). Sentence segmentation, tokenisation and
PoS tagging were carried out using NLTK (Bird et al., 2009) for consistency with
the CoNLL shared task data, which means that the extracted PoS patterns use the
Penn Treebank tagset2 (see Appendix D). The generation of new word forms that
becomes necessary when we use PoS patterns (e.g. VBZ → VBP) was automated
with the NodeBox English Linguistics library for Python.3

Systems were evaluated on the CoNLL-2013 test set using the M2 Scorer, the
official evaluation tool for the task (see Section 3.1.3). Results are shown in Table 4.5.
Following the criteria adopted in the shared task, we measured performance in terms
of F1 but also computed F0.5, GLEU and I-measure for comparison. We only report
I-measure scores for correction, since this is the only aspect reported by the other
metrics.

Systems using artificial data are compared with the original uncorrected text and
a baseline system trained on the official NUCLE corpus. Although we are ultimately
interested in improving the original text, our immediate goal is to contrast the effects
of artificial data with genuine learner data, hence our chosen baseline.

As mentioned in Section 3.1.3, any uncorrected text yields TP = 0 and FP = 0,
which produces an undefined value of P due to a division by zero. By convention,
P is considered to be 1 (i.e. 100%) in this circumstance but given that this can be
misleading for our purpose, we use a dash instead. F1 and F0.5 are also consequently
marked, although originally the M2 Scorer will report 0 for both metrics.

Results in Table 4.5 show that training on random errors alone (EVP) produces
a small improvement in R but a significant drop in P with regard to the baseline
(NUCLE). The first can be explained by the impact of general PoS patterns, which
allow the creation of unseen errors by generating new word forms. This is a desirable
aspect of AEG which turned out to be very effective, considering that the EVP
corpus is only about a third of NUCLE. The drop in P is a side effect of this strategy,

2http://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
3https://www.nodebox.net/code/index.php/Linguistics

http://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
https://www.nodebox.net/code/index.php/Linguistics

76 CHAPTER 4. EXPERIMENTS ON CONSTRAINED ERROR CORRECTION

Dataset Original test set Alternative test set
P R F1 F0.5 GLEU I P R F1 F0.5 GLEU I

Original text — 0.00 — — 78.12 0.00 — 0.00 — — 87.75 0.00
NUCLE 29.84 8.83 13.62 20.21 77.67 −1.92 40.24 12.55 19.13 27.92 86.77 −1.35
EVP 13.48 9.74 11.31 12.52 72.94 −6.63 17.20 13.06 14.85 16.17 80.96 −6.14
NUCLE+EVP 24.89 10.29 14.56 19.39 76.83 −2.96 35.03 15.15∗ 21.15 27.75 85.82 −2.21

Table 4.5: Results of the NUCLE and EVP datasets on the CoNLL-2013 test set
(original and alternative) using phrase-based SMT. Improvements over the baseline
(NUCLE) are marked in bold; statistically significant differences are marked with an
asterisk.

as the new word forms can also interfere with correct usage and introduce noise. For
example, the pattern NN→ NNS (which transforms a singular noun into plural), can
effectively produce an artificial error such as modesty → modesties (so that modesties
is learnt as incorrect) but it can also generate house → houses, where the second
word form is not necessarily incorrect in the original context (e.g. when preceded
by the definite article, the). In many cases, TPs can also occur when the system
flags an infrequent but grammatical phrase as incorrect, often due to a very limited
LM. Although we would expect these kinds of phrases at higher proficiency levels, a
closer inspection of the results reveals that this happens across all levels and also for
common words and phrases, especially if they are particularly frequent in the training
data (e.g. realize → realise, social media → the media, etc.). As we demonstrated in
our submission to the CoNLL-2014 shared task, a large LM (especially one trained
on web data) can help lower TPs and increase P (Felice et al., 2014).

The combination of NUCLE+EVP yields even higher R while ameliorating the
decrease in P, which is still below the baseline. This combination, however, achieves
the highest F1, which is why we adopted it for our submission to the shared task (Yuan
and Felice, 2013). As expected, F0.5 is lower than the baseline for systems trained on
EVP, given the considerable drop in P. The same occurs for GLEU and I-measure,
which are also highly dependent on P. Performance on the alternative test set is
consistent with the original test set but naturally higher. Statistical tests (as described
in Section 3.4) reveal that only R for NUCLE+EVP is statistically better than for
NUCLE (p < .05) while all other improvements are not statistically significant.

Following our training strategy for the shared task, we also built SMT systems
using PoS-factored models. PoS tags for our data were obtained with the Robust Ac-
curate Statistical Parser (RASP) (Briscoe et al., 2006), which uses the richer CLAWS2
tagset4 (see Appendix E). Results of these experiments are reported in Table 4.6.

The performance of PoS-factored models is similar to that of phrase-based SMT,
exhibiting the same relationship between the datasets. However, it is lower for
most of the metrics, with the exception of R and F1. Since these systems use the
probabilities of PoS sequences as extra information to score translations, they can
produce more general (but less precise) corrections, thus improving R but harming P.

4http://ucrel.lancs.ac.uk/claws2tags.html

http://ucrel.lancs.ac.uk/claws2tags.html

4.2. RANDOM GENERATION 77

Dataset Original test set Alternative test set
P R F1 F0.5 GLEU I P R F1 F0.5 GLEU I

Original text — 0.00 — — 78.12 0.00 — 0.00 — — 87.75 0.00
NUCLE 26.08 11.02 15.49 20.48 77.14 −3.08 35.72 15.72 21.83 28.48 85.99 −2.36
EVP 11.78 12.16 11.97 11.86 72.44 −7.56 15.27 16.36 15.80 15.48 80.23 −6.84
NUCLE+EVP 21.76 12.84 16.15 19.10 76.30 −3.82 31.10 18.98∗ 23.57 27.58 85.05 −2.82

Table 4.6: Results of the NUCLE and EVP datasets on the CoNLL-2013 test set
(original and alternative) using PoS-factored SMT. Improvements over the baseline
(NUCLE) are marked in bold; statistically significant differences are marked with an
asterisk.

For example, given the high probability of the pattern VVG RR, we can successfully
correct cases such as eating healthy → eating healthily but we are also more likely to
generate false positives for phrases like feeling good. However, from the perspective
of the CoNLL-2013 shared task, whose goal was to maximise F1, the hybrid of
NUCLE+EVP using a PoS-factored model seems the most advantageous setting.

4.2.1 Error type analysis

Analysing performance by error type is very valuable for system development and
tuning. In order to compute traditional metrics for each error type, we must first
obtain their corresponding TP, FP and FN counts. However, because only TPs
and FNs can be obtained from the gold standard (using the number of matched
and missed edits respectively), we are only able to compute R. To compute P, we
need to estimate the number of FPs so we first need to classify each superfluous edit
proposed by the system into one of the available error types. To do so, we use a
set of heuristics that analyse differences in surface forms and PoS tags between the
original phrase and the proposed correction in order to infer a type, similar to our
strategy in the CoNLL-2013 shared task (Ng et al., 2013). The implemented method
has an estimation accuracy of 75.23% on the training set and 87.04% on the test set,
which we deemed acceptable for our purposes. Given the difficulty in discriminating
between SVA and Vform errors automatically, we merged both types into a single
category. Corrections proposed by the system that did not fit into any of the five
types were excluded from our analysis.

We report two groups of results. Table 4.7 and Table 4.8 show the performance
of the phrase-based system while Table 4.9 and Table 4.10 show results for the
PoS-factored system. In line with general results, P is consistently below the baseline
for all systems and error types, except Nn in Table 4.10. On the contrary, R improves
in many cases, most notably for Nn, SVA and Vform. This reveals that random
AEG has a clearly distinct impact on errors involving closed-class words (ArtOrDet
and Prep) and open-class words (Nn, SVA and Vform). In the first case, the number
of errors that can be generated is always limited, even if PoS patterns are applied.
However, in the second case, PoS patterns can generate unseen errors and thus extend
coverage in the test set. In many cases, this increase in R can boost F1, especially

78 CHAPTER 4. EXPERIMENTS ON CONSTRAINED ERROR CORRECTION

Dataset ArtOrDet Nn Prep SVA/Vform
P R F1 P R F1 P R F1 P R F1

NUCLE 30.67 13.89 19.12 23.58 6.35 10.01 50.00 3.22 6.05 31.11 5.67 9.59
EVP 11.04 7.38 8.85 18.01 19.29 18.63 9.72 2.25 3.65 11.50 10.53 10.99
NUCLE+EVP 26.04 13.60 17.87 22.92 11.17 15.02 39.39 4.18 7.56 20.00 7.29 10.68

Table 4.7: Error type analysis of the phrase-based SMT system on the original
CoNLL-2013 test set. Results in bold show improvements over the baseline (NUCLE).

Dataset ArtOrDet Nn Prep SVA/Vform
P R F1 P R F1 P R F1 P R F1

NUCLE 39.75 18.58 25.32 36.27 9.20 14.68 55.00 4.21 7.82 47.83 9.73 16.18
EVP 14.89 10.31 12.18 21.80 22.28 22.04 9.72 2.69 4.21 16.23 16.44 16.34
NUCLE+EVP 35.48 19.10 24.83 35.26 16.22 22.22 42.42 5.36 9.52 31.46 12.39 17.78

Table 4.8: Error type analysis of the phrase-based SMT system on the alternative
CoNLL-2013 test set. Results in bold show improvements over the baseline (NUCLE).

Dataset ArtOrDet Nn Prep SVA/Vform
P R F1 P R F1 P R F1 P R F1

NUCLE 31.01 15.48 20.65 25.17 9.39 13.68 14.12 3.86 6.06 24.75 10.12 14.37
EVP 11.16 8.22 9.47 19.22 28.52 22.97 2.74 2.70 2.72 9.15 18.80 12.31
NUCLE+EVP 26.33 15.16 19.24 24.47 16.52 19.72 11.12 5.01 6.91 15.91 13.01 14.32

Table 4.9: Error type analysis of the PoS-factored SMT system on the original
CoNLL-2013 test set. Results in bold show improvements over the baseline (NUCLE).

Dataset ArtOrDet Nn Prep SVA/Vform
P R F1 P R F1 P R F1 P R F1

NUCLE 40.06 20.23 26.88 35.37 12.84 18.84 21.18 6.82 10.32 39.22 17.54 24.24
EVP 15.06 11.49 13.03 23.27 32.95 27.28 2.74 3.22 2.97 12.91 29.37 17.94
NUCLE+EVP 35.87 21.29 26.72 37.64 23.99 29.30 11.98 6.43 8.36 25.03 22.12 23.49

Table 4.10: Error type analysis of the PoS-factored SMT system on the alternative
CoNLL-2013 test set. Results in bold show improvements over the baseline (NUCLE).

for Nn. Ranking by F1 places ArtOrDet first and Prep last, with the other types
varying in the middle. This result is directly related to the size of their confusion sets
and their function in the language, which is much more constrained and therefore
easier to model for articles and determiners. As expected, performance is consistently
better on the alternative test set, as it includes complementary annotations.

In summary, we observe that uniformly random generation can produce a small
statistically significant improvement in R which can translate into higher F1, although
it entails a considerable drop in P. These results seem to confirm the findings
by Sjöbergh and Knutsson (2005) and provide initial hints that artificial data is
complementary to error-annotated learner data, as suggested by previous work. The
EVP dataset was also used in our submission to the CoNLL-2014 shared task, where
it was combined with other training data (Felice et al., 2014). For this submission,
however, we used a phrase-based SMT model, as it proved better in terms of P and
was in line with the choice of F0.5 as the official evaluation metric.

4.3. PROBABILISTIC GENERATION 79

4.3 Probabilistic generation

As described in Section 2.2.3.2, probabilistic approaches to AEG aim to preserve the
error distributions observed in the reference corpus. Provided that test data has a
similar error distribution to training data, probabilistic methods should produce better
results than uniform random methods, which assign equal probability to all errors.

We test this hypothesis in a second round of experiments using different
probabilistic configurations. In addition, we identify and control other variables that
can help mimic the errors in our reference corpus more accurately. Some of these
variables concern the base texts and include:

Topic: Replicating errors in texts about the same topic as the reference corpus is
expected to produce better results than out-of-domain data, as vocabulary and
word senses are more likely to be similar. In addition, similar texts are more
likely to exhibit suitable contexts for error injection and consequently help the
system focus on particularly useful information.

Genre: In cases where no a priori information about topic is available (for example,
because the test set is unknown or the system will be used in different scenarios),
knowing the genre or type of text the system will deal with can also be useful.
Example genres include expository (descriptions, essays, reports, etc.), narrative
(stories), persuasive (reviews, advertisements, etc.), procedural (instructions,
recipes, experiments, etc.) and transactional texts (letters, interviews, etc.).

Style/register: As with the previous variables, style (colloquial, academic, etc.)
and register (from formal written to informal spoken) also affect production
and should therefore be modelled accurately in the training data.

Text complexity/language proficiency: Candidate texts should exhibit the
same reading complexity as the reference corpus and be written by or targeted at
learners with similar English proficiency. Otherwise, the overlap in vocabulary
and grammatical structures is likely to be small and thus hinder error injection.

Native language: Because L2 production is known to be affected by a learner’s L1,
using candidate texts produced by groups with the same L1 as the reference
corpus should provide more suitable contexts for error injection. When such
texts are not available, using data by speakers of other L1s that exhibit similar
phenomena (e.g. no article system, Latin languages, etc.) might also be useful.
However, finding error-free texts written in English by a specific population
can be difficult, which is why most approaches resort to native English text.

These variables are manually controlled in our experiments, although many of
them could be assessed automatically. The size of the generated datasets is also an
important factor, as the use of more training data normally improves performance.

80 CHAPTER 4. EXPERIMENTS ON CONSTRAINED ERROR CORRECTION

However, collecting a large amount of learner data to be used as base texts for AEG
does not seem very wise, not only because it is more useful as training data on its
own but also because we are searching for a way to overcome the low availability of
such data by using the vast amounts of available native text instead. Initially, and
to comply with the CoNLL shared task requirements to use only publicly available
data, we resorted to Wikipedia as a source of base texts.

To control for topic, we chose an initial set of 50 Wikipedia articles based on
keywords in the NUCLE training data and proceeded to collect related articles by fol-
lowing hyperlinks in their ‘See also’ section. We retrieved a total of 494 articles which
were later preprocessed to remove wikicode tags, yielding 54,945 sentences and approx-
imately 1,123,739 tokens (closer in size to the NUCLE corpus than our previous EVP
dataset). NUCLE and Wikipedia texts have the same genre, style and register (exposi-
tory, written, academic and formal), although this does not make them necessarily sim-
ilar. As regards text complexity and language proficiency, essays in the NUCLE corpus
are written by advanced university students and are therefore comparable to standard
English Wikipedia articles. For a reference corpus with less sophisticated language,
the Simple English Wikipedia could be used instead (as we shall see in Chapter 5).
Finally, native language seems to be the only discordant variable, since Wikipedia
articles are mostly written by native speakers (unlike essays in NUCLE). However,
this is exactly the scenario we need to test the usefulness of native data for AEG.

4.3.1 Experimental set-up

Our approach to probabilistic AEG is similar to the one proposed by Rozovskaya
and Roth (2010c) in that we use error inflation (2x) to boost the naturally low error
probabilities (see Listing 4.2). However, unlike them, we refine our probabilities by
imposing restrictions on the linguistic functions of the words and the contexts where
they occur. Because we extend generation to open-class error types (such as verb
form errors), this refinement becomes necessary to overcome disambiguation issues
and lead to more accurate replication.

We investigate two main sources of information for generation. The first one is
purely statistical and concerns the error type distributions observed in the reference
corpus while the second relies on linguistic cues to model the underlying contexts in
which errors are likely to occur. We thus generate five distinct datasets based on the
following information:

Error type distributions (ED): For each error type, we compute the probability
that a relevant instance of the class is an error:

p(type) = errorstype
relevant instancestype

(4.1)

4.3. PROBABILISTIC GENERATION 81

inflationFactor := 0.5;
for each sentence in base-texts do

target := sentence;
pseudosource := sentence;
for each type in error-types do

for each i in relevant-instances(sentence, type) do
shuffle(alternatives(type));
for a in alternatives(type) do

if i = a then /* original = alternative */
p := a.probability * inflationFactor;

else
p := a.probability * (1 / inflationFactor);

x := random(0, 1);
if x < p then

pseudosource.replace(i, a);
break;

yield pseudosource, target;

Listing 4.2: Pseudocode for probabilistic AEG with inflation.

During generation, p(type) is uniformly distributed over all the members i
in the confusion set for the error type Stype, so all of them have the same
probability of being chosen as a replacement:

p(Sitype|type) = p(type)
|Stype|

(4.2)

For example, if p(ArtOrDet) = 0.35 and the confusion set for English articles is
SArtOrDet = {a, an, the,Ø}, we have that the probability of changing the article
of any given relevant instance to the is p(the|ArtOrDet) = 0.35/4 = 0.0875.
Relevant instances are detected in the base texts and changed for an alternative
at random using the estimated probabilities. The probability of leaving a
relevant instance unchanged is 1− p(type).

Morphology (MORPH): We believe that morphological information such as
person or number is particularly useful for identifying and correcting article,
noun number and subject-verb agreement errors. Thus, we use the probability
of a learner producing a given word when another is expected in a specific
morphological context, e.g. the probability of producing a specific article given
a singular noun that requires the indefinite article an (as shown below).

P(source=an|target=an, head-noun=NN) = 0.942
P(source=the|target=an, head-noun=NN) = 0.034
P(source=a|target=an, head-noun=NN) = 0.015
P(source=other|target=an, head-noun=NN) = 0.005
P(source=Ø|target=an, head-noun=NN) = 0.004

82 CHAPTER 4. EXPERIMENTS ON CONSTRAINED ERROR CORRECTION

PoS disambiguation (POS): Most approaches to AEG are aimed at closed-class
words such as articles or prepositions, which rarely occur with a different PoS
in the text. However, open-class words can play different roles in a sentence, so
PoS disambiguation becomes necessary. As illustrated below, error probabilities
for the same source form (e.g. play) can vary according to its PoS so only the
ones corresponding to the observed PoS are applied.

P(source=play|target=play, PoS=V) = 0.98
P(source=plays|target=play, PoS=V) = 0.02
P(source=play|target=play, PoS=N) = 0.84
P(source=plays|target=play, PoS=N) = 0.16

Semantic classes (SC): We hypothesise that semantic information about concepts
in the text can reveal hidden usage patterns. Therefore, we use detailed
confusion probabilities for articles and prepositions depending on the class of
the head noun (e.g. a location, a recipient, an instrument, etc.). For example:

P(source=in|target=in, noun-class=location) = 0.39
P(source=at|target=in, noun-class=location) = 0.31
P(source=to|target=in, noun-class=location) = 0.16
P(source=from|target=in, noun-class=location) = 0.07
P(source=Ø| target=in, noun-class=location) = 0.05
P(source=other|target=in, noun-class=location) = 0.03

By abstracting from surface forms, we can also generate faithful errors for
words that have not been previously observed, e.g. we may have not seen
hospital but we may have seen school, my sister’s house or church.

Word senses (WSD): Polysemous words with the same PoS can exhibit different
patterns of usage for each of their meanings (e.g. one meaning may co-occur
with a specific preposition more often than the others). For this reason, we use
probabilities for each word sense in an attempt to capture more accurate usage.
As an example, consider a hypothetical situation in which a group of learners
confuse prepositions used with the word bank as a financial institution (sense 1)
but they produce the right preposition when it refers to a river bed (sense 2):

P(source=in|target=in, head-noun=bank1) = 0.76
P(source=at|target=in, head-noun=bank1) = 0.18
P(source=other|target=in, head-noun=bank1) = 0.06
P(source=on|target=on, head-noun=bank2) = 1.00

Although it is rare that occurrences of the same word will refer to different mean-
ings within a document (the so-called ‘one sense per discourse’ assumption (Gale
et al., 1992)), this is not the case for corpora comprised of different articles. In
such scenarios, word sense disambiguation should produce more accurate results.

4.3. PROBABILISTIC GENERATION 83

Information Probability Generated
error types

Error type
distributions P(error_type) ArtOrDet, Nn,

Prep, SVA, Vform

Morphology P(source=determiner |target=determiner, head_noun_tag) ArtOrDet, SVAP(source=verb_tag|target=verb_tag, subj_head_noun_tag)
PoS disambiguation P(source=word|target=word, PoS) Nn, Vform

Semantic classes P(source=determiner |target=determiner, head_noun_class) ArtOrDet, PrepP(source=preposition|target=preposition, head_noun_class)

Word senses

P(source=preposition|verb_sense + obj_head_noun_sense)

ArtOrDet, Prep,
SVA

P(source=preposition|target=preposition, head_noun_sense)
P(source=preposition|target=preposition, dep_adj_sense)
P(source=determiner |target=determiner, head_noun_sense)
P(source=verb_tag|target=verb_tag, subj_head_noun_sense)

Table 4.11: Probabilities computed for each type of linguistic information and error
types they can generate.

Part of speech WordNet classification
Adjective all, pertainyms, participial
Adverb all

Noun

act, animal, artifact, attribute, body, cognition,
communication, event, feeling, food, group, location, motive,
object, person, phenomenon, plant, possession, process,
quantity, relation, shape, state, substance, time

Verb
body, change, cognition, communication, competition,
consumption, contact, creation, emotion, motion,
perception, possession, social, stative, weather

Table 4.12: WordNet classes for content words.

Table 4.11 summarises the probabilities used to generate each dataset and the
error types to which they are applicable.

Given the aims of the CoNLL-2013 shared task, we trained our new systems
using PoS-factored models, as they achieved the highest F1 performance in
our random generation experiments. PoS tagging was performed with RASP
(Briscoe et al., 2006) and word sense disambiguation was carried out using the
WordNet::SenseRelate:AllWords Perl module (Pedersen and Kolhatkar, 2009) which
assigns a sense from WordNet (Miller, 1995) to each content word in a text.
For semantic classes, we used the ones provided by WordNet, which are readily
available in NLTK (Bird et al., 2009). WordNet classes respond to a classification
in lexicographers’ files5 and are defined for content words as shown in Table 4.12,
depending on their location in the hierarchy.

We created one dataset for each type of information in Section 4.3.1. The sets
of probabilities defined for each dataset were computed on our reference corpus
(NUCLE) and then used to generate artificial errors on the base texts (Wikipedia
articles). Error statistics for the resulting datasets are shown in Table 4.13, along
with NUCLE and the CoNLL-2013 test set for comparison.

5http://wordnet.princeton.edu/man/lexnames.5WN.html

http://wordnet.princeton.edu/man/lexnames.5WN.html

84 CHAPTER 4. EXPERIMENTS ON CONSTRAINED ERROR CORRECTION

Dataset Sentence Error type distribution
error rate ArtOrDet Nn Prep SVA Vform

NUCLE 19.75% 42.08% 23.89% 15.19% 9.65% 9.18%
ED 14.58% 43.59% 23.18% 16.47% 8.96% 7.80%
MORPH 13.13% 93.27% 0.00% 0.00% 6.73% 0.00%
POS 13.59% 0.00% 71.34% 0.00% 0.00% 28.66%
SC 43.09% 20.80% 0.00% 79.20% 0.00% 0.00%
WSD 11.45% 71.91% 0.00% 19.34% 8.74% 0.00%
CoNLL-2013 test 60.68% 42.00% 24.10% 18.93% 7.55% 7.43%

Table 4.13: Error statistics for each probabilistic dataset.

Dataset Original test set Alternative test set
P R F1 F0.5 GLEU I P R F1 F0.5 GLEU I

Original text — 0.00 — — 78.12 0.00 — 0.00 — — 87.75 0.00
NUCLE 26.08 11.02 15.49 20.48 77.14 −3.08 35.72 15.72 21.83 28.48 85.99 −2.36
ED 26.11 3.23 5.74 10.79 77.80 −0.82∗ 35.47 4.66 8.23 15.27 87.17∗ −0.61∗
MORPH 18.18 4.50 7.21 11.31 76.97 −1.99∗ 22.36 5.87 9.30 14.32 86.06 −1.79
POS 29.79 2.56 4.71 9.53 78.06 −0.54∗ 43.26 3.93 7.21 14.41 87.46∗ −0.33∗
SC 12.84 4.87 7.06 9.67 75.83 −3.47 15.41 6.19 8.83 11.87 84.52 −3.28
WSD 21.19 4.99 8.08 12.85 77.25 −1.79∗ 26.10 6.52 10.43 16.31 86.27 −1.58∗
NUCLE+ED 29.62 10.53 15.54 21.74 77.78 −2.25∗ 41.37∗ 15.31 22.35 30.86 86.76 −1.53∗
NUCLE+MORPH 27.63 9.92 14.60 20.36 77.57 −2.39∗ 38.31 14.31 20.84 28.69 86.53 −1.71∗
NUCLE+POS 31.00 9.98 15.10 21.81 77.95 −1.98∗ 43.10∗ 14.44 21.63 30.85 87.00∗ −1.31∗
NUCLE+SC 24.92 9.86 14.13 19.09 77.20 −2.84 34.82 14.35 20.32 27.09 86.12 −2.15
NUCLE+WSD 28.30 9.92 14.69 20.65 77.61 −2.32∗ 39.34 14.37 21.05 29.19 86.62 −1.65∗

Table 4.14: Results of NUCLE and probabilistic datasets on the CoNLL-2013 test set
(original and alternative) using PoS-factored SMT. Improvements over the baseline
(NUCLE) are marked in bold; statistically significant differences are marked with an
asterisk. Results show that artificial data can increase P but at the expense of R.

Sentence error rates are fairly homogeneous across the datasets, except for SC,
which contains roughly 3 times the number of incorrect sentences in the rest of the
artificial corpora. Error type distributions are generally dissimilar, with ED being,
logically, the most similar to NUCLE. Given the definitions in Table 4.11, ED is the
only dataset that contains instances for the five error types, whereas the others only
contain instances for a subset of them.

Systems were trained using each dataset in isolation as well as in combination
with the NUCLE corpus. Performance on the CoNLL-2013 test set is reported in
Table 4.14. Systems using artificial datasets alone are unable to beat the baseline
in terms of R, F1 and F0.5 although ED, POS and WSD do show improvements
in GLEU and I-measure. For ED and POS, these improvements are statistically
significant, especially on the alternative test set. These two datasets also show a
slight improvement in P on the original test set but they were found not to be
significant. In all cases, a considerable drop in R and F scores is also observed, which
suggests that the probabilities used by our methods are perhaps too specific and
thus fail to generalise to other words in the data. The SC dataset is clearly the worst
performing, indicating that errors in the test set are not really driven by the kind of
semantic information encoded by our method.

4.3. PROBABILISTIC GENERATION 85

Hybrid systems trained on NUCLE plus artificial datasets perform better overall
and all of them beat the baseline on GLEU and I. Only NUCLE+ED is better than
the baseline for the rest of metrics (except R), making it the best of all systems.
This is partly expected since the ED dataset is the only one containing instances for
all error types and preserving the original error distribution, although it is the least
linguistically-informed method. NUCLE+POS and NUCLE+WSD are also among
the best performing systems while NUCLE+SC is still the worst.

It could be argued that the reason for these improvements is corpus size, since our
hybrid datasets are double the size of individual datasets. However, a comparison
of performance between the two groups (e.g. in terms of P, GLEU and I) seems to
contradict this hypothesis. The consistent rise in performance when using hybrid
sets adds more evidence to our initial results suggesting that artificial data is
complementary to genuine learner data.

4.3.2 Error type analysis

Given that the evaluated datasets do not include instances for the same error types,
it seems more appropriate to analyse performance by error type. Table 4.15 and
Table 4.16 report results by type for the original and alternative sets respectively.

Results show that performance varies across datasets, suggesting that certain
types of information are better suited to specific error types. In particular, we find
that when purely artificial datasets are used (on both the original and alternative test
set), the best F1 scores per type correspond to WSD for ArtOrDet, POS for Nn and
SVA/Vform, and SC for Prep, which is the only combination that beats the baseline.
This is mainly the result of an increase in R by the use of semantic classes, which clearly
influence the choice of preposition (e.g. to + location, with + artifact, during + time,
etc.). By contrast, ED is the worst performing on Prep, as generating preposition
errors just based on confusion probabilities does not guarantee that the new choice
is an actual error (e.g. in → at) and therefore causes confusion during training.

Hybrid datasets perform better overall, especially when evaluated on the
alternative test set. On this set, there is at least one hybrid dataset that beats
the baseline on each error type: NUCLE+ED/MORPH/WSD for ArtOrDet,
NUCLE+ED/POS for Nn, NUCLE+SC/WSD for Prep and NUCLE+ED for
SVA/Vform. Generating errors based on error type distributions (ED) therefore
seems the most versatile method, consistently ranking among the top results for
three out the four error categories.

P was found to increase in all cases for ArtOrDet and SVA/Vform, although
it never exceeds the minimum value of 50 that would indicate improvement of the
source text. The only error type fulfilling this condition is Nn on the alternative
dataset, with a maximum P score of 70 using NUCLE+ED. This means that the
number of FPs is small in this case, which is not surprising given the high proportion
of such errors and the limited size of its confusion set (which is basically binary).

86 CHAPTER 4. EXPERIMENTS ON CONSTRAINED ERROR CORRECTION

Dataset ArtOrDet Nn Prep SVA/Vform
P R F1 P R F1 P R F1 P R F1

NUCLE 27.16 15.51 19.74 46.25 9.34 15.54 13.33 3.86 5.99 26.04 10.16 14.62
ED 28.13 3.91 6.87 65.79 6.31 11.52 2.33 0.32 0.56 0.00 0.00 —
MORPH 18.62 10.58 13.49 — 0.00 — 0.00 0.00 — 14.29 0.41 0.80
POS 0.00 0.00 — 44.05 9.34 15.41 0.00 0.00 — 15.15 2.03 3.58
SC 16.83 7.39 10.27 — 0.00 — 9.86 9.32 9.58 0.00 0.00 —
WSD 22.19 10.29 14.06 0.00 0.00 — 19.05 2.57 4.53 18.75 1.22 2.29
NUCLE+ED 31.85 13.48 18.94 54.65 11.87 19.50 13.04 3.86 5.96 26.58 8.54 12.93
NUCLE+MORPH 28.57 15.07 19.73 45.90 7.07 12.25 17.19 3.54 5.87 28.17 8.13 12.62
NUCLE+POS 33.84 12.90 18.68 46.59 10.35 16.94 18.84 4.18 6.84 26.25 8.54 12.89
NUCLE+SC 28.90 12.90 17.84 45.00 6.82 11.84 14.92 8.68 10.98 28.36 7.72 12.14
NUCLE+WSD 30.03 14.49 19.55 46.67 7.07 12.28 19.48 4.82 7.73 26.32 8.13 12.42

Table 4.15: Error type analysis of our PoS-factored SMT systems using probabilistic
AEG and tested on the original CoNLL-2013 test set. Results in bold show
improvements over the baseline (NUCLE).

Dataset ArtOrDet Nn Prep SVA/Vform
P R F1 P R F1 P R F1 P R F1

NUCLE 35.19 20.26 25.72 61.63 13.02 21.50 20.69 6.82 10.26 41.05 17.18 24.22
ED 40.63 5.79 10.14 72.97 6.84 12.51 4.65 0.77 1.32 18.18 1.83 3.33
MORPH 22.70 13.11 16.62 — 0.00 — 0.00 0.00 — 28.57 0.92 1.78
POS 0.00 0.00 — 54.65 11.69 19.26 0.00 0.00 — 42.42 6.31 10.99
SC 21.12 9.44 13.05 — 0.00 — 10.88 12.21 11.51 0.00 0.00 —
WSD 27.81 13.13 17.84 0.00 0.00 — 21.43 3.47 5.97 20.00 1.38 2.58
NUCLE+ED 43.34 18.49 25.92 70.00 15.52 25.41 16.85 5.75 8.57 47.44 16.30 24.26
NUCLE+MORPH 37.91 20.06 26.24 63.08 10.17 17.52 22.95 5.36 8.69 47.14 14.54 22.22
NUCLE+POS 46.01 17.61 25.47 60.87 13.83 22.54 24.24 6.13 9.79 44.30 15.49 22.95
NUCLE+SC 39.61 17.73 24.50 61.54 9.93 17.10 18.44 12.50 14.90 48.48 14.10 21.85
NUCLE+WSD 39.94 19.33 26.05 63.08 10.17 17.52 24.32 6.90 10.75 46.67 15.35 23.10

Table 4.16: Error type analysis of our PoS-factored SMT systems using probabilistic
AEG and tested on the alternative CoNLL-2013 test set. Results in bold show
improvements over the baseline (NUCLE).

Overall, we observe that the error types with highest average F1 (in decreasing
order) are ArtOrDet, Nn, SVA/Vform and Prep. Not coincidentally, this ranking
correlates closely with the size of their confusion sets.

4.4 Analysis and discussion

A comparison between random and probabilistic AEG reveals some interesting
differences. First of all, their effect on evaluation metrics seems to go in opposite
directions; while random generation increases R at the expense of P, probabilistic
generation increases P and lowers R. In turn, this translates into improvements in
F1 and F0.5 respectively so the choice of one method over the other will eventually
depend on the metrics that we seek to maximise. If we choose F1 (as in the CoNLL-
2013 shared task), random generation looks superior whereas for F0.5 (as in the
CoNLL-2014 shared task), probabilistic methods fare better.

However, it is not clear whether the methods themselves or the differences in the
base texts (corrected learner data vs. native text) are responsible for this behaviour.
In any case, the purpose of AEG is to provide an inexpensive way to produce
error-annotated data from native text, so persisting in the use of learner data seems

4.4. ANALYSIS AND DISCUSSION 87

impractical and unrealistic. Additionally, given the arguments in favour of P for GEC
(see Section 3.1.1), we believe F0.5 should be preferred, in which case probabilistic
methods should be more advantageous.

Yet, there are considerable variations in performance among our probabilistic
datasets. This is partly due to the fact that certain types of information are only
applied to specific error types while in other cases it is due to intrinsic limitations of
the linguistic information used to characterise the errors. For example, morphological
information does not perform as expected on SVA/Vform errors, suggesting that the
association between a verb and its head-noun PoS tags is not enough to discriminate
between correct and incorrect forms. In other cases, linguistic information is clearly
beneficial, showing that errors are indeed influenced by the encoded features. Some
examples include SC for Prep and POS for Nn.

The least linguistically-motivated dataset, ED, seems the most robust, possibly
because it does not assume any underlying linguistic conditions and relies solely on
frequency, so it generalises better. Although linguistic information can be useful for
specific error types, only POS is comparable to ED in terms of generalisation power.
This suggests that using sophisticated linguistic processing for AEG is not as useful
as initially expected and is probably not worth pursuing further. Likewise, the use of
error inflation in our methods was unable to boost R as expected, in contrast to the
results by Rozovskaya and Roth (2010c), although this might be due to differences
in the training paradigm.

Finally, although some systems are able to beat the baseline trained on NUCLE
alone, none of them improves the source text in reality, since values of P are below 50,
GLEU is always lower than for the original text, and I-measure scores are negative
in all cases.

4.4.1 Comparison with systems in the CoNLL-2013 shared task

We carried out a comparison of our models with the 17 participating systems in
the CoNLL-2013 shared task, showing how they would rank in terms of F1 (see
Table 4.17). As expected, the system trained on NUCLE+EVP achieves the best
result (which is similar to our submission to the task) with the one trained on
NUCLE+ED as a runner-up. Of all the systems, these two are the only ones that
outperform the baseline trained on NUCLE alone and are ranked above average.

This suggests that using an off-the-shelf SMT system trained on a combination of
real and artificial data can yield better results than other machine learning techniques
(Berend et al., 2013; Bosch and Berck, 2013; Yi et al., 2013) or rule-based approaches
(Flickinger and Yu, 2013; Kunchukuttan et al., 2013; Putra and Szabo, 2013; Sidorov
et al., 2013). The implications of these results are very encouraging, since they prove
that using the simplest artificial datasets as additional training data can produce
competitive results, if not beat highly-engineered systems.

88 CHAPTER 4. EXPERIMENTS ON CONSTRAINED ERROR CORRECTION

Dataset Original test set Alternative test set
F1 Rank F1 Rank

NUCLE 15.49 9 21.83 8
EVP 11.97 9 15.80 9
NUCLE+EVP 16.15 8 23.57 7
ED 5.74 14 8.23 14
MORPH 7.21 12 9.30 12
POS 4.71 14 7.21 14
SC 7.06 12 8.83 12
WSD 8.08 10 10.43 11
NUCLE+ED 15.54 9 22.35 7
NUCLE+MORPH 14.60 9 20.84 9
NUCLE+POS 15.10 9 21.63 8
NUCLE+SC 14.13 9 20.32 9
NUCLE+WSD 14.69 9 21.05 9

Table 4.17: Rankings of our systems using random and probabilistic AEG with
respect to the 17 participating systems in the CoNLL-2013 shared task. Results in
bold show improvements over the baseline (NUCLE).

Chapter 5

Experiments on general error
correction

In this chapter, we draw on findings from previous experiments to refine our
probabilistic AEG method and generate more accurate datasets for general error
correction. Since we now focus on a much larger set of errors, we use the CLC as our
reference corpus and control more variables during generation. In the first section,
we describe our experimental set-up, including the data and generation method. In
the second section, we present and discuss the results of our experiments in order to
discover the best-performing settings.

5.1 Experimental set-up

In the light of results in Chapter 4 and following our guiding principles, we conduct
experiments on general error correction using only the best performing settings from
previous experiments. Given the current trend towards emphasising the role of P
in the evaluation of GEC systems, we focus only on methods that maximise this
metric. Thus, the experiments presented in this chapter rely on probabilistic methods
using information from error distributions and PoS patterns, as they have proved
the most successful in this regard. Similarly, we only train phrase-based models, as
they maximise P and related metrics such as F0.5, GLEU and I. This has the added
benefit of giving us ‘purer’ results, without the effect of additional factors.

5.1.1 Data

For these new experiments on general error correction, we adopt the CLC as our
working corpus (see Section 2.2.2.1), as it has higher annotation quality than NUCLE
and is more representative of L2 writing given its variety of learner backgrounds,
proficiency levels, error categories and size.

90 CHAPTER 5. EXPERIMENTS ON GENERAL ERROR CORRECTION

Dataset # scripts # sentences # tokens
CLC-train 131,777 1,965,727 28,823,615
FCE-test 97 2,691 41,464

Table 5.1: Datasets used in our probabilistic generation experiments for general
error correction.

We split the CLC into the following two subsets:

CLC-train: A portion of the error-coded version of the CLC, containing 131,777
scripts from all the examinations represented in the corpus. This is used as our
reference corpus for collecting all the necessary statistics for probabilistic AEG.

FCE-test: A subset of 97 scripts from the FCE public dataset, as defined by
Yannakoudakis et al. (2011). These texts have been written by learners mostly
at the B2 (upper intermediate) level in the CEFR, which we deem suitable for
testing purposes.

The composition of these datasets is shown in Table 5.1.
For base texts, we use two different collections of articles from English Wikipedia

and Simple English Wikipedia respectively, in order to study the effect of language
complexity on AEG. The artificial datasets created from this data are described in
Section 5.1.4. Text preprocessing was carried out with RASP.

5.1.2 Error patterns

We generate artificial errors on error-free text using correct → incorrect patterns
extracted from the reference corpus, as in Section 4.2. However, there are a number
of differences in the way they are extracted and applied. First, we create different
sets of patterns for each maximum context window size (0, 1 and 2) and apply them
separately in order to study how this affects the quality of the generated errors.

Second, we redefine the way PoS patterns are built, so that modified tokens are
represented by their surface forms and PoS tags, as illustrated in Table 5.2. This
allows us to replace word forms without recourse to external libraries, making it
easier to extend generation to all error types and, potentially, to other languages
too. Although we lose the ability to generate new word forms, AEG should be more
accurate, as we limit the set of candidate words to the ones that learners really find
confusing and we also minimise the chance of constructing artificial errors that result
in correct usage. In other words, we trade errors on new words for well-known errors
in new contexts, as is also done by Wagner (2012).

Finally, we associate each pattern with the error types and frequencies observed
in the reference corpus, which allows us to retrieve patterns by type and have control
over the generated distribution. For example, the pattern */VV0 a/AT1 lot/NN1
of /IO */NN2 → */VV0 many/DA2 */NN2 has been tagged in three different ways

5.1. EXPERIMENTAL SET-UP 91

PoS pattern Example
cannot/VM → can/VM not/XX I cannot go → I can not go
*/VM */RR */VB0 */JJ →
*/VM */VB0 */RR */JJ

We will never be able to afford it →
We will be never able to afford it

*/RL */TO hearing/VVG */II */PPY →
*/RL */TO hear/VV0 */II */PPY

I look forward to hearing from you →
I look forward to hear from you

Table 5.2: Sample PoS patterns for probabilistic AEG.

Frequency threshold # PoS patterns # lexical patterns
1 2,133,312 2,604,023
2 206,999 97,573
3 92,733 36,458
4 56,758 20,540
5 39,729 13,845
6 29,857 10,114
7 23,693 7,767
8 19,476 6,256
9 16,290 5,217
10 14,003 4,430

Table 5.3: Number of patterns by type extracted from CLC-train, corresponding to
a maximum context window size of 2.

with varying frequency: twice as a wrong quantifier because of noun countability
(CQ), 43 times as a quantifier replacement (RQ) and 261 times as inappropriate
register (L).

To further minimise the chance of generating errors that may be grammatically
correct and avoid rare unrepresentative errors, we set a frequency threshold for
patterns, so that only those with frequency greater than or equal to the threshold
are used during generation. For our experiments, this threshold is set to 10. There
is obviously a trade-off when choosing this value: while a low frequency threshold
will expand the spectrum of errors we can generate, it can also render the generation
process slow and impractical. For a large dataset such as the training portion of the
CLC, the number of error patterns increases quickly for lower frequency thresholds,
as shown in Table 5.3.

One distinctive aspect of the CLC is the annotation of nested errors, i.e. a sequence
of embedded errors that are corrected one by one. Figure 5.1 illustrates one such
case. In this example, the noun relation should be changed to the verb relate, which
in turn should agree with the subject of the sentence, thus relates. As it is difficult to
decompose each nested error into meaningful individual errors for AEG, we use the
outermost corrections and treat them as atomic units, whose type is composed of all
inner types. For the example above, we would extract relation → relates, rewrite it as
relates → relation and classify it as AGV+DV. As expected, this expands the number
of error types and creates a new distribution, which in the case of CLC-train amounts
to 5,302 composite types. The first 100 most frequent are listed in Appendix F.

92 CHAPTER 5. EXPERIMENTS ON GENERAL ERROR CORRECTION

Almost everyone <NS type="AGV"><i><NS type="DV"><i>relation</i>
<c>relate</c></NS></i><c>relates</c></NS> famous people with
photographers, articles, money, fans, ...

Figure 5.1: A nested error from a public portion of the CLC.

0

200

400

600

800

1,000

1,200

1,400

S
m
o
ot
h
ed

fr
eq
u
en
cy

Smoothed

0

50,000

100,000

150,000

200,000

250,000

Error types

O
ri
gi
n
al

fr
eq
u
en
cy

Original
Smoothed

Figure 5.2: Effect of smoothing on the distribution of error types in CLC-train.

5.1.3 Generation method

The approach to probabilistic generation adopted in these new experiments imposes
more control on the statistical aspects of the generated datasets, including the
proportion of incorrect sentences (i.e. the sentence error rate), the average number of
errors per sentence, the distribution of error types and the probability of each error
pattern within each type. The first two variables are preserved as in the original
reference corpus while the other two depend on the generation mode.

We implemented three different generation modes to control the distribution of
error types and patterns:

Original: Uses the original probability distribution observed in the reference corpus.

Uniform: Uses a uniform probability distribution, so all elements are equally likely.

Smoothed: Redistributes the probability mass among all elements in order to
minimise extreme differences while maintaining the relationship between them.
This is similar to smoothing techniques used in language modelling. Listing 5.1
shows our implemented algorithm while Figure 5.2 illustrates the effect of
smoothing on the distribution of error types in CLC-train. Using this technique,
we seek to transform the original Zipfian distribution in order to boost the
probability of under-represented errors.

Listing 5.2 shows the pseudocode for our refined probabilistic generation method.
For each sentence in our base texts, we first determine the number of errors that we
will create, using weighted random selection to preserve the original distribution. We
then attempt to generate each required error by selecting a type and an applicable

5.1. EXPERIMENTAL SET-UP 93

function smooth(list_of_frequencies):
f := list_of_frequencies;
c := [];
for key, group in group_by(list_of_frequencies) do

n := len(list(group));
c.extend([n] * n);

changed := True;
while changed do

changed := False;
i := len(f) - 1;
while i > 0 do

i := i - c[i] + 1;
j := i;
new_f := ((f[i] * c[i]) - c[j-1]) / c[i];
while new_f > f[i-1] and new_f > f[j-1] + 1 do

for k := j - c[j-1] to j-1 do
f[k] := f[k] + 1;

for k := i to i + c[i] - 1 do
f[k] := new_f;

changed := True;
j := j - c[j-1];
if j > 0 then

new_f := ((f[i] * c[i]) - c[j-1]) / c[i];
else

break;
i = i - 1;

return f;

Listing 5.1: The implemented smoothing algorithm.

pattern, according to the probability distribution dictated by the chosen generation
mode. If it is not possible to generate an error for the chosen type, a random error
is attempted for any one of the remaining types. Sometimes it is just impossible
to generate the required number of errors in a given sentence, either because the
sentence is exhausted or none of the error patterns is applicable.

The method also outputs pairs of error-free sentences in order to keep the required
proportion of correct and incorrect sentences in the generated dataset. Finally, an
adaptive mechanism controls the number of artificial errors per sentence so as to
keep the average as close as possible to the original.

5.1.4 Generated datasets

We generated artificial datasets using different combinations of our independent
variables, namely:

• base texts (English Wikipedia or Simple English Wikipedia),

• maximum context window (0, 1 or 2),

• pattern type (PoS or lexical), and

• generation mode (original, uniform or smoothed).

94 CHAPTER 5. EXPERIMENTS ON GENERAL ERROR CORRECTION

/* mode is ORIGINAL, UNIFORM or SMOOTHED */
num_errors := get_num_errors_distribution(reference-corpus);
error_types := get_error_type_distribution(reference-corpus, mode);
candidate_num_errors := num_errors;
avg_e := average(num_errors);
p_correct := num_errors[0] / sum(num_errors)
type_counts = {}
n_correct := 0
ge_total := 0;
s := 0;
for each sentence in base-texts do

target := sentence;
pseudosource := sentence;
e := get_random(candidate_num_errors, ORIGINAL);
ge := 0;
if e > 0 then

forced_random := OFF;
candidate_types := error_types;
while (e - ge) > 0 or forced_random = ON do

generated := False;
while not generated and len(candidate_types) > 0 do

if forced_random = ON then
t := get_random(candidate_types, UNIFORM);
candidate_types := error_types;
forced_random := DONE;

else
found := False;
for t in candidate_types do

if ge_total = 0 or
type_counts[t] / ge_total < t.probability then
found := True;
break;

if not found then
forced_random := ON;
break;

candidate_patterns := get_patterns(t, mode);
while not generated and len(candidate_patterns) > 0 do

p := get_random(candidate_patterns, mode);
matches := get_matches(p, pseudosource);
if matches then

m := get_random(matches, UNIFORM);
pseudosource.replace(m, p.incorrect);
generated := True;
ge := ge + 1;
type_counts[t] := type_counts[t] + 1;

else
candidate_patterns.remove(p);

if not generated then
candidate_types.remove(t);

if not generated and forced_random = DONE then
break;

if ge > 0 then
s := s + 1;
ge_total := ge_total + ge;
yield pseudosource, target

if n_correct <= prob_correct * s then
s := s + 1;
n_correct = n_correct + 1;
yield target, target;

new_avg_e := ge_total / (s - n_correct);
if new_avg_e < avg_e then

candidate_num_errors := filter_out(num_errors <= avg_e);
else if new_avg_e > avg_e then

candidate_num_errors := filter_out(num_errors >= avg_e);

Listing 5.2: Pseudocode for our refined probabilistic AEG.

5.2. EXPERIMENTS AND RESULTS 95

The number of possible datasets that can be generated from these variables
amounts to 2 × 3 × 2 × 3 = 36. However, because we are mostly interested in
generalising to other errors, we conduct our experiments using PoS patterns and only
test lexical patterns in selected cases for comparison. As explained in Section 5.1.2,
the minimum frequency threshold was set to 10.

Each artificial dataset created contains 1,965,727 sentences, matching the size
of CLC-train. For simplicity, we will refer to each dataset using a unique identifier
based on its composition, as shown below:

[EW|SW]-[0|1|2]-[POS|LEX]-[O|U|S]

For example, EW-0-POS-O refers to an artificial dataset using English Wikipedia,
0 context window, PoS patterns and the original error type distribution.

Since we now work with a large number of error types (both single and
combined), it would be impractical to report their individual proportions. Instead,
we compare the error type distributions between CLC-train and each dataset directly
by computing the Jensen-Shannon Divergence (JSD) (Lin, 1991). This popular
method for computing similarity between probability distributions is based on the
Kullback–Leibler Divergence (KLD) (Kullback and Leibler, 1951) but has a number
of advantages, such as being symmetric and giving values within finite intervals. JSD
for two discrete distributions, P and Q, is defined in Equation 5.1 and gives values
in the [0, 1] interval. When P = Q, JSD(P ‖ Q) = 0.

JSD(P ‖ Q) = 1
2KLD

(
P

∥∥∥∥ P +Q

2

)
+ 1

2KLD
(
Q

∥∥∥∥ P +Q

2

)
(5.1)

where

KLD(P ‖ Q) =
∑
i

P (i) log2
P (i)
Q(i) (5.2)

Statistics for our PoS-based probabilistic datasets are given in Table 5.4. Artificial
datasets with lower JSD are more similar to CLC-train and thus expected to convey
roughly the same error information. As expected, JSD is highest when using uniform
distributions and lowest when preserving the original. The use of a larger context
window also seems to help, except for the original distribution where JSD increases.
We also observe that smaller contexts tend to generate more errors per sentence as
there are more possible insertion points, and using different versions of Wikipedia does
not seem to affect similarity in principle. Sample sentences for different combinations
of our generation variables are included in Appendix G.

5.2 Experiments and results

We used the generated datasets to build phrase-based SMT systems using Giza++
and Moses with default parameters. A baseline system was trained on CLC-train

96 CHAPTER 5. EXPERIMENTS ON GENERAL ERROR CORRECTION

Dataset Sentence Average errors JSDerror rate per sentence
CLC-train 61.41% 2.46 —
EW-0-POS-O 61.41% 1.52 0.0061
EW-0-POS-U 61.41% 1.19 0.4441
EW-0-POS-S 61.41% 1.12 0.4409
EW-1-POS-O 61.41% 1.33 0.0197
EW-1-POS-U 61.41% 1.01 0.3080
EW-1-POS-S 61.41% 1.01 0.3026
EW-2-POS-O 61.41% 1.07 0.0232
EW-2-POS-U 61.41% 1.00 0.2303
EW-2-POS-S 61.41% 1.01 0.2294
SW-0-POS-O 61.41% 2.44 0.0060
SW-0-POS-U 61.41% 1.34 0.4553
SW-0-POS-S 61.41% 1.28 0.4504
SW-1-POS-O 61.41% 1.36 0.0170
SW-1-POS-U 61.41% 1.04 0.3212
SW-1-POS-S 61.41% 1.03 0.3170
SW-2-POS-O 61.41% 1.06 0.0238
SW-2-POS-U 61.41% 1.00 0.2194
SW-2-POS-S 61.41% 1.00 0.2178

Table 5.4: Error statistics for PoS-based probabilistic datasets based on CLC-train.

while the rest of systems were trained on artificial datasets, both in isolation and in
combination with the former corpus. Performance of these systems on FCE-test are
reported in Table 5.5.

Results show that artificial datasets used in isolation are not able to outperform
the CLC-train baseline, except for EW-1-POS-U and EW-2-POS-O which achieve
a higher I-measure score (although it is not statistically significant). Despite the
negative I scores for purely artificial datasets, which suggest that they make the
original text worse, systems trained on EW-1-POS-U and SW-0-POS-O show an
improvement in terms of GLEU, although again this is not significant.

Given the considerable similarity between CLC-train and artificial datasets
replicating the original error type distribution (see Table 5.4), it seems surprising
that their performance is not close to that of CLC-train. The most likely reason for
this is the difference in genre, topic and language complexity, although the latter
was expected to be matched by the use of Simple English Wikipedia.

Hybrid datasets, on the contrary, show a consistent improvement in P, F0.5,
GLEU and I over both the baseline and the original text. This seems to be due
to significant increases in P (of up to 5 points or 10.40% in the best case), which
translates into improvements in the rest of the measures. This increase in P comes
at the expense of R, confirming our earlier results on probabilistic AEG presented in
Section 4.3. The higher scores for hybrid datasets also confirm that artificial data is
complementary to real learner data, although only in terms of correction confidence

5.2. EXPERIMENTS AND RESULTS 97

Dataset P R F1 F0.5 GLEU I
Original text — 0.00 — — 60.39 0.00
CLC-train 48.67 37.64 42.45 45.98 67.70 −3.33
EW-0-POS-O 24.51 16.84 19.96 22.46 57.09 −9.63
EW-0-POS-U 25.01 10.84 15.12 19.83 59.01 −5.44
EW-0-POS-S 24.97 10.84 15.12 19.81 58.86 −5.47
EW-1-POS-O 22.98 14.25 17.59 20.47 56.98 −8.70
EW-1-POS-U 30.94 8.98 13.92 20.78 60.72 −2.98∗
EW-1-POS-S 25.32 10.55 14.89 19.78 59.14 −5.26
EW-2-POS-O 28.29 6.92 11.12 17.49 60.16 −2.68∗
EW-2-POS-U 25.19 7.16 11.15 16.75 59.73 −3.44
EW-2-POS-S 22.81 6.55 10.18 15.24 59.34 −3.80
SW-0-POS-O 25.57 14.98 18.89 22.40 65.78 −7.99
SW-0-POS-U 26.50 7.93 12.21 18.05 59.93 −3.56
SW-0-POS-S 28.72 8.58 13.21 19.54 59.99 −3.42
SW-1-POS-O 25.91 11.23 15.67 20.54 58.91 −5.61
SW-1-POS-U 23.45 8.12 12.06 17.02 59.08 −4.57
SW-1-POS-S 26.38 8.71 13.10 18.77 59.66 −4.07
SW-2-POS-O 21.28 6.42 9.86 14.55 58.84 −4.15
SW-2-POS-U 17.24 6.13 9.04 12.65 58.22 −5.71
SW-2-POS-S 18.17 6.31 9.37 13.21 58.54 −5.29
CLC-train+EW-0-POS-O 52.26∗ 34.16 41.31 47.25∗ 68.15∗ −1.70∗
CLC-train+EW-0-POS-U 52.85∗ 32.93 40.58 47.15∗ 68.23∗ −1.29∗
CLC-train+EW-0-POS-S 53.10∗ 33.02 40.72 47.34∗ 68.32∗ −1.29∗
CLC-train+EW-1-POS-O 52.32∗ 33.85 41.11 47.17∗ 68.23∗ −1.56∗
CLC-train+EW-1-POS-U 53.73∗ 32.95 40.85 47.71∗ 68.41∗ −1.12∗
CLC-train+EW-1-POS-S 53.59∗ 33.00 40.85 47.64∗ 68.36∗ −1.10∗
CLC-train+EW-2-POS-O 52.07∗ 33.85 41.03 47.01∗ 68.13∗ −1.75∗
CLC-train+EW-2-POS-U 51.80∗ 34.40 41.34 47.04∗ 68.28∗ −1.77∗
CLC-train+EW-2-POS-S 51.68∗ 34.09 41.08 46.85∗ 68.21∗ −1.80∗
CLC-train+SW-0-POS-O 49.77∗ 36.02 41.79 46.24∗ 67.82∗ −2.84
CLC-train+SW-0-POS-U 50.39∗ 34.05 40.64 45.98 67.78∗ −2.33∗
CLC-train+SW-0-POS-S 50.49∗ 34.11 40.71 46.07∗ 67.82∗ −2.29∗
CLC-train+SW-1-POS-O 49.82∗ 35.65 41.56 46.15∗ 67.88∗ −2.65
CLC-train+SW-1-POS-U 50.47∗ 35.45 41.65 46.53∗ 68.07∗ −2.45
CLC-train+SW-1-POS-S 50.44∗ 35.19 41.46 46.42∗ 68.05∗ −2.35∗
CLC-train+SW-2-POS-O 49.45∗ 35.56 41.37 45.87 67.83∗ −2.65
CLC-train+SW-2-POS-U 49.74∗ 35.78 41.62 46.14∗ 68.00∗ −2.60
CLC-train+SW-2-POS-S 49.61∗ 35.76 41.56 46.04∗ 67.98∗ −2.58

Table 5.5: Results of PoS-based probabilistic datasets on FCE-test. Improvements
over the baseline (CLC-train) are marked in bold; statistically significant differences
are marked with an asterisk.

98 CHAPTER 5. EXPERIMENTS ON GENERAL ERROR CORRECTION

rather than coverage. Given the general preference for high-precision GEC systems,
this is a positive outcome; however, it is still surprising that the use of PoS-based
error patterns does not help recall. Values of P over 50 and GLEU scores greater
than the original text seem to indicate that many hybrid sets do improve it, although
this is clearly not captured by the more conservative I-measure.

The effect of each tested variable on system performance is discussed in detail in
the following sections.

5.2.1 Base texts

In Section 4.3 we commented on the importance of using base texts that are as
similar as possible to the reference corpus, so we decided to test this hypothesis by
using base texts from two different sources: English Wikipedia and Simple English
Wikipedia. While the English Wikipedia is mostly written by and intended for native
speakers of the language, its Simple English version is aimed at ‘people with different
needs, such as students, children, adults with learning difficulties, and people who
are trying to learn English’ (Wikipedia, 2015), so it appears more suitable for our
purpose. Articles written in ‘Simple English’ employ a simplified form of the English
language, typically using the 1,000 most common words and simpler grammatical
structures, such as shorter sentences.

A preliminary analysis based on JSD in Table 5.4 does not reveal any noticeable
difference between datasets built from these two Wikipedia versions, although
such values reflect divergence in error distributions, not language complexity. The
performance of purely artificial datasets does not reveal a clear difference either.
Simple English datasets perform better 5 out of 9 times in terms of P, GLEU and I;
however, the differences are very small and average performance is generally lower
than for standard English datasets. The latter outperform Simple English sets
consistently on R and F1, although the difference is often very small too. When
used in conjunction with CLC-train, all datasets based on English Wikipedia are
superior in terms of P, F0.5, GLEU and I. All these systems consistently outperform
the baseline on the said metrics, with statistically significant improvements in P and
I for all cases.

In conclusion, we found that Simple English datasets seem slightly advantageous
when used in isolation while English Wikipedia datasets are clearly superior when
combined with genuine learner data. We believe this is because errors injected on
similar data cannot encode much more information than what is already present in
our reference corpus, while less similar data can provide new contexts which can
complement the reference corpus (as confirmed by differences in R).

Given the superior performance of hybrid systems using English Wikipedia
datasets, we conclude that this is the most convenient source of base texts.

5.2. EXPERIMENTS AND RESULTS 99

P R F0.5 F1 GLEU I

0 1 2−10

0

10

20

30

40

50

60

70

(a) Purely artificial datasets

0 1 2−10

0

10

20

30

40

50

60

70

(b) Hybrid datasets

Figure 5.3: Effect of context window size on the average performance of evaluation
measures.

5.2.2 Context window

We defined a maximum context window of up to 2 tokens to the left and right of
an error during the pattern extraction process, which must be matched during error
generation. Start and end-of-sentence markers are also included but not counted
towards the context window size.

The amount of context used by the error patterns has a direct impact on the
quality of the generated errors, as it controls how realistic they look in a given
context. Thus, the more context is used, the more natural the errors will look, as
demonstrated by the examples in Appendix G.

While the use of larger contexts will produce higher-quality data, it can
significantly reduce the number and variety of the generated errors, as base texts are
unlikely to exhibit all the required contexts. For example, a pattern with a context
window of 2 tokens surrounding an error that involves 3 words will require matching
2 + 3 + 2 = 7 tokens in a candidate sentence in order to be applied, e.g. */NN1 */TO
catch/VV0 up/RP on/II */AT */NN1 → */NN1 */TO cover/VV0 */AT */NN1.
On the contrary, using no context will generate more errors (and usually more than
one in a single sentence) but they are unlikely to resemble real learner errors (e.g.
The port handles all of the international trade for the country. → *In port handles
of the world wide trades because a country.).

The effect of context length varies widely across datasets and metrics, so a trend
might not be obvious. To facilitate analysis, we compute the average performance
of each metric for each maximum context window size. This is done separately for
purely artificial and hybrid datasets, whose results are plotted in Figure 5.3.

On purely artificial datasets, performance tends to decrease for all metrics as
more context is added, although differences are small, especially between 0 and 1.

100 CHAPTER 5. EXPERIMENTS ON GENERAL ERROR CORRECTION

Dataset Sentence Average errors JSDerror rate per sentence
EW-0-LEX-O 61.41% 2.37 0.0069
EW-1-LEX-O 61.41% 1.08 0.0303
EW-2-LEX-O 61.41% 1.00 0.0228
SW-0-LEX-O 61.41% 2.42 0.0064
SW-1-LEX-O 61.41% 1.11 0.0171
SW-2-LEX-O 61.41% 1.00 0.0339

Table 5.6: Error statistics for lexical probabilistic datasets based on CLC-train.

Only I-measure scores show increasing performance. On hybrid datasets, we observe
that performance generally increases from 0 to 1 and then drops at 2. Only R and
F1 show a sustained increase, although in all cases differences are very subtle to be
perceived in the plot.

The difference in behaviour between these two groups is likely to be caused by
the presence of compatible contexts in the data, which are directly related to the
nature of texts. Clearly, Wikipedia articles exhibit different long structures than our
reference learner data, which is why longer contexts perform poorly with artificial
data alone. In particular, the effect of genre becomes more evident, since most long
patterns extracted from CLC-train refer to typical phrases used in correspondence,
such as salutations and the use of the first person, all highly unlikely to appear in
Wikipedia articles (I would be grateful if you could..., write to me soon, etc.). The
addition of learner data clearly makes up for this deficit, as evidenced by hybrid
datasets.

Overall, we find that using a maximum context window of 1 token is the most
beneficial, as it achieves a good balance between the number of generated errors
and how plausible they look in context. The best performing systems, based on
CLC-train plus EW-1-POS-U or EW-1-POS-S, seem to support our conclusion.

5.2.3 Lexical vs. PoS patterns

In order to investigate the effect of using lexical error patterns in lieu of PoS-based
ones, we generated a small number of artificial datasets using lexical patterns and
the original error distribution. As with PoS-based datasets, we computed some basic
error statistics as well as JSD between them and CLC-train, which are reported
in Table 5.6. A comparison with their PoS-based counterparts in Table 5.4 reveals
slightly lower error rates for lexical datasets (except for EW-0-LEX-O) as well as
greater JSD (except for EW-2-LEX-O).

As in previous experiments, we used these datasets in isolation and in conjunction
with CLC-train to build SMT systems for error correction, which were later evaluated
on FCE-test. Results of evaluation are reported in Table 5.7.

5.2. EXPERIMENTS AND RESULTS 101

Dataset P R F1 F0.5 GLEU I
Original text — 0.00 — — 60.39 0.00
CLC-train 48.67 37.64 42.45 45.98 67.70 −3.33
EW-0-LEX-O 24.90 19.68 21.98 23.65 56.43 −11.10
EW-1-LEX-O 30.16 14.08 19.20 24.55 60.23 −4.88
EW-2-LEX-O 30.51 6.00 10.03 16.79 60.40 −1.99∗
SW-0-LEX-O 24.90 15.77 19.31 22.32 57.59 −8.82
SW-1-LEX-O 27.19 10.60 15.25 20.71 59.87 −4.73
SW-2-LEX-O 23.00 4.66 7.75 12.87 59.74 −2.79∗

CLC-train+EW-0-LEX-O 51.79∗ 34.62 41.50 47.12∗ 68.09∗ −1.96∗
CLC-train+EW-1-LEX-O 53.48∗ 33.50 41.20 47.78∗ 68.45∗ −1.16∗
CLC-train+EW-2-LEX-O 50.89∗ 35.03 41.50 46.66∗ 68.13∗ −2.03∗
CLC-train+SW-0-LEX-O 49.05∗ 36.22 41.67 45.80 67.72∗ −3.04∗
CLC-train+SW-1-LEX-O 49.71∗ 35.87 41.67 46.15∗ 67.92∗ −2.65∗
CLC-train+SW-2-LEX-O 49.21∗ 35.95 41.55 45.83 67.79∗ −2.84∗

Table 5.7: Results of lexical probabilistic datasets on FCE-test. Improvements over
the baseline (CLC-train) are marked in bold; statistically significant differences are
marked with an asterisk.

Lexical datasets in isolation show slightly better performance than PoS-based
datasets on most metrics, except for R. However, like their counterparts, they also
fail to outperform the baseline or improve the original text. By contrast, hybrid
datasets show less conclusive results, although CLC-train+EW-1-LEX-O stands out
as a winner and even beats the best-performing CLC-train+EW-1-POS-U system on
most metrics by a very small margin. Lexical patterns seem more effective than PoS
patterns when using a context window of up to 1 token, while for 2 tokens the latter
type fares better. This is not surprising, since it is easier to match a long sequence
of PoS tags than a long sequence of word forms.

In any case, the slight superiority of lexical patterns would indicate that the
errors in the test set (FCE-test) occur in practically the same contexts as the ones
in CLC-train, so trying to create errors in new contexts using PoS patterns does
not bring much benefit. In order to determine if lexical patterns are consistently
superior, we must run additional experiments on different test sets, which we present
in Section 5.3.

5.2.4 Generation mode

As with context window size, the impact of the generation mode (following the
original, uniform or smoothed distribution) also depends on the evaluation metric
and type of dataset used (purely artificial or hybrid). We thus follow a similar
approach to the one in Section 5.2.2, whereby we analyse the effect of the variable at
hand on the average value of each metric. To facilitate comparison, we plot these
values in Figure 5.4.

102 CHAPTER 5. EXPERIMENTS ON GENERAL ERROR CORRECTION

P R F0.5 F1 GLEU I
−10

0

10

20

30

40

50

60

70
Original
Uniform
Smoothed

(a) Purely artificial datasets

P R F0.5 F1 GLEU I
−10

0

10

20

30

40

50

60

70

(b) Hybrid datasets

Figure 5.4: Effect of generation mode on the average performance of evaluation
measures.

We find that for purely artificial datasets, preserving the original distribution
observed in our reference corpus (CLC-train) yields the best results for most metrics,
with the exception of the I-measure. Smoothed and uniform distributions come
second and third respectively, except for P and GLEU where this is the opposite.
In any case, the difference between these two generation modes is very small on all
evaluation metrics. Results on hybrid datasets show a less clear distinction between
modes, although smoothed and uniform distributions are slightly superior on all
metrics except R and F1 (something that is counter-intuitive in principle). In most
cases, however, differences between these two modes are almost imperceptible.

While the original distribution gives the best results on purely artificial datasets,
it fails to outperform the rest of modes on hybrid sets. The most likely reason for this
lies in the fact that purely artificial datasets act as a full replacement for CLC-train
so they should mimic it as faithfully as possible to perform well on FCE-test. On the
contrary, hybrid sets already contain this information, so there is not much to gain
by replicating the same errors in similar contexts. Nevertheless, it is particularly
interesting that a uniform distribution, which is the least informed method, can give
top results, as demonstrated by the system trained on CLC-train+EW-1-POS-U in
Table 5.5. A smoothed distribution can also produce competitive results when used
in hybrid datasets; however, it did not perform as well as expected, especially in
comparison with a uniform distribution. This might be a sign that the smoothing
function was too aggressive, to the point of diluting the differences between types
and becoming too similar to the uniform distribution.

In view of these results and given the superiority of hybrid datasets, a uniform
distribution seems the most convenient generation mode, since it can produce top
results with minimal effort.

5.2. EXPERIMENTS AND RESULTS 103

Dataset P R F1 F0.5 GLEU I
Original text — 0.00 — — 60.39 0.00
100% CLC-train 48.67 37.64 42.45 45.98 67.70 −3.33
50% CLC-train + 50% EW-1-POS-U 53.41∗ 30.85 39.11 46.60∗ 67.86∗ −1.18∗
50% CLC-train + 50% EW-1-POS-S 52.77∗ 31.09 39.13 46.31∗ 67.77∗ −1.27∗

Table 5.8: Comparison of hybrid datasets containing 50% sentences from CLC-train
and 50% artificial data on FCE-test. Improvements over the baseline (CLC-train)
are marked in bold; statistically significant differences are marked with an asterisk.
A combination of real and artificial data yields better results on P-based measures
than real data alone.

5.2.5 Dataset size

As we have observed, hybrid datasets containing artificial and real learner errors
produce a substantial improvement in performance compared to those containing
only artificial errors. However, given that the former are twice the size of the latter,
a natural question to ask is whether this difference is due to the size of the datasets
itself or is indeed the result of their composition (as we have postulated).

The first piece of evidence in support of our thesis is given by a direct comparison
between the baseline and systems trained on hybrid datasets. Despite being half the
size of the latter, CLC-train produces competitive results that can consistently beat
hybrid datasets on certain measures (e.g. R) or show no statistical difference from
them.

To further test these claims, we carried out a small experiment where we created
two new datasets using the same settings as our best two PoS-based hybrid datasets
(based on EW-1-POS-U and EW-1-POS-S). These new sets are the same size as
CLC-train (1,965,727 sentences) and include 50% random sentences from that corpus
plus 50% random sentences from EW-1-POS-U and EW-1-POS-S respectively. The
performance of systems trained on these datasets is reported in Table 5.8. These
results show that hybrid sets having the same size as CLC-train can increase the
performance on most metrics, with the exception of R and F1. We thus verify that the
composition of the datasets is crucial and conclude that the improvements observed
for hybrid datasets in previous experiments are indeed produced by the addition of
artificial errors and not a mere by-product of increased size.

We also conducted a study to discover how performance varies as we scale up
the training data. Our first experiment investigates variations in performance when
artificial data is incrementally added to the baseline system. We do this for the two
best-performing types of artificial data (EW-1-POS-U and EW-1-POS-S), which we
add to CLC-train in gradual 20% increments. We can see the behaviour of evaluation
measures in Figure 5.5.

I-measure scores were found to increase continually in all cases but were excluded
from the plot to facilitate visualisation. In general, R and F1 decrease gradually as
more artificial data is added, while P and F0.5 increase. For EW-1-POS-U, however,

104 CHAPTER 5. EXPERIMENTS ON GENERAL ERROR CORRECTION

P R F0.5 F1 GLEU

+0% +20% +40% +60% +80%+100%
20

30

40

50

60

70

(a) 100% CLC-train + x% EW-1-POS-U

+0% +20% +40% +60% +80%+100%
20

30

40

50

60

70

(b) 100% CLC-train + x% EW-1-POS-S

Figure 5.5: System performance when training on 100% CLC-train plus incremental
additions of artificial data.

all measures reach their highest at 80% and fall slightly at 100%. The less predictable
measure is GLEU, which fluctuates constantly without a clear trend. Overall, these
results suggest that keeping a similar proportion of real and artificial errors yields
the best results, although the small final decrease for EW-1-POS-U might indicate a
slight preference for real errors.

In order to estimate what might happen if we introduced an even greater
proportion of artificial errors, we carried out a second experiment. This time, we
used a baseline system containing only 50% of CLC-train so as to test performance
with up to twice as much artificial data as real data. Results of these experiments
are shown in Figure 5.6. Both graphs show similar trends to the ones in Figure 5.5.
Since we now use only 50% of CLC-data, the middle point in each graph (x = 50%)
represents an equal proportion of real and artificial data; the area to the left shows
performance with a lower proportion of artificial data (and is thus comparable to the
previous experiment) while the area to the right shows performance with a greater
proportion of artificial data. This second area reveals that all measures drop at
60% (i.e. when using 20% more artificial than real data) and then follow the same
patterns of behaviour as in our previous experiment: P and F0.5 increase, R and F1

decrease and GLEU fluctuates slightly. In fact, we now observe that most measures
suffer from fluctuations, although they follow their previously observed trends.

In conclusion, we confirm that the incremental addition of artificial data can
improve P at the expense of R, although P seems to grow at a slightly higher rate if
we apply linear regression. This means that P and its related metrics (such as F0.5

or I) are likely to increase if we scale up our artificial data beyond the 1:2 ratio.

5.2. EXPERIMENTS AND RESULTS 105

P R F0.5 F1 GLEU

+0% +20% +40% +60% +80%+100%
20

30

40

50

60

70

(a) 50% CLC-train + x% EW-1-POS-U

+0% +20% +40% +60% +80%+100%
20

30

40

50

60

70

(b) 50% CLC-train + x% EW-1-POS-S

Figure 5.6: System performance when training on 50% CLC-train plus incremental
additions of artificial data.

5.2.6 Upper bounds

As we described in Section 2.1.2.4, an SMT decoder searches the space of possible
translations in order to find the best output. As a result of this process, the system
creates a list of hypotheses (the n-best list), which ranks them from best to worst
according to some specified features (e.g. LM scores), and finally returns the top
hypothesis as the output translation (or correction, in our case). In many cases,
however, the best corrections (from a human perspective) are not necessarily at the
top but lower down the n-best list, and are therefore lost during decoding. This
means that a system’s correction capability will be underestimated if hypotheses
that match the gold standard are not at the top of the n-best list.

To recover these hypotheses and estimate the best possible performance for a
system, we can limit the decoder’s output to the set of gold-standard corrections.
This process, known as constrained or forced decoding, attempts to find the most likely
phrase alignment between the source and target sentences, producing no output if the
target cannot be reached. In other words, we can simulate what would happen if we
always chose the expected correction from the n-best list (whenever it is available).

The proportion of sentences that are successfully corrected by this ‘perfect’ system
can give us an upper bound on performance and an insight into the usefulness of its
phrase translation table. More specifically, if a system trained on dataset A achieves
better performance via forced decoding than a system trained on dataset B, we can
assume that dataset A is potentially more useful than B, as it allows the system to
learn a wider range of corrections.

Computing a true upper bound for each evaluation metric is not as straightforward,
however, since it would require choosing the hypotheses that maximise each metric
for every sentence in the test set (rather than the ‘all or nothing’ approach of forced

106 CHAPTER 5. EXPERIMENTS ON GENERAL ERROR CORRECTION

Dataset Errors in sentence Errors in sentence
0 1 2 3+ All 0 1 2 3+ All

CLC-train 99.89 83.62 72.39 46.67 78.52 99.89 83.62 72.39 46.67 78.52
Purely artificial Hybrid

EW-0-POS-O 100.00∗ 57.90 40.22 15.87 59.20 100.00∗ 83.48 73.04∗ 44.44 78.11
EW-0-POS-U 100.00∗ 42.82 25.87 6.03 50.54 100.00∗ 83.19 73.26∗ 45.08 78.22
EW-0-POS-S 99.67 43.68 26.52 6.35 50.84 100.00∗ 83.19 73.48∗ 45.08 78.26
EW-1-POS-O 100.00∗ 51.01 33.91 9.05 54.74 100.00∗ 82.76 71.52 44.76 77.74
EW-1-POS-U 99.78 43.82 26.74 5.56 50.76 100.00∗ 83.33 72.83∗ 45.24 78.22
EW-1-POS-S 99.78 43.82 26.30 7.30 51.10 100.00∗ 82.90 73.04∗ 44.92 78.08
EW-2-POS-O 100.00∗ 41.38 20.87 3.49 48.72 100.00∗ 82.90 72.39 44.29 77.81
EW-2-POS-U 99.89 38.79 20.00 3.33 47.83 100.00∗ 83.19 72.61∗ 44.44 77.96
EW-2-POS-S 99.89 38.79 19.78 3.17 47.75 100.00∗ 83.19 72.17 44.60 77.93
SW-0-POS-O 99.78 59.77 40.87 17.62 60.13 99.78 83.33 71.96 45.24 78.00
SW-0-POS-U 99.89 43.39 26.96 6.67 50.98 100.00∗ 83.33 73.48∗ 45.08 78.30
SW-0-POS-S 100.00∗ 44.68 27.83 6.98 51.58 100.00∗ 83.33 73.48∗ 44.76 78.22
SW-1-POS-O 100.00∗ 51.15 31.30 9.68 54.48 100.00∗ 82.90 71.30 45.24 77.85
SW-1-POS-U 99.56 46.26 27.83 6.98 51.84 100.00∗ 83.48 72.61∗ 46.19 78.45
SW-1-POS-S 99.56 45.69 28.70 6.67 51.77 100.00∗ 83.48 71.96 45.87 78.26
SW-2-POS-O 100.00∗ 37.64 19.78 3.02 47.45 100.00∗ 83.19 72.17 45.24 78.08
SW-2-POS-U 99.67 35.78 19.13 2.70 46.67 100.00∗ 83.33 73.26∗ 45.40 78.34
SW-2-POS-S 99.78 36.93 18.70 2.54 46.90 100.00∗ 83.19 73.04∗ 45.08 78.19
EW-0-LEX-O 100.00∗ 59.05 44.35 18.41 60.80 100.00∗ 83.62 72.61∗ 44.60 78.11
EW-1-LEX-O 100.00∗ 46.12 29.57 6.98 52.25 100.00∗ 82.90 72.83∗ 45.40 78.15
EW-2-LEX-O 99.78 28.02 8.26 0.00 42.21 100.00∗ 83.33 72.39 45.08 78.11
SW-0-LEX-O 99.78 61.64 44.78 19.68 61.76 100.00∗ 83.33 73.26∗ 44.92 78.22
SW-1-LEX-O 99.78 47.70 27.61 5.87 51.99 100.00∗ 82.61 72.39 45.24 77.96
SW-2-LEX-O 99.56 18.68 5.00 0.00 39.17 99.89 83.62 71.96 46.03 78.30

Table 5.9: Proportion of successfully corrected sentences using forced decoding on
FCE-test. Improvements over the baseline (CLC-train) are marked in bold.

decoding). While this can be informative for a small number of systems, it would
be impractical in our case, which is why we opted for comparisons in terms of
proportions.

We performed forced decoding on FCE-test for all our systems and reported
results in Table 5.9, according to the number of errors per sentence. A baseline
system trained on CLC-train is potentially able to identify almost all the sentences
that do not need correction (99.89%) and correct erroneous sentences in diminishing
proportions as the number of errors in a sentence increases. The overall potential
correction rate, i.e. the proportion of incorrect sentences for which a gold standard
correction is in the n-best list, is 78.52%.

Systems trained on artificial data exhibit generally low performance, which
decreases dramatically as the number of errors increases. Nevertheless, some datasets
(especially those based on the original error distribution) can achieve a perfect
detection rate for correct sentences. As in the rest of experiments, hybrid systems
show better performance and can not only identify correct sentences in almost all
cases but also improve correction for sentences containing only 2 errors. Given that
the average number of errors per sentence in most of our datasets is closer to 1, we
would have expected this category to show improvements instead.

5.3. COMPARISON WITH SYSTEMS IN THE CONLL-2014 SHARED TASK 107

It is particularly surprising that systems trained on hybrid datasets are unable
to outperform the baseline, since all the phrase alignments extracted from CLC-
train should also be present. However, as noted by Foster and Kuhn (2012), forced
decoding is also subject to the usual decoding heuristics (word penalty, stack size,
etc.) because it is impossible to search the entire space exhaustively. This means
that even if an alignment is possible with a given phrase table, the decoder might not
find it, resulting in decoding failures. In fact, the authors show that it is not always
possible to ‘forced decode’ every sentence in a training corpus using a phrase table
extracted from it, and report failure rates between 20% and 50% on different corpora.

Based on these findings, we argue that the addition of more training samples can
only be beneficial to SMT-based GEC if the incorrect phrases and their corrections
occur frequently; otherwise, they will just introduce noise and hinder the decoding
process. Given the highly skewed distribution in the CLC-train corpus, this might be
one of the reasons why uniform and smoothed datasets achieve better performance.

Another likely source of confusion is the creation of artificial errors using patterns
that can actually produce correct language, especially if they are too general or use
a small context window. For example, an error generation pattern such as could →
can, which is completely devoid of context, could generate a perfectly valid sentence
that will be incorrectly flagged as erroneous. Most of these cases can probably be
avoided by filtering out such patterns prior to error generation or using a LM to
estimate the probability of artificial sentences being correct before adding them to
the corpus. Alternatively, to recover good correction hypotheses that are buried in
the n-best list during decoding, we could perform hypothesis re-ranking on the first n
entries of the list using an external model (e.g. a large LM or a classifier trained on a
variety of features), so that the best candidate has better chances of emerging to the
surface (Felice et al., 2014; Zhao et al., 2015). Our experiments using a re-ranking
model based on novel statistical features (such as SMT decoder scores and detailed
LM statistics) showed that we can increase I-measure performance on FCE-test by
up to 9.78% while boosting F0.5 (Yuan et al., 2016). The calculated upper bound for
the re-ranking task achieves over 40% I-measure performance, demonstrating that
there is considerable room for improvement.

5.3 Comparison with systems in the CoNLL-2014
shared task

As explained in Section 5.1.1, the FCE-test set used in our experiments is a publicly
available portion of the CLC which is considered to be representative of upper-
intermediate learner errors. Although FCE-test is obviously not part of CLC-train,
it is very likely that there is a significant overlap of errors between them, as both
datasets are drawn from the same corpus. Since our artificial datasets were based on

108 CHAPTER 5. EXPERIMENTS ON GENERAL ERROR CORRECTION

errors in CLC-train, we expected them to perform well on the test set; however, this
does not reveal if artificial errors can help correct real errors from a different corpus
of similar exam scripts. To test this, we evaluated our systems on the CoNLL-2014
shared task test set, which also contains learner sentences with a variety of errors
(see Section 2.3.2). As in Section 4.4.1, we evaluated our systems using the official
M2 Scorer and analysed how they would rank among the 13 participating teams.
System performance is measured in terms of F0.5, as it was the official evaluation
metric adopted in the shared task.

Results are reported in Table 5.10. There are two test sets: an ‘original’ one
containing corrections from the two official annotators and an ‘alternative’ one
including additional annotations provided by three participating teams. A baseline
system trained on CLC-train shows much lower performance on the CoNLL-2014 test
set than on FCE-test, with a drop in F0.5 of 29.25% (from 45.98 in Table 5.5 to 32.53
in Table 5.10) and 24.64% (from 45.98 in Table 5.5 to 34.65 in Table 5.10) on the
original and alternative test sets respectively. These results indicate that errors on
both test sets are considerably different, which is not surprising, since essays in the
CoNLL-2014 test set are indeed from a more specific population (advanced learners
with mostly Asian L1s).

Systems trained on purely artificial datasets also show poor performance but,
unlike the baseline, their F0.5 scores only drop by an average of 3.18% on the original
test set while they increase by an average of 8.14% on the alternative test set with
respect to performance on FCE-test (i.e. average per cent difference between scores
in Table 5.5 and Table 5.10). This suggests that artificial datasets are more robust
and stable than real learner data across different test sets (as they include errors
in a wider variety of contexts than CLC-train) and also that Wikipedia articles are
more similar to the CoNLL-2014 test set. Our conclusions about the robustness of
artificial data seem to confirm the findings by Cahill et al. (2013b).

When hybrid datasets are used, performance rises considerably on both test sets.
Improvements over the baseline range between 4.5% and 17%, and are statistically
significant in most cases. On the original test set, most systems would rank within the
top three while three of them (EW-0-POS-S, EW-1-POS-S and EW-0-POS-U) would
rank first. This provides evidence in favour of one of our key research questions: can
we improve performance by augmenting the training data instead of doing system
engineering? On the alternative test set, ranks go down in general, but this is because
F0.5 scores for the participating teams increased in higher proportions.

Results on these test sets also allow us to revisit our findings on the best settings
for probabilistic AEG. While we can confirm our conclusions about English Wikipedia,
context length and pattern type, we now observe that smoothed datasets can slightly
outperform uniform datasets in hybrid scenarios. However, they are still strong
contenders: while CLC-train+EW-1-POS-S wins on the original test set, CLC-
train+EW-1-POS-U is better on the alternative set.

5.3. COMPARISON WITH SYSTEMS IN THE CONLL-2014 SHARED TASK 109

Dataset Original test set Alternative test set
F0.5 Rank F0.5 Rank F0.5 Rank F0.5 Rank

CLC-train 32.53 5 32.53 5 34.65 6 34.65 6
Purely art. Hybrid Purely art. Hybrid

EW-0-POS-O 19.53 10 36.47∗ 3 21.49 10 38.70∗ 3
EW-0-POS-U 19.17 10 36.25∗ 3 20.96 10 38.64∗ 3
EW-0-POS-S 20.66 10 37.69∗ 1 22.46 10 40.10∗ 3
EW-1-POS-O 20.00 10 35.82∗ 3 22.12 10 38.48∗ 4
EW-1-POS-U 18.48 10 37.62∗ 1 21.18 10 40.45∗ 3
EW-1-POS-S 19.93 10 38.05∗ 1 21.90 10 40.38∗ 3
EW-2-POS-O 16.90 10 37.15∗ 2 19.95 10 39.82∗ 3
EW-2-POS-U 17.08 10 36.39∗ 3 18.79 10 38.50∗ 4
EW-2-POS-S 15.90 10 35.96∗ 3 17.97 10 38.18∗ 4
SW-0-POS-O 20.63 10 34.58∗ 4 20.63 10 36.99∗ 4
SW-0-POS-U 17.56 10 35.97∗ 3 19.65 10 38.27∗ 4
SW-0-POS-S 16.12 10 36.01∗ 3 16.12 11 38.31∗ 4
SW-1-POS-O 20.27 10 35.96∗ 3 22.73 10 38.43∗ 4
SW-1-POS-U 17.46 10 35.67∗ 3 19.71 10 37.88∗ 4
SW-1-POS-S 16.48 10 36.33∗ 3 19.00 10 38.45∗ 4
SW-2-POS-O 16.85 10 34.02∗ 4 18.64 10 36.14∗ 5
SW-2-POS-U 14.17 11 35.17∗ 3 16.14 11 37.34∗ 4
SW-2-POS-S 13.81 11 34.97∗ 4 15.58 11 37.17∗ 4
EW-0-LEX-O 23.37 9 36.73∗ 3 25.38 9 39.20∗ 3
EW-1-LEX-O 20.33 10 36.90∗ 2 22.87 10 39.68∗ 3
EW-2-LEX-O 14.99 11 34.56∗ 4 17.08 11 36.73∗ 5
SW-0-LEX-O 22.17 10 34.89∗ 4 24.36 10 37.26∗ 4
SW-1-LEX-O 17.79 10 35.56∗ 3 21.00 10 38.11∗ 4
SW-2-LEX-O 12.35 10 34.15∗ 4 15.20 11 36.16∗ 5

Table 5.10: Rankings of our systems using probabilistic artificial datasets with respect
to the 13 participating systems in the CoNLL-2014 shared task. Improvements over
the baseline (CLC-train) are marked in bold; statistically significant differences are
marked with an asterisk. Three of the systems trained on real and artificial data are
able to beat all the shared task systems.

To sum up, results on the CoNLL-2014 test set show that systems trained on
our artificial errors can generalise well and achieve state-of-the-art performance on
a different corpus of learner writing. As a result, we can also conclude that the
performance on FCE-test is not affected by overfitting.

110 CHAPTER 5. EXPERIMENTS ON GENERAL ERROR CORRECTION

Chapter 6

Conclusions

This work has focused on the creation of artificial errors to support GEC for language
learners. These errors are based on patterns observed in a reference corpus of learner
writing and injected into error-free text using different methods. These new texts can
then be used as parallel data to train SMT systems that translate from ‘incorrect’
into ‘correct’ English. As described in Chapter 2, neither SMT nor the creation
of artificial errors are new for GEC; however, their use has been limited to the
correction of only a few closed-class error types. While SMT has become a popular
framework for error correction and grown to embrace more sophisticated techniques
and error types, the adoption of artificial errors has been more limited and less
guided. Researchers have used different AEG techniques for different purposes, with
no systematic studies on their use in SMT-based GEC. The work presented in this
thesis has aimed to help fill this gap.

We also observed a similar scenario concerning the evaluation of GEC systems,
where a whole host of different measures have been used in the literature without a
clear consensus on the most appropriate for the task. We reviewed these measures
in Chapter 3 and discussed many issues with existing approaches, in particular, the
popular M2 Scorer adopted in the CoNLL shared tasks. This analysis led to the first
of our contributions: the I-measure, a new evaluation scheme that addresses many
of the problems with previous metrics (Section 3.2). Some of the advantages of our
measure include the use of tokens as a stable unit of evaluation, the ability to mix
and match corrections from different annotators which avoids underestimations of
performance, and the computation of scores for detection and correction.

The I-measure quantifies the relative improvement of a system’s proposed
corrections over the original text, giving a clearer interpretation of system performance.
Unlike other metrics, it takes TNs explicitly into account and allows for different
weights of TNs, TPs, FNs and FPs. This enables us to tune evaluation to specific
needs, for example, by being more or less severe towards missed or unnecessary
corrections. A comparison of the I-measure with other scorers revealed significant
differences when ranking systems in the CoNLL-2014 shared task and showed that

112 CHAPTER 6. CONCLUSIONS

our measure with default parameters is somewhat conservative. This brings to the
fore essential questions about evaluation for GEC for which there are no definitive
answers. For example, it is not clear if tokens or phrases are more appropriate units
of evaluation, as humans are not likely to think in terms of fixed units when judging
language. People have different perceptions of correctness so the idea of a perfect
measure is elusive. However, we believe new metrics should follow up on recent
proposals that take this variability into account, for example, by comparing system
performance with a human upper bound or using agreement to weight errors.

Likewise, there is no clear consensus on whether P should be prioritised over R
in general (and, in consequence, use F0.5 or F1), although we argue in favour of this
position in line with latest research. Another crucial issue is the limitation that gold
standard references impose on the measures, whereupon system corrections which
deviate from the references will be considered incorrect even if they are valid. In this
case, the use of reference-free measures similar to the ones for quality estimation of
MT output may provide an alternative.

In Chapter 4 we presented experiments on the reduced set of error types used
in the CoNLL-2013 shared task, involving articles and determiners, noun number,
prepositions, subject-verb agreement and verb forms. We proposed and compared
two types of methods: random and probabilistic. In both cases, errors are injected
into error-free text according to patterns observed in a reference corpus. However,
while random generation inserts errors arbitrarily, probabilistic methods follow the
original distribution observed in the reference corpus. We proposed five probabilistic
datasets based on different types of information: error type distributions, morphology,
PoS disambiguation, semantic classes and word senses. This is the first time that
this type of linguistic information has been used to generate artificial errors.

Our experiments revealed that these two methods perform differently: while
random generation increases R and decreases P, probabilistic generation does the
opposite. This is not very surprising, since generating errors at random is likely to
produce errors in new contexts and achieve more coverage, while following the same
distributions as in the reference corpus will make a system more confident in flagging
known errors. We also found that the least sophisticated information (error type
distributions and PoS disambiguation) were the most useful in general, outperforming
more elaborate linguistic information. In addition, an error type analysis revealed
that performance tends to decrease with bigger confusion sets.

Results also showed a trend that we verified in later experiments: artificial errors
alone are not able to replace real learner data but they can give the best results
if used in combination. This was the first confirmation of our hypothesis which
stated we could improve performance by tuning the training data instead of system
parameters. A comparison with systems in the CoNLL-2013 shared task confirmed
these results and demonstrated that a system trained on real and artificial errors
can outperform others that use carefully engineered architectures.

CHAPTER 6. CONCLUSIONS 113

Given these encouraging results, we extended AEG to all error types in Chapter 5,
as a means to improve general error correction. To the best of our knowledge, this is
the first time that artificial errors have been generated for all types, since all previous
approaches only worked on a limited set (typically articles and prepositions). These
new experiments were based on probabilistic approaches only, as they achieved the
best results in terms of P and other measures that we consider more important
for the aims of GEC. Additionally, we refined our generation method to produce
more accurate errors based on new statistics from the reference corpus (such as
the proportion of incorrect sentences and the number of errors per sentence) and
investigated a number of variables, including the source of base texts (English
Wikipedia vs. Simple English Wikipedia), context window size (0, 1 and 2), type of
error patterns (PoS-based vs. lexical) and generation mode (i.e. error distribution:
original, uniform and smoothed).

Experiments on FCE-test revealed that the best results are obtained when we
generate errors using English Wikipedia and a context window of size 1. However,
optimal values for the rest of variables are not clear-cut: lexical patterns and uniform
distributions can produce the best results but PoS-based patterns and smoothed
distributions are more robust and generalise better to other datasets. We also
confirmed that hybrid datasets combining artificial and real errors yield the best
performance and found that the addition of more artificial errors is increasingly
beneficial. Experiments with up to 2x artificial errors showed improvements on all
P-based measures and the observed trend suggests that this would hold for higher
factors.

A further study where we analysed the upper bounds of a baseline system trained
on real learner errors vs. systems incorporating artificial data showed that hybrid
systems can improve the detection of correct sentences and the correction of sentences
with only two errors. Finally, a comparison of our systems with submissions to the
CoNLL-2014 shared task showed that three of our hybrid systems can rank first
on the original test set while a baseline system trained on real learner data alone
can only achieve a fifth place. This reveals that hybrid systems can generalise well
and confirms that the addition of artificial errors can improve performance without
having to tune systems.

As a result, we conclude that the generation of artificial errors is a useful technique
to overcome the problem of insufficient data for GEC which allows errors to be tailored
to specific needs. Our work has shown positive results for all our research goals,
demonstrating that AEG (and probabilistic AEG in particular) can be successfully
extended to all error types and used to increase performance without the need for
system engineering.

There are of course a number of issues that lend themselves to further investigation.
Despite our efforts to provide a better evaluation scheme, the I-measure seems very
conservative so it can often contradict other measures and thus be seen as unreliable.

114 CHAPTER 6. CONCLUSIONS

As noted previously, this is likely to be the result of using predefined unoptimised
weights for each count, so we believe that optimising these weights is essential to
test the true capabilities of our measure. This effect can be minimised with the
use of alternative corrections as shown in Section 3.2.1, so we encourage the use of
multiple corrections whenever possible. At the same time, we firmly believe that
other aspects of correction should be considered in new evaluation measures, such
as the salience and importance of errors, dependencies between corrections and the
effect of system corrections on the original text. Another aspect that deserves more
attention is error detection, which we have not reported in our experiments to avoid
unfair comparisons with the rest of the metrics. Error detection can be more useful
than correction in many cases, so performance on this aspect is very informative.

We also believe that evaluating performance by error type is very useful and
would facilitate comparison between systems. While this is relatively easy to do for
a limited number of error types (as in Chapter 4), it can be cumbersome for general
error correction, since datasets often use different error typologies and can define a
large number of types. Ideally, new evaluation methods should classify corrections
according to a dataset-independent typology and report individual results by type.

As for the AEG methods themselves, we should investigate new parameters that
could allow us to increase R without harming P. For example, we could integrate
base texts from different sources to cover a wider range of vocabulary and structures,
extract and apply more general PoS-based error generation patterns and use a LM
to determine if a sentence containing artificial errors is indeed likely to be incorrect
before adding it to the corpus. Another alternative is to relax some of the constraints
in the probabilistic generation process that might have an effect on the number of
generated errors, such as the restriction on the number of errors per sentence or the
proportion of incorrect sentences in the corpus. To minimise differences between
the base texts and the test set, we could attempt to re-use the corrected learner
sentences in the reference corpus as additional base texts (as in Foster and Andersen
(2009)), so that we can generate new errors in more similar contexts. We should also
study if the frequency of error patterns in the corpus has an impact on performance,
since we only experimented with a threshold of 10 minimum occurrences. The use of
different smoothing functions could also be explored, especially since they can be
implemented with ease.

We have also shown that system performance increases as more artificial data
is used for training. However, we only verified this for hybrid datasets using up
to 2x artificial data due to practical limitations, from which we estimated that
larger datasets are likely to follow this trend and increase performance. Future work
should investigate how this verifies in reality and evaluate datasets which are order
of magnitudes larger, e.g. by 10 or 100 times.

Finally, we believe an in-depth study of particular SMT parameters is essential
to make the most of the training data. However, because our work only explored

CHAPTER 6. CONCLUSIONS 115

the effects of using artificial errors as training data and not the adaptation of SMT
to GEC per se, we have not focused on any of these parameters. For example,
we could conduct studies using different alignment models, larger LMs, additional
decoding scores, parameter tuning, etc. In fact, recent work has shown that adding
Levenshtein distance as an extra score during the decoding phrase can improve
performance (Felice et al., 2014; Junczys-Dowmunt and Grundkiewicz, 2014) and
that parameter tuning based on evaluation measures intended for GEC can also lead
to improvements (Junczys-Dowmunt and Grundkiewicz, 2014). SMT has grown to
become a state-of-the-art approach to GEC but we still have a long way to go before
we have exhausted all its potential.

116 CHAPTER 6. CONCLUSIONS

Appendices

Appendix A

CLC error taxonomy

AG Agreement error
AGA Anaphor agreement error
AGD Determiner agreement error
AGN Noun agreement error
AGQ Quantifier agreement error
AGV Verb agreement error
AS Argument structure error
C Countability error
CD Wrong determiner because of noun countability
CE Complex error
CL Collocation or tautology error
CN Countability of noun error
CQ Wrong quantifier because of noun countability
DA Derivation of anaphor error
DC Derivation of link word error
DD Derivation of determiner error
DI Incorrect determiner inflection
DJ Derivation of adjective error
DN Derivation of noun error
DQ Derivation of quantifier error
DT Derivation of preposition error
DV Derivation of verb error
DY Derivation of adverb error
FA Wrong anaphor form
FC Wrong link word form
FD Incorrect determiner form
FJ Wrong adjective form
FN Wrong noun form
FQ Wrong quantifier form
FT Wrong preposition form
FV Wrong verb form
FY Wrong adverb form
IA Incorrect anaphor inflection
ID Idiom wrong
IJ Incorrect adjective inflection
IN Incorrect noun inflection

120 APPENDIX A. CLC ERROR TAXONOMY

IQ Incorrect quantifier inflection
IV Incorrect verb inflection
IY Incorrect adverb inflection
L Inappropriate register
M Missing error
MA Missing anaphor
MC Missing link word
MD Missing determiner
MJ Missing adjective
MN Missing noun
MP Missing punctuation
MQ Missing quantifier
MT Missing preposition
MV Missing verb
MY Missing adverb
NE No error
R Replace error
RA Replace anaphor
RC Replace link word
RD Replace determiner
RJ Replace adjective
RN Replace noun
RP Replace punctuation
RQ Replace quantifier
RT Replace preposition
RV Replace verb
RY Replace adverb
S Spelling error
SA Spelling American
SX Spelling confusion
TV Incorrect tense of verb
U Unnecessary error
UA Unnecessary anaphor
UC Unnecessary link word
UD Unnecessary determiner
UJ Unnecessary adjective
UN Unnecessary noun
UP Unnecessary punctuation
UQ Unnecessary quantifier
UT Unnecessary preposition
UV Unnecessary verb
UY Unnecessary adverb
W Word order error
X Incorrect negative formation

Appendix B

NUCLE error taxonomy

ArtOrDet Article or determiner
Cit Citation
Mec Spelling, punctuation, capitalization, etc.
Nn Noun number
Npos Noun possessive
Others Other errors
Pform Pronoun form
Pref Pronoun reference
Prep Preposition
Rloc- Redundancy
Sfrag Sentence fragment
Smod Dangling modifiers
Spar Parallelism
Srun Run-on sentences, comma splices
Ssub Subordinate clause
SVA Subject-verb agreement
Trans Linking words/phrases
Um Unclear meaning
V0 Missing verb
Vform Verb form
Vm Verb modal
Vt Verb tense
Wa Acronyms
Wci Wrong collocation/idiom
Wform Word form
WOadv Incorrect adjective/adverb order
WOinc Incorrect word order
Wtone Tone (formal/informal)

122 APPENDIX B. NUCLE ERROR TAXONOMY

Appendix C

Example I-measure annotation
for the CLC

Original CLC annotation

Since the <NS type="RP"><i>internet</i><c>Internet</c></NS> was
introduced, many of us <NS type="TV"><i><NS type="RV"><i>wouldn’t
have imagined</i><c>couldn’t have imagined</c></NS></i><c>can’t
imagine</c></NS> <NS type="UD"><i>the</i></NS> <NS type="FN"><i>
<NS type="IN"><i>lifes</i><c>lives</c></NS></i><c>life</c></NS>
without <NS type="RA"><i>this</i><c>it</c></NS>.

Equivalent I-measure annotation

<sentence id="1" numann="1">
<text>

Since the internet was introduced , many of us would n’t have
imagined the lifes without this .

</text>
<error-list>

<error id="1" req="yes" type="RP">
<alt ann="0">

<c start="2" end="3">Internet</c>
</alt>

</error>
<error id="2" req="yes" type="TV+RV">

<alt ann="0">
<c start="9" end="13">ca n’t imagine</c>

</alt>
</error>
<error id="3" req="yes" type="UD">

<alt ann="0">
<c start="13" end="14"/>

</alt>
</error>

124 APPENDIX C. EXAMPLE I-MEASURE ANNOTATION FOR THE CLC

<error id="4" req="yes" type="FN+IN">
<alt ann="0">

<c start="14" end="15">life</c>
</alt>

</error>
<error id="5" req="yes" type="RA">

<alt ann="0">
<c start="16" end="17">it</c>

</alt>
</error>

</error-list>
</sentence>

Appendix D

Penn Treebank PoS tags

CC Coordinating conjunction
CD Cardinal number
DT Determiner
EX Existential there
FW Foreign word
IN Preposition or subordinating conjunction
JJ Adjective
JJR Adjective, comparative
JJS Adjective, superlative
LS List item marker
MD Modal
NN Noun, singular or mass
NNS Noun, plural
NNP Proper noun, singular
NNPS Proper noun, plural
PDT Predeterminer
POS Possessive ending
PRP Personal pronoun
PRP$ Possessive pronoun
RB Adverb
RBR Adverb, comparative
RBS Adverb, superlative
RP Particle
SYM Symbol
TO to
UH Interjection
VB Verb, base form
VBD Verb, past tense
VBG Verb, gerund or present participle
VBN Verb, past participle
VBP Verb, non-3rd person singular present
VBZ Verb, 3rd person singular present
WDT Wh-determiner
WP Wh-pronoun
WP$ Possessive wh-pronoun
WRB Wh-adverb

126 APPENDIX D. PENN TREEBANK POS TAGS

Appendix E

CLAWS2 PoS tags

! punctuation tag - exclamation mark
" punctuation tag - quotation marks
$ germanic genitive marker - (‘ or ’s)
&FO formula
&FW foreign word
(punctuation tag - left bracket
) punctuation tag - right bracket
, punctuation tag - comma
- punctuation tag - dash
----- new sentence marker
. punctuation tag - full-stop
... punctuation tag - ellipsis
: punctuation tag - colon
; punctuation tag - semi-colon
? punctuation tag - question-mark
APP$ possessive pronoun, pre-nominal (my, your, our etc.)
AT article (the, no)
AT1 singular article (a, an, every)
BCS before-conjunction (in order (that), even (if etc.))
BTO before-infinitive marker (in order, so as (to))
CC coordinating conjunction (and, or)
CCB coordinating conjunction (but)
CF semi-coordinating conjunction (so, then, yet)
CS subordinating conjunction (if, because, unless)
CSA ‘as’ as a conjunction
CSN ‘than’ as a conjunction
CST ‘that’ as a conjunction
CSW ‘whether’ as a conjunction
DA after-determiner (capable of pronominal function) (such, former, same)
DA1 singular after-determiner (little, much)
DA2 plural after-determiner (few, several, many)
DA2R comparative plural after-determiner (fewer)
DAR comparative after-determiner (more, less)
DAT superlative after-determiner (most, least)
DB before-determiner (capable of pronominal function) (all, half)
DB2 plural before-determiner (capable of pronominal function) (eg. both)

128 APPENDIX E. CLAWS2 POS TAGS

DD determiner (capable of pronominal function) (any, some)
DD1 singular determiner (this, that, another)
DD2 plural determiner (these, those)
DDQ wh-determiner (which, what)
DDQ$ wh-determiner, genitive (whose)
DDQV wh-ever determiner (whichever, whatever)
EX existential ‘there’
ICS preposition-conjunction (after, before, since, until)
IF ‘for’ as a preposition
II preposition
IO ‘of’ as a preposition
IW ‘with’; ‘without’ as preposition
JA predicative adjective (tantamount, afraid, asleep)
JB attributive adjective (main, chief, utter)
JBR attributive comparative adjective (upper, outer)
JBT attributive superlative adjective (utmost, uttermost)
JJ general adjective
JJ general comparative adjective (older, better, bigger)
JJT general superlative adjective (oldest, best, biggest)
JK adjective catenative (‘able’ in ‘be able to’; ‘willing’ in ‘be willing to’)
LE leading co-ordinator (‘both’ in ‘both...and...’; ‘either’ in ‘either... or...’)
MC cardinal number neutral for number (two, three...)
MC$ genitive cardinal number, neutral for number (10’s)
MC-MC hyphenated number 40-50, 1770-1827)
MC1 singular cardinal number (one)
MC2 plural cardinal number (tens, twenties)
MD ordinal number (first, 2nd, next, last)
MF fraction, neutral for number (quarters, two-thirds)
NC2 plural cited word (‘ifs’ in ‘two ifs and a but’)
ND1 singular noun of direction (north, southeast)
NN common noun, neutral for number (sheep, cod)
NN1 singular common noun (book, girl)
NN1$ genitive singular common noun (domini)
NN2 plural common noun (books, girls)
NNJ organization noun, neutral for number (department, council, committee)
NNJ1 singular organization noun (Assembly, commonwealth)
NNJ2 plural organization noun (governments, committees)
NNL locative noun, neutral for number (Is.)
NNL1 singular locative noun (street, Bay)
NNL2 plural locative noun (islands, roads)
NNO numeral noun, neutral for number (dozen, thousand)
NNO1 singular numeral noun (no known examples)
NNO2 plural numeral noun (hundreds, thousands)
NNS noun of style, neutral for number (no known examples)
NNS1 singular noun of style (president, rabbi)
NNS2 plural noun of style (presidents, viscounts)
NNSA1 following noun of style or title, abbreviatory (M.A.)
NNSA2 following plural noun of style or title, abbreviatory
NNSB preceding noun of style or title, abbr. (Rt. Hon.)
NNSB1 preceding sing. noun of style or title, abbr. (Prof.)
NNSB2 preceding plur. noun of style or title, abbr. (Messrs.)

APPENDIX E. CLAWS2 POS TAGS 129

NNT temporal noun, neutral for number (no known examples)
NNT1 singular temporal noun (day, week, year)
NNT2 plural temporal noun (days, weeks, years)
NNU unit of measurement, neutral for number (in., cc.)
NNU1 singular unit of measurement (inch, centimetre)
NNU2 plural unit of measurement (inches, centimetres)
NP proper noun, neutral for number (Indies, Andes)
NP1 singular proper noun (London, Jane, Frederick)
NP2 plural proper noun (Browns, Reagans, Koreas)
NPD1 singular weekday noun (Sunday)
NPD2 plural weekday noun (Sundays)
NPM1 singular month noun (October)
NPM2 plural month noun (Octobers)
PN indefinite pronoun, neutral for number ("none")
PN1 singular indefinite pronoun (one, everything, nobody)
PNQO whom
PNQS who
PNQV$ whosever
PNQVO whomever, whomsoever
PNQVS whoever, whosoever
PNX1 reflexive indefinite pronoun (oneself)
PP$ nominal possessive personal pronoun (mine, yours)
PPH1 it
PPHO1 him, her
PPHO2 them
PPHS1 he, she
PPHS2 they
PPIO1 me
PPIO2 us
PPIS1 I
PPIS2 we
PPX1 singular reflexive personal pronoun (yourself, itself)
PPX2 plural reflexive personal pronoun (yourselves, ourselves)
PPY you
RA adverb, after nominal head (else, galore)
REX adverb introducing appositional constructions (namely, viz, eg.)
RG degree adverb (very, so, too)
RGA post-nominal/adverbial/adjectival degree adverb (indeed, enough)
RGQ wh- degree adverb (how)
RGQV wh-ever degree adverb (however)
RGR comparative degree adverb (more, less)
RGT superlative degree adverb (most, least)
RL locative adverb (alongside, forward)
RP prep. adverb; particle (in, up, about)
RPK prep. adv., catenative (‘about’ in ‘be about to’)
RR general adverb
RRQ wh- general adverb (where, when, why, how)
RRQV wh-ever general adverb (wherever, whenever)
RRR comparative general adverb (better, longer)
RRT superlative general adverb (best, longest)
RT nominal adverb of time (now, tommorow)

130 APPENDIX E. CLAWS2 POS TAGS

TO infinitive marker (to)
UH interjection (oh, yes, um)
VB0 be
VBDR were
VBDZ was
VBG being
VBM am
VBN been
VBR are
VBZ is
VD0 do
VDD did
VDG doing
VDN done
VDZ does
VH0 have
VHD had (past tense)
VHG having
VHN had (past participle)
VHZ has
VM modal auxiliary (can, will, would etc.)
VMK modal catenative (ought, used)
VV0 base form of lexical verb (give, work etc.)
VVD past tense form of lexical verb (gave, worked etc.)
VVG -ing form of lexical verb (giving, working etc.)
VVN past participle form of lexical verb (given, worked etc.)
VVZ -s form of lexical verb (gives, works etc.)
VVGK -ing form in a catenative verb (‘going’ in ‘be going to’)
VVNK past part. in a catenative verb (‘bound’ in ‘be bound to’)
XX not, n’t
ZZ1 singular letter of the alphabet:‘A’, ‘a’, ‘B’, etc.
ZZ2 plural letter of the alphabet: ‘As’, b’s, etc.

Appendix F

CLC-train error type statistics

First 100 most frequent error types and their relative frequency in CLC-train.

RP 7.96% L 0.53% TV+S 0.10%
S 7.14% UY 0.52% RV+S 0.10%
MP 6.72% MY 0.46% UQ 0.09%
RT 6.39% SA 0.42% RP+RP 0.08%
MD 5.81% RC 0.41% R+S 0.08%
TV 5.34% U 0.41% RJ+S 0.08%
RV 4.87% AGA 0.35% W+S 0.08%
UP 3.27% UC 0.35% TV+AGV 0.08%
RN 3.21% UN 0.34% S+RP 0.07%
UD 2.70% CE 0.32% FN+S 0.07%
MT 2.66% IN 0.30% W+RP 0.07%
FV 2.59% ID 0.29% RV+AGV 0.07%
R 2.26% DV 0.29% RN+MP 0.07%
UT 1.81% MQ 0.29% FV+RV 0.07%
MA 1.80% RQ 0.28% RN+RP 0.06%
FN 1.70% AGD 0.28% FV+S 0.05%
AGV 1.63% CN 0.26% W+RT 0.05%
W 1.59% DA 0.25% W+TV 0.05%
MV 1.56% FD 0.22% RP+UP 0.05%
RJ 1.44% DD 0.18% W+RY 0.05%
SX 1.43% TV+RV 0.16% AG 0.05%
RY 1.29% S+MP 0.16% DT 0.05%
RD 1.26% AS 0.16% R+RP 0.05%
DJ 1.08% MJ 0.15% FN+MP 0.05%
RA 1.04% IJ 0.15% AGQ 0.04%
DN 0.99% RP+MP 0.15% AGN+S 0.04%
AGN 0.98% RN+S 0.14% TV+IV 0.04%
M 0.92% RV+TV 0.14% S+UP 0.04%
MC 0.88% RP+S 0.13% W+MT 0.04%
UV 0.77% CQ 0.12% FN+RP 0.04%
UA 0.68% X 0.12% W+UP 0.04%
MN 0.64% UJ 0.12% RJ+DJ 0.04%
DY 0.58% RV+FV 0.10%
IV 0.57% FJ 0.10%

132 APPENDIX F. CLC-TRAIN ERROR TYPE STATISTICS

Appendix G

Probabilistic AEG samples

Original text There are a lot of things that can have an effect on the environment .

0-POS-O Because there are a lot of things that can to have an effect on the
environment .

0-POS-U thee are a lot ’s of things that can be reaching an effect with regards
to the environment .

0-POS-S There are a lot of something that can have an effect or in forest on
tomorrow ’s environment .

1-POS-O There have a lot of things that can have oun effect on the environment .
1-POS-U There would be a big namber of things that can have an effect on

environment .
1-POS-S There are a lot of ours things that can have an re-cycle effect on the

environment stuffs .
2-POS-O There were a lot of things that can have an effect on of the environment .
2-POS-U There are a to of things that can have to an effect on the glabal

environment .
2-POS-S A lot of things that can have an effect on the environment .
0-LEX-O There are a lot of things that will have had an effect on the environment .
0-LEX-U There are about lot of things that can have an effect on the environment

togheter
0-LEX-S There been a lot of things that can effect in the environment
1-LEX-O There are a lot of things that can have an effect on the environmental .
1-LEX-U There we a losts of many things that can have performed an inflence

on channel the enviromental .
1-LEX-S they are olot of things that can gonne have an afect on the

surrounding .
2-LEX-O There is a lot of things that can have an effect on the environment ?
2-LEX-U That ’s a lot of things that can have an effect on the environment .
2-LEX-S Are there a lot of similar things that can have an effect on the

surrounding .

134 APPENDIX G. PROBABILISTIC AEG SAMPLES

References

Adèr, H. J., Mellenbergh, G. J. and Hand, D. J. (2008). Advising on Research
Methods: A Consultant’s Companion. Huizen, The Netherlands: Johannes Van
Kessel.

Andersen, Ø. E., Yannakoudakis, H., Barker, F. and Parish, T. (2013).
Developing and testing a self-assessment and tutoring system. In Proceedings
of the Eighth Workshop on Innovative Use of NLP for Building Educational
Applications. BEA 2013. Atlanta: Association for Computational Linguistics,
pp. 32–41.

Antoniadis, G., Granger, S., Kraif, O., Ponton, C. and Zampa, V. (2006).
NLP and CALL: integration is working. In Proceedings of the 7th Conference of
Teaching and Language Corpora (TaLC7). Paris.

Arppe, A. (2000). Developing a grammar checker for Swedish. In Proceedings of the
Twelfth Nordic Conference in Computational Linguistics (NoDaLiDa). Trondheim,
Norway, pp. 13–27.

Ashwell, T. (2000). Patterns of Teacher Response to Student Writing in a Multiple-
Draft Composition Classroom: Is Content Feedback Followed by Form Feedback
the Best Method? In Journal of Second Language Writing 9 (3), pp. 227–257.

Attali, Y. (2004). Exploring the feedback and revision features of Criterion. In
Proceedings of the Annual Meeting of the National Council on Measurement in
Education. San Diego, pp. 1–22.

Baroni, M., Bernardini, S., Ferraresi, A. and Zanchetta, E. (2009). The
WaCky wide web: a collection of very large linguistically processed web-crawled
corpora. In Language Resources and Evaluation 43 (3), pp. 209–226.

Bartram, M. and Walton, R. (1991). Correction: A Positive Approach to Language
Mistakes. Hove, England: Language Teaching Publications.

Behera, B. and Bhattacharyya, P. (2013). Automated Grammar Correction Using
Hierarchical Phrase-Based Statistical Machine Translation. In Proceedings of the
Sixth International Joint Conference on Natural Language Processing. Nagoya,
Japan: Asian Federation of Natural Language Processing, pp. 937–941.

Berend, G., Vincze, V., Zarrieß, S. and Farkas, R. (2013). LFG-based
Features for Noun Number and Article Grammatical Errors. In Proceedings
of the Seventeenth Conference on Computational Natural Language Learning:
Shared Task. Sofia, Bulgaria: Association for Computational Linguistics, pp. 62–
67.

136 REFERENCES

Berg-Kirkpatrick, T., Burkett, D. and Klein, D. (2012). An Empirical
Investigation of Statistical Significance in NLP. In Proceedings of the 2012
Joint Conference on Empirical Methods in Natural Language Processing and
Computational Natural Language Learning. Jeju Island, Korea: Association for
Computational Linguistics, pp. 995–1005.

Bergsma, S., Lin, D. and Goebel, R. (2009). Web-scale n-gram models for lexical
disambiguation. In Proceedings of the 21st International Joint Conference on
Artifical Intelligence. IJCAI’09. Pasadena: Morgan Kaufmann Publishers Inc.,
pp. 1507–1512.

Berzak, Y., Reichart, R. and Katz, B. (2015). Contrastive Analysis
with Predictive Power: Typology Driven Estimation of Grammatical Error
Distributions in ESL. In Proceedings of the Nineteenth Conference on
Computational Natural Language Learning. Beijing, China: Association for
Computational Linguistics, pp. 94–102.

Bigert, J. (2004). Probabilistic detection of context-sensitive spelling errors. In
Proceedings of the 4th International Conference on Language Resources and
Evaluation (LREC-04). Vol. 5. 1. Lisbon, Portugal: European Language Resources
Association (ELRA), pp. 1633–1636.

Bird, S., Dale, R., Dorr, B. J., Gibson, B., Joseph, M. T., Kan, M.-Y., Lee, D.,
Powley, B., Radev, D. R. and Tan, Y. F. (2008). The ACL anthology reference
corpus: A reference dataset for bibliographic research in computational linguistics.
In pp. 1755–1759.

Bird, S., Loper, E. and Klein, E. (2009). Natural Language Processing with Python.
O’Reilly Media Inc.

Bitchener, J. and Knoch, U. (2008). The value of written corrective feedback
for migrant and international students. In Language Teaching Research 12 (3),
pp. 409–431.

Bitchener, J. and Knoch, U. (2010). The Contribution of Written Corrective
Feedback to Language Development: A Ten Month Investigation. In Applied
Linguistics 31 (2), pp. 193–214.

Blatz, J., Fitzgerald, E., Foster, G., Gandrabur, S., Goutte, C., Kulesza,
A., Sanchis, A. and Ueffing, N. (2004). Confidence Estimation for Machine
Translation. In Proceedings of the 20th International Conference on Computational
Linguistics. COLING ’04. Geneva, Switzerland: Association for Computational
Linguistics.

Bojar, O., Chatterjee, R., Federmann, C., Haddow, B., Huck, M., Hokamp,
C., Koehn, P., Logacheva, V., Monz, C., Negri, M., Post, M., Scarton, C.,
Specia, L. and Turchi, M. (2015). Findings of the 2015 Workshop on Statistical
Machine Translation. In Proceedings of the Tenth Workshop on Statistical Machine
Translation. Lisbon, Portugal: Association for Computational Linguistics, pp. 1–
46.

Boroş, T., Dumitrescu, S. D., Zafiu, A., Barbu Mititelu, V. and Vaduva, I. P.
(2014). RACAI GEC – A hybrid approach to Grammatical Error Correction. In
Proceedings of the Eighteenth Conference on Computational Natural Language

REFERENCES 137

Learning: Shared Task. Baltimore, Maryland: Association for Computational
Linguistics, pp. 43–48.

Bosch, A. van den and Berck, P. (2013). Memory-based Grammatical Error
Correction. In Proceedings of the Seventeenth Conference on Computational
Natural Language Learning: Shared Task. Sofia, Bulgaria: Association for
Computational Linguistics, pp. 102–108.

Bouamor, H., Sajjad, H., Durrani, N. and Oflazer, K. (2015). QCMUQ@QALB-
2015 Shared Task: Combining Character level MT and Error-tolerant Finite-
State Recognition for Arabic Spelling Correction. In Proceedings of the Second
Workshop on Arabic Natural Language Processing. Beijing, China: Association for
Computational Linguistics, pp. 144–149.

Bougares, F. and Bouamor, H. (2015). UMMU@QALB-2015 Shared Task:
Character and Word level SMT pipeline for Automatic Error Correction of
Arabic Text. In Proceedings of the Second Workshop on Arabic Natural Language
Processing. Beijing, China: Association for Computational Linguistics, pp. 166–
172.

Brants, T. and Franz, A. (2006). Web 1T 5-gram Version 1 LDC2006T13. DVD.
Philadelphia.

Brants, T. and Franz, A. (2009). Web 1T 5-gram, 10 European Languages Version
1 LDC2009T25. Web Download. Philadelphia.

Briscoe, T., Carroll, J. and Watson, R. (2006). The second release of the RASP
system. In Proceedings of the COLING/ACL on Interactive presentation sessions.
COLING-ACL ’06. Sydney, Australia: Association for Computational Linguistics,
pp. 77–80.

Brockett, C., Dolan, W. B. and Gamon, M. (2006). Correcting ESL Errors Using
Phrasal SMT Techniques. In Proceedings of the 21st International Conference
on Computational Linguistics and 44th Annual Meeting of the Association for
Computational Linguistics. Sydney, Australia: Association for Computational
Linguistics, pp. 249–256.

Brooke, J. and Hirst, G. (2012a). Measuring Interlanguage: Native Language
Identification with L1-influence Metrics. In Proceedings of the Eighth International
Conference on Language Resources and Evaluation (LREC 2012). Istanbul,
Turkey: European Language Resources Association (ELRA), pp. 779–784.

Brooke, J. and Hirst, G. (2012b). Robust, Lexicalized Native Language
Identification. In Proceedings of COLING 2012. Mumbai, India: The COLING
2012 Organizing Committee, pp. 391–408.

Brown, H. D. (2014). Principles of Language Learning and Teaching. Always learning.
Upper Saddle River, New Jersey: Pearson Education.

Brown, P. F., Pietra, V. J. D., Pietra, S. A. D. and Mercer, R. L. (1993).
The Mathematics of Statistical Machine Translation: Parameter Estimation. In
Comput. Linguist. 19 (2), pp. 263–311.

Bryant, C. and Ng, H. T. (2015). How Far are We from Fully Automatic High
Quality Grammatical Error Correction? In Proceedings of the 53rd Annual Meeting
of the Association for Computational Linguistics and the 7th International Joint

138 REFERENCES

Conference on Natural Language Processing (Volume 1: Long Papers). Beijing,
China: Association for Computational Linguistics, pp. 697–707.

Buckland, M. and Gey, F. (1994). The relationship between Recall and Precision.
In Journal of the American Society for Information Science 45 (1), pp. 12–19.

Bustamante, F. R. and León, F. S. (1996). GramCheck: A Grammar and Style
Checker. In Proceedings of the 16th International Conference on Computational
Linguistics. Vol. 1. Copenhagen, Denmark, pp. 175–181.

Buys, J. and Merwe, B. van der (2013). A Tree Transducer Model for Grammatical
Error Correction. In Proceedings of the Seventeenth Conference on Computational
Natural Language Learning: Shared Task. Sofia, Bulgaria: Association for
Computational Linguistics, pp. 43–51.

Bykh, S. and Meurers, D. (2014). Exploring Syntactic Features for Native Language
Identification: A Variationist Perspective on Feature Encoding and Ensemble
Optimization. In Proceedings of COLING 2014, the 25th International Conference
on Computational Linguistics: Technical Papers. Dublin, Ireland: Dublin City
University and Association for Computational Linguistics, pp. 1962–1973.

Bykh, S., Vajjala, S., Krivanek, J. and Meurers, D. (2013). Combining Shallow
and Linguistically Motivated Features in Native Language Identification. In
Proceedings of the Eighth Workshop on Innovative Use of NLP for Building
Educational Applications. Atlanta, Georgia: Association for Computational
Linguistics, pp. 197–206.

Byun, J., Rim, H.-C. and Park, S.-Y. (2007). Automatic Spelling Correction Rule
Extraction and Application for Spoken-Style Korean Text. In Proceedings of
the Sixth International Conference on Advanced Language Processing and Web
Information Technology. Luoyang, China, pp. 195–199.

Cahill, A., Chodorow, M., Wolff, S. and Madnani, N. (2013a). Detecting
Missing Hyphens in Learner Text. In Proceedings of the Eighth Workshop on
Innovative Use of NLP for Building Educational Applications. Atlanta, Georgia:
Association for Computational Linguistics, pp. 300–305.

Cahill, A., Madnani, N., Tetreault, J. and Napolitano, D. (2013b). Robust
Systems for Preposition Error Correction Using Wikipedia Revisions. In
Proceedings of the 2013 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies.
Atlanta, Georgia: Association for Computational Linguistics, pp. 507–517.

Carrillo, H. and Lipman, D. (1988). The Multiple Sequence Alignment Problem
in Biology. In SIAM Journal of Applied Mathematics 48 (5), pp. 1073–1082.

Chang, T., Sung, Y., Hong, J. and Chang, J. (2014). KNGED: A tool for
grammatical error diagnosis of Chinese sentences. In Workshop Proceedings of the
22nd International Conference on Computers in Education (ICCE 2014). Nara,
Japan: Asia-Pacific Society for Computers in Education, pp. 48–55.

Chen, S. F. and Goodman, J. (1998). An Empirical Study of Smoothing Techniques
for Language Modeling. Technical report TR-10-98. Harvard University.

REFERENCES 139

Chodorow, M., Dickinson, M., Israel, R. and Tetreault, J. (2012). Problems
in Evaluating Grammatical Error Detection Systems. In Proceedings of COLING
2012. Mumbai, India: The COLING 2012 Organizing Committee, pp. 611–628.

Chodorow, M., Gamon, M. and Tetreault, J. (2010). The utility of article and
preposition error correction systems for English language learners: Feedback and
assessment. In Language Testing 27 (3), pp. 419–436.

Chodorow, M. and Leacock, C. (2000). An unsupervised method for detecting
grammatical errors. In Proceedings of the Conference of the North American
Chapter of the Association of Computational Linguistics (NAACL). Seattle:
Association for Computational Linguistics, pp. 140–147.

Choi, J. and Lee, Y. (2010). The Use of Feedback in the ESL Writing Class
Integrating Automated Essay Scoring. In Proceedings of Society for Information
Technology & Teacher Education International Conference. Ed. by D. Gibson
and B. Dodge. San Diego: Association for the Advancement of Computing in
Education, pp. 3008–3012.

Cohen, A. D. and Robbins, M. (1976). Toward assessing interlanguage performance:
The relationship between selected errors, learners’ characteristics, and learners’
expectations. In Language Learning 26 (1), pp. 45–66.

Corder, S. P. (1967). The significance of learner’s errors. In IRAL-International
Review of Applied Linguistics in Language Teaching 5 (1-4), pp. 161–170.

Council of Europe (2001). Common European Framework of Reference for
Languages: learning, teaching, assessment. Cambridge: Cambridge University
Press.

Crystal, D. (2008). Two thousand million? In English Today 24 (1), pp. 3–6.

Dahlmeier, D. and Ng, H. T. (2011). Grammatical Error Correction with
Alternating Structure Optimization. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies.
Portland, Oregon, USA: Association for Computational Linguistics, pp. 915–923.

Dahlmeier, D. and Ng, H. T. (2012a). A Beam-Search Decoder for Grammatical
Error Correction. In Proceedings of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and Computational Natural Language
Learning. Jeju Island, Korea: Association for Computational Linguistics, pp. 568–
578.

Dahlmeier, D. and Ng, H. T. (2012b). Better Evaluation for Grammatical Error
Correction. In Proceedings of the 2012 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies.
NAACL 2012. Montreal, Canada, pp. 568–572.

Dahlmeier, D., Ng, H. T. and Ng, E. J. F. (2012). NUS at the HOO 2012
Shared Task. In Proceedings of the Seventh Workshop on Building Educational
Applications Using NLP. Montréal, Canada: Association for Computational
Linguistics, pp. 216–224.

Dahlmeier, D., Ng, H. T. and Tran, T. P. (2011). NUS at the HOO 2011 Pilot
Shared Task. In Proceedings of the Generation Challenges Session at the 13th

140 REFERENCES

European Workshop on Natural Language Generation. Nancy, France: Association
for Computational Linguistics, pp. 257–259.

Dahlmeier, D., Ng, H. T. and Wu, S. M. (2013). Building a Large Annotated
Corpus of Learner English: The NUS Corpus of Learner English. In Proceedings
of the Eighth Workshop on Innovative Use of NLP for Building Educational
Applications. Atlanta, Georgia: Association for Computational Linguistics, pp. 22–
31.

Dale, R., Anisimoff, I. and Narroway, G. (2012). HOO 2012: A Report on the
Preposition and Determiner Error Correction Shared Task. In Proceedings of the
Seventh Workshop on Building Educational Applications Using NLP. Montréal,
Canada: Association for Computational Linguistics, pp. 54–62.

Dale, R. and Kilgarriff, A. (2011). Helping Our Own: The HOO 2011 Pilot
Shared Task. In Proceedings of the Generation Challenges Session at the 13th
European Workshop on Natural Language Generation. Nancy, France: Association
for Computational Linguistics, pp. 242–249.

Dale, R. and Narroway, G. (2011). The HOO Pilot Data Set: Notes on Release
2.0.

Daudaravicius, V., Banchs, R. E., Volodina, E. and Napoles, C. (2016).
A Report on the Automatic Evaluation of Scientific Writing Shared Task. In
Proceedings of the 11th Workshop on Innovative Use of NLP for Building
Educational Applications. San Diego, CA: Association for Computational
Linguistics, pp. 53–62.

De Felice, R. and Pulman, S. G. (2008). A Classifier-Based Approach to
Preposition and Determiner Error Correction in L2 English. In Proceedings
of the 22nd International Conference on Computational Linguistics (Coling 2008).
Manchester, UK: Coling 2008 Organizing Committee, pp. 169–176.

Dickinson, M. (2010). Generating Learner-Like Morphological Errors in Russian. In
Proceedings of the 23rd International Conference on Computational Linguistics
(Coling 2010). Beijing, China: Coling 2010 Organizing Committee, pp. 259–267.

Domeij, R., Knutsson, O., Carlberger, J. and Kann, V. (2000). Granska -
an efficient hybrid system for Swedish grammar checking. In Proceedings of the
12th Nordic Conference in Computational Linguistics (Nodalida-99). Trondheim,
Norway: Department of Linguistics, University of Trondheim, pp. 28–40.

Efron, B. and Tibshirani, R. (1993). An Introduction to the Bootstrap. New York:
Chapman & Hall.

Ehsan, N. and Faili, H. (2010). Towards grammar checker development for Persian
language. In 6th IEEE International Conference on Natural Language Processing
and Knowledge Engineering (NLPKE’10). Beijing, China, pp. 150–157.

Ehsan, N. and Faili, H. (2013). Grammatical and context-sensitive error correction
using a statistical machine translation framework. In Software: Practice and
Experience 43 (2), pp. 187–206.

Elghafari, A., Meurers, D. and Wunsch, H. (2010). Exploring the Data-Driven
Prediction of Prepositions in English. In Coling 2010: Posters. Beijing, China:
Coling 2010 Organizing Committee, pp. 267–275.

REFERENCES 141

Ellis, R. (2008). The Study of Second Language Acquisition. Oxford applied
linguistics. Oxford: Oxford University Press.

Ellis, R., Sheen, Y., Murakami, M. and Takashima, H. (2008). The effects of
focused and unfocused written corrective feedback in an English as a foreign
language context. In System 36 (3), pp. 353–371.

Fallman, D. (2002). The Penguin: Using the Web As a Database for Descriptive and
Dynamic Grammar and Spell Checking. In CHI ’02 Extended Abstracts on Human
Factors in Computing Systems. CHI EA ’02. Minneapolis: ACM, pp. 616–617.

Federico, M., Bertoldi, N. and Cettolo, M. (2008). IRSTLM: an open source
toolkit for handling large scale language models. In Proceedings of the 9th
Annual Conference of the International Speech Communication Association.
INTERSPEECH 2008. Brisbane, Australia: ISCA, pp. 1618–1621.

Felice, M. and Briscoe, T. (2015). Towards a standard evaluation method for
grammatical error detection and correction. In Proceedings of the 2015 Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies. Denver, Colorado: Association for Computational
Linguistics, pp. 578–587.

Felice, M. and Yuan, Z. (2014a). Generating artificial errors for grammatical
error correction. In Proceedings of the Student Research Workshop at the 14th
Conference of the European Chapter of the Association for Computational
Linguistics. Gothenburg, Sweden: Association for Computational Linguistics,
pp. 116–126.

Felice, M. and Yuan, Z. (2014b). To Err is Human, to Correct is Divine. In XRDS
21 (1), pp. 22–27.

Felice, M., Yuan, Z., Andersen, Ø. E., Yannakoudakis, H. and Kochmar, E.
(2014). Grammatical error correction using hybrid systems and type filtering. In
Proceedings of the Eighteenth Conference on Computational Natural Language
Learning: Shared Task. Baltimore, Maryland: Association for Computational
Linguistics, pp. 15–24.

Ferris, D. R. (2006). Does error feedback help student writers? New evidence
on the short- and long-term effects of written error correction. In Feedback in
second language writing: Contexts and issues. Ed. by K. Hyland and F. Hyland.
Cambridge: Cambridge University Press, pp. 81–104.

Ferris, D. R. (2011). Treatment of error in second language student writing. 2nd ed.
The Michigan series on teaching multilingual writers. Ann Arbor: University of
Michigan Press.

Ferris, D. R. and Hedgcock, J. S. (2014). Teaching L2 Composition: Purpose,
Process, and Practice. 3rd ed. New York: Routledge.

Flickinger, D. and Yu, J. (2013). Toward More Precision in Correction
of Grammatical Errors. In Proceedings of the Seventeenth Conference on
Computational Natural Language Learning: Shared Task. Sofia, Bulgaria:
Association for Computational Linguistics, pp. 68–73.

Fossati, D. and Di Eugenio, B. (2008). I saw TREE trees in the park: How to
Correct Real-Word Spelling Mistakes. In Proceedings of the Sixth International

142 REFERENCES

Conference on Language Resources and Evaluation (LREC’08). Ed. by N.
Calzolari, K. Choukri, B. Maegaard, J. Mariani, J. Odijk, S. Piperidis
and D. Tapias. Marrakech, Morocco: European Language Resources Association
(ELRA), pp. 896–901.

Foster, G. and Kuhn, R. (2012). Forced Decoding for Phrase Extraction. Technical
report.

Foster, J. and Andersen, Ø. (2009). GenERRate: Generating Errors for Use
in Grammatical Error Detection. In Proceedings of the Fourth Workshop on
Innovative Use of NLP for Building Educational Applications. Boulder, Colorado:
Association for Computational Linguistics, pp. 82–90.

Francis, W. N. and Kucera, H. (1979). The Brown Corpus: A Standard Corpus of
Present-Day Edited American English. Brown University Liguistics Department.
Providence, Rhode Island.

Gale, W. A., Church, K. W. and Yarowsky, D. (1992). One sense per discourse. In
Proceedings of the workshop on Speech and Natural Language. HLT ’91. Harriman,
New York: Association for Computational Linguistics, pp. 233–237.

Gamon, M. (2010). Using Mostly Native Data to Correct Errors in Learners’ Writing.
In Human Language Technologies: The 2010 Annual Conference of the North
American Chapter of the Association for Computational Linguistics. Los Angeles,
California: Association for Computational Linguistics, pp. 163–171.

Gamon, M. and Leacock, C. (2010). Search right and thou shalt find ... Using Web
Queries for Learner Error Detection. In Proceedings of the NAACL HLT 2010
Fifth Workshop on Innovative Use of NLP for Building Educational Applications.
Los Angeles, California: Association for Computational Linguistics, pp. 37–44.

Gamon, M., Leacock, C., Brockett, C., Dolan, W. B., Gao, J., Belenko, D.
and Klementiev, A. (2009). Using Statistical Techniques and Web Search to
Correct ESL Errors. In CALICO Journal 26 (3), pp. 491–511.

Gass, S. and Selinker, L. (1992). Language Transfer in Language Learning.
Language acquisition & language disorders. Philadelphia: John Benjamins
Publishing Company.

Gass, S. and Selinker, L. (1994). Second language acquisition: an introductory
course. Topics in applied psycholinguistics. Hillsdale, New Jersey: L. Erlbaum
Associates.

Gavrila, M. and Vertan, C. (2011). Training Data in Statistical Machine
Translation - the More, the Better? In Proceedings of the International Conference
Recent Advances in Natural Language Processing 2011. Hissar, Bulgaria: RANLP
2011 Organising Committee, pp. 551–556.

Geertzen, J., Alexopoulou, T. and Korhonen, A. (2012). Automatic Linguistic
Annotation of Large Scale L2 Databases: The EF-Cambridge Open Language
Database (EFCamDat). In Proceedings of the 31st Second Language Research
Forum (SLRF). Pittsburgh: Cascadilla Proceedings Project, pp. 240–254.

Gillard, P. and Gadsby, A. (1998). Using a learners’ corpus in compiling ELT
dictionaries. In Learner English on computer. Ed. by S. Granger. Studies in
language and linguistics. New York: Longman, pp. 159–171.

REFERENCES 143

Granger, S. (2003a). Error-tagged Learner Corpora and CALL: A Promising
Synergy. In CALICO Journal 20 (3), pp. 465–480.

Granger, S. (2003b). The International Corpus of Learner English: A New Resource
for Foreign Language Learning and Teaching and Second Language Acquisition
Research. In TESOL Quarterly 37 (3), pp. 538–546.

Grundkiewicz, R. and Junczys-Dowmunt, M. (2014). The WikEd Error Corpus:
A Corpus of Corrective Wikipedia Edits and its Application to Grammatical
Error Correction. In Advances in Natural Language Processing – Lecture Notes in
Computer Science. Ed. by A. Przepiórkowski and M. Ogrodniczuk. Vol. 8686.
Springer, pp. 478–490.

Grundkiewicz, R., Junczys-Dowmunt, M. and Gillian, E. (2015). Human
Evaluation of Grammatical Error Correction Systems. In Proceedings of the
2015 Conference on Empirical Methods in Natural Language Processing. Lisbon,
Portugal: Association for Computational Linguistics, pp. 461–470.

Gupta, A. (2014). Grammatical Error Detection Using Tagger Disagreement. In
Proceedings of the Eighteenth Conference on Computational Natural Language
Learning: Shared Task. Baltimore, Maryland: Association for Computational
Linguistics, pp. 49–52.

Gusfield, D. (1997). Algorithms on Strings, Trees and Sequences. Cambridge
University Press.

Han, N.-R., Chodorow, M. and Leacock, C. (2006). Detecting Errors in English
Article Usage by Non-native Speakers. In Journal of Natural Language Engineering
12 (2), pp. 115–129.

Hawkey, R. and Milanovic, M. (2013). Cambridge English Exams - The First
Hundred Years: A History of English Language Assessment from the University
of Cambridge, 1913-2013. Studies in Language Testing. Cambridge: Cambridge
University Press.

Heidorn, G., Jensen, K., Miller, L., Byrd, R. and Chodorow, M. (1982). The
EPISTLE text-critiquing system. In IBM Systems Journal 21 (3), pp. 305–326.

Heilman, M., Cahill, A., Madnani, N., Lopez, M., Mulholland, M. and
Tetreault, J. (2014). Predicting Grammaticality on an Ordinal Scale. In
Proceedings of the 52nd Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers). Baltimore, Maryland: Association for
Computational Linguistics, pp. 174–180.

Hermet, M. and Désilets, A. (2009). Using first and second language models to
correct preposition errors in second language authoring. In Proceedings of the
Fourth Workshop on Innovative Use of NLP for Building Educational Applications.
EdAppsNLP ’09. Boulder, Colorado: Association for Computational Linguistics,
pp. 64–72.

Hermet, M., Désilets, A. and Szpakowicz, S. (2008). Using the Web as a Linguistic
Resource to Automatically Correct Lexico-Syntactic Errors. In Proceedings of the
Sixth International Conference on Language Resources and Evaluation (LREC’08).
Ed. by N. Calzolari, K. Choukri, B. Maegaard, J. Mariani, J. Odijk, S.

144 REFERENCES

Piperidis and D. Tapias. Marrakech, Morocco: European Language Resources
Association (ELRA), pp. 874–878.

Hernandez, S. D. and Calvo, H. (2014). CoNLL 2014 Shared Task: Grammatical
Error Correction with a Syntactic N-gram Language Model from a Big Corpora.
In Proceedings of the Eighteenth Conference on Computational Natural Language
Learning: Shared Task. Baltimore, Maryland: Association for Computational
Linguistics, pp. 53–59.

Herron, D., Menzel, W., Atwell, E., Bisiani, R., Daneluzzi, F., Morton,
R., Schmidt, J. A. and Verlag, E. K. (1999). Automatic Localization And
Diagnosis Of Pronunciation Errors For Second-Language Learners Of English.
In Proceedings of the Sixth European Conference on Speech Communication and
Technology (EUROSPEECH 1999). Budapest, Hungary: ISCA, pp. 896–901.

Howson, P. (2013). The English Effect. http://www.britishcouncil.org/sites/
default/files/english-effect-report-v2.pdf [Online; accessed 22 October
2015]. British Council.

Imamura, K., Saito, K., Sadamitsu, K. and Nishikawa, H. (2012). Grammar Error
Correction Using Pseudo-Error Sentences and Domain Adaptation. In Proceedings
of the 50th Annual Meeting of the Association for Computational Linguistics
(Volume 2: Short Papers). Jeju Island, Korea: Association for Computational
Linguistics, pp. 388–392.

Islam, A. and Inkpen, D. (2011). Correcting Different Types of Errors in Texts. In
Proceedings of the 24th Canadian Conference on Advances in Artificial Intelligence.
Canadian AI’11. St. John’s, Canada: Springer-Verlag, pp. 192–203.

Izumi, E., Uchimoto, K. and Isahara, H. (2004). SST speech corpus of Japanese
learners’ English and automatic detection of learners’ errors. In International
Computer Archive of Modern and Medieval English (ICAME) (28), pp. 31–48.

Izumi, E., Uchimoto, K., Saiga, T., Supnithi, T. and Isahara, H. (2003).
Automatic Error Detection in the Japanese Learners’ English Spoken Data. In The
Companion Volume to the Proceedings of 41st Annual Meeting of the Association
for Computational Linguistics. Sapporo, Japan: Association for Computational
Linguistics, pp. 145–148.

James, C. (1998). Errors in Language Learning and Use: Exploring Error Analysis.
Applied linguistics and language study. London: Longman.

Jeblee, S., Bouamor, H., Zaghouani, W. and Oflazer, K. (2014).
CMUQ@QALB-2014: An SMT-based System for Automatic Arabic Error
Correction. In Proceedings of the EMNLP 2014 Workshop on Arabic Natural
Language Processing (ANLP). Doha, Qatar: Association for Computational
Linguistics, pp. 137–142.

Jia, Z., Wang, P. and Zhao, H. (2013). Grammatical Error Correction as Multiclass
Classification with Single Model. In Proceedings of the Seventeenth Conference
on Computational Natural Language Learning: Shared Task. Sofia, Bulgaria:
Association for Computational Linguistics, pp. 74–81.

Johannessen, J. B., Hagen, K. and Lane, P. (2002). The Performance of a
Grammar Checker with Deviant Language Input. In Proceedings of the 19th

http://www.britishcouncil.org/sites/default/files/english-effect-report-v2.pdf
http://www.britishcouncil.org/sites/default/files/english-effect-report-v2.pdf

REFERENCES 145

International Conference on Computational Linguistics - Volume 2. COLING ’02.
Taipei, Taiwan: Association for Computational Linguistics, pp. 1–8.

Junczys-Dowmunt, M. and Grundkiewicz, R. (2014). The AMU System in the
CoNLL-2014 Shared Task: Grammatical Error Correction by Data-Intensive and
Feature-Rich Statistical Machine Translation. In Proceedings of the Eighteenth
Conference on Computational Natural Language Learning: Shared Task. Baltimore,
Maryland: Association for Computational Linguistics, pp. 25–33.

Kanters, R., Cucchiarini, C. and Strik, H. (2009). The Goodness of
Pronunciation Algorithm : a Detailed Performance Study. In In Proceedings
of the ISCA Workshop on Speech and Language Technology in Education (SLaTE
2009). Warwickshire, England: ISCA, pp. 2–5.

Kao, T.-H., Chang, Y.-W., Chiu, H.-W., Yen, T.-H., Boisson, J., Wu, J.-C. and
Chang, J. S. (2013). CoNLL-2013 Shared Task: Grammatical Error Correction
NTHU System Description. In Proceedings of the Seventeenth Conference
on Computational Natural Language Learning: Shared Task. Sofia, Bulgaria:
Association for Computational Linguistics, pp. 20–25.

Kilgarriff, A. (2007). Googleology is Bad Science. In Computational Linguistics
33 (1), pp. 147–151.

Kneser, R. and Ney, H. (1995). Improved backing-off for M-gram language modeling.
In Proceedings of the IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). Vol. 1. Detroit, Michigan: IEEE Signal Processing
Society, pp. 181–184.

Kochmar, E. (2011). Identification of a Writer’s Native Language by Error Analysis.
Master’s thesis. Cambridge: University of Cambridge.

Kochmar, E. and Briscoe, T. (2013). Capturing Anomalies in the Choice of
Content Words in Compositional Distributional Semantic Space. In Proceedings
of the International Conference Recent Advances in Natural Language Processing
RANLP 2013. Hissar, Bulgaria: INCOMA Ltd., pp. 365–372.

Koehn, P. (2004). Statistical Significance Tests for Machine Translation Evaluation.
In Proceedings of EMNLP 2004. Ed. by D. Lin and D. Wu. Barcelona, Spain:
Association for Computational Linguistics, pp. 388–395.

Koehn, P. (2010). Statistical Machine Translation. 1st ed. New York: Cambridge
University Press.

Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi,
N., Cowan, B., Shen, W., Moran, C., Zens, R., Dyer, C., Bojar, O.,
Constantin, A. and Herbst, E. (2007). Moses: open source toolkit for statistical
machine translation. In Proceedings of the 45th Annual Meeting of the ACL on
Interactive Poster and Demonstration Sessions. ACL ’07. Prague, Czech Republic:
Association for Computational Linguistics, pp. 177–180.

Koehn, P., Och, F. J. and Marcu, D. (2003). Statistical Phrase-based Translation.
In Proceedings of the 2003 Conference of the North American Chapter of the
Association for Computational Linguistics on Human Language Technology -
Volume 1. NAACL ’03. Edmonton, Canada: Association for Computational
Linguistics, pp. 48–54.

146 REFERENCES

Krashen, S. (1982). Principles and practice in second language acquisition. Language
teaching methodology series. Oxford: Pergamon.

Kullback, S. and Leibler, R. A. (1951). On Information and Sufficiency. In The
Annals of Mathematical Statistics 22 (1), pp. 79–86.

Kunchukuttan, A., Chaudhury, S. and Bhattacharyya, P. (2014). Tuning
a Grammar Correction System for Increased Precision. In Proceedings of the
Eighteenth Conference on Computational Natural Language Learning: Shared
Task. Baltimore, Maryland: Association for Computational Linguistics, pp. 60–64.

Kunchukuttan, A., Shah, R. and Bhattacharyya, P. (2013). IITB System for
CoNLL 2013 Shared Task: A Hybrid Approach to Grammatical Error Correction.
In Proceedings of the Seventeenth Conference on Computational Natural Language
Learning: Shared Task. Sofia, Bulgaria: Association for Computational Linguistics,
pp. 82–87.

Lado, R. (1957). Linguistics across cultures: applied linguistics for language teachers.
Ann Arbor: University of Michigan Press.

Lavolette, E., Polio, C. and Kahng, J. (2015). The Accuracy of Computer-
Assisted Feedback and Students’ Responses to It. In Language Learning &
Technology 19 (2), pp. 50–68.

Leacock, C. and Chodorow, M. (2003). Automated grammatical error detection. In
Automated Essay Scoring: A Cross-Disciplinary Perspective. Ed. by M. Shermis
and J. Burstein. Mahwah, NJ: Lawrence Erlbaum Associates, pp. 195–207.

Leacock, C., Chodorow, M., Gamon, M. and Tetreault, J. (2014). Automated
Grammatical Error Detection for Language Learners. 2nd ed. Synthesis Lectures
on Human Language Technologies. San Rafael, California: Morgan & Claypool
Publishers.

Lee, J. (2004). Automatic Article Restoration. In HLT-NAACL 2004: Student
Research Workshop. Ed. by D. M. Susan Dumais and S. Roukos. Boston,
Massachusetts, USA: Association for Computational Linguistics, pp. 31–36.

Lee, J. and Seneff, S. (2008). Correcting Misuse of Verb Forms. In Proceedings
of ACL-08: HLT. Columbus, Ohio: Association for Computational Linguistics,
pp. 174–182.

Lee, K. and Lee, G. G. (2014). POSTECH Grammatical Error Correction System
in the CoNLL-2014 Shared Task. In Proceedings of the Eighteenth Conference on
Computational Natural Language Learning: Shared Task. Baltimore, Maryland:
Association for Computational Linguistics, pp. 65–73.

Lee, L.-H., Yu, L.-C. and Chang, L.-P. (2015). Overview of the NLP-TEA 2015
Shared Task for Chinese Grammatical Error Diagnosis. In Proceedings of the
2nd Workshop on Natural Language Processing Techniques for Educational
Applications. Beijing, China: Association for Computational Linguistics, pp. 1–6.

Lee, L.-H., Yu, L.-C., Lee, K.-C., Tseng, Y.-H., Chang, L.-P. and Chen,
H.-H. (2014). A Sentence Judgment System for Grammatical Error Detection.
In Proceedings of COLING 2014, the 25th International Conference on
Computational Linguistics: System Demonstrations. Dublin, Ireland: Dublin City
University and Association for Computational Linguistics, pp. 67–70.

REFERENCES 147

Lewis, M. P., Simons, G. F. and Fennig, C. D., eds. (2015). Ethnologue: Languages
of the World. 18th ed. Online version: http://www.ethnologue.com. Dallas,
Texas: SIL International.

Lin, C.-J. and Chen, S.-H. (2015). NTOU Chinese Grammar Checker for CGED
Shared Task. In Proceedings of the 2nd Workshop on Natural Language
Processing Techniques for Educational Applications. Beijing, China: Association
for Computational Linguistics, pp. 15–19.

Lin, J. (1991). Divergence Measures Based on the Shannon Entropy. In IEEE
Transactions on Information Theory 37 (1), pp. 145–151.

Lipnevich, A. A. and Smith, J. K. (2008). Response to assessment feedback:
The effects of differential feedback on students’ performance. Technical report.
Educational Testing Service.

Macdonald, N., Frase, L., Gingrich, P. and Keenan, S. (1982). The Writer’s
Workbench: Computer Aids for Text Analysis. In Communications, IEEE
Transactions on 30 (1), pp. 105–110.

Madnani, N., Chodorow, M., Tetreault, J. and Rozovskaya, A. (2011). They
Can Help: Using Crowdsourcing to Improve the Evaluation of Grammatical Error
Detection Systems. In Proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language Technologies. Portland, Oregon,
USA: Association for Computational Linguistics, pp. 508–513.

Madnani, N., Tetreault, J. and Chodorow, M. (2012). Exploring grammatical
error correction with not-so-crummy machine translation. In Proceedings of the
Seventh Workshop on Building Educational Applications Using NLP. Montreal,
Canada: Association for Computational Linguistics, pp. 44–53.

Mangu, L. and Brill, E. (1997). Automatic Rule Acquisition for Spelling Correction.
In Proceedings of the Fourteenth International Conference on Machine Learning.
ICML ’97. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., pp. 187–
194.

Manning, C. D. and Schütze, H. (1999). Foundations of Statistical Natural
Language Processing. Cambridge, Massachusetts: The MIT Press.

Miller, G. A. (1995). WordNet: a lexical database for English. In Communications
of the ACM 38 (11), pp. 39–41.

Minnen, G., Bond, F. and Copestake, A. (2000). Memory-based learning for
article generation. In Proceedings of the Conference on Natural Language Learning
(CoNLL). Lisbon, Portugal: Association for Computational Linguistics, pp. 43–48.

Mizumoto, T., Hayashibe, Y., Komachi, M., Nagata, M. and Matsumoto, Y.
(2012). The Effect of Learner Corpus Size in Grammatical Error Correction of
ESL Writings. In Proceedings of COLING 2012: Posters. Mumbai, India: The
COLING 2012 Organizing Committee, pp. 863–872.

Mizumoto, T., Komachi, M., Nagata, M. and Matsumoto, Y. (2011). Mining
Revision Log of Language Learning SNS for Automated Japanese Error Correction
of Second Language Learners. In Proceedings of 5th International Joint Conference
on Natural Language Processing. Chiang Mai, Thailand: Asian Federation of
Natural Language Processing, pp. 147–155.

http://www.ethnologue.com

148 REFERENCES

Mohit, B., Rozovskaya, A., Habash, N., Zaghouani, W. and Obeid, O. (2014).
The First QALB Shared Task on Automatic Text Correction for Arabic. In
Proceedings of the EMNLP 2014 Workshop on Arabic Natural Language Processing
(ANLP). Doha, Qatar: Association for Computational Linguistics, pp. 39–47.

Mostefa, D., Abualasal, J., Asbayou, O., Gzawi, M. and Abbès, R. (2015).
TECHLIMED@QALB-Shared Task 2015: a hybrid Arabic Error Correction
System. In Proceedings of the Second Workshop on Arabic Natural Language
Processing. Beijing, China: Association for Computational Linguistics, pp. 161–
165.

Mostefa, D., Asbayou, O. and Abbes, R. (2014). TECHLIMED system description
for the Shared Task on Automatic Arabic Error Correction. In Proceedings of the
EMNLP 2014 Workshop on Arabic Natural Language Processing (ANLP). Doha,
Qatar: Association for Computational Linguistics, pp. 155–159.

Mount, D. W. (2004). Bioinformatics: Sequence and Genome Analysis. 2nd ed. Cold
Spring Harbor Laboratory Press.

Naber, D. (2003). A Rule-Based Style and Grammar Checker. Bachelor’s thesis.
Bielefeld, Germany: Universität Bielefeld.

Nagata, R. and Nakatani, K. (2010). Evaluating performance of grammatical error
detection to maximize learning effect. In Coling 2010: Posters. Beijing, China:
Coling 2010 Organizing Committee, pp. 894–900.

Napoles, C., Sakaguchi, K., Post, M. and Tetreault, J. (2015). Ground
Truth for Grammatical Error Correction Metrics. In Proceedings of the 53rd
Annual Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing (Volume 2: Short
Papers). Beijing, China: Association for Computational Linguistics, pp. 588–593.

Ng, H. T., Wu, S. M., Briscoe, T., Hadiwinoto, C., Susanto, R. H. and Bryant,
C. (2014). The CoNLL-2014 Shared Task on Grammatical Error Correction. In
Proceedings of the Eighteenth Conference on Computational Natural Language
Learning: Shared Task. Baltimore, Maryland: Association for Computational
Linguistics, pp. 1–14.

Ng, H. T., Wu, S. M., Wu, Y., Hadiwinoto, C. and Tetreault, J. (2013). The
CoNLL-2013 Shared Task on Grammatical Error Correction. In Proceedings of
the Seventeenth Conference on Computational Natural Language Learning: Shared
Task. Sofia, Bulgaria: Association for Computational Linguistics, pp. 1–12.

Nicholls, D. (2003). The Cambridge Learner Corpus: Error coding and analysis for
lexicography and ELT. In Proceedings of the Corpus Linguistics 2003 conference.
Ed. by D. Archer, P. Rayson, A. Wilson and T. McEnery. Lancaster,
UK: University Centre for Computer Corpus Research on Language, Lancaster
University, pp. 572–581.

Och, F. J. and Ney, H. (2003). A systematic comparison of various statistical
alignment models. In Comput. Linguist. 29 (1), pp. 19–51.

Okanohara, D. and Tsujii, J. (2007). A discriminative language model with
pseudo-negative samples. In Proceedings of the 45th Annual Meeting of the

REFERENCES 149

Association of Computational Linguistics. Prague, Czech Republic: Association
for Computational Linguistics, pp. 73–80.

Papineni, K., Roukos, S., Ward, T. and Zhu, W.-J. (2002). BLEU: a Method
for Automatic Evaluation of Machine Translation. In Proceedings of 40th
Annual Meeting of the Association for Computational Linguistics. Philadelphia,
Pennsylvania, USA: Association for Computational Linguistics, pp. 311–318.

Park, B.-R. and Rim, H.-C. (1998). Recognizing Unknown Words and Correcting
Spelling errors as Preprocessing for Korean Information Processing System. In
Transactions of the Korea Information Processing Society 5 (10), pp. 2591–2599.

Park, Y. A. and Levy, R. (2011). Automated Whole Sentence Grammar Correction
Using a Noisy Channel Model. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Human Language Technologies.
Portland, Oregon, USA: Association for Computational Linguistics, pp. 934–944.

Parker, R., Graff, D., Kong, J., Chen, K. and Maeda, K. (2011). English
Gigaword Fifth Edition LDC2011T07. DVD. Philadelphia.

Pedersen, T. and Kolhatkar, V. (2009). WordNet::SenseRelate::AllWords: a broad
coverage word sense tagger that maximizes semantic relatedness. In Proceedings
of Human Language Technologies: The 2009 Annual Conference of the North
American Chapter of the Association for Computational Linguistics, Companion
Volume: Demonstration Session. NAACL-Demonstrations ’09. Boulder, Colorado:
Association for Computational Linguistics, pp. 17–20.

Polio, C., Fleck, C. and Leder, N. (1998). “If I only had more time:” ESL learners’
changes in linguistic accuracy on essay revisions. In Journal of Second Language
Writing 7 (1), pp. 43–68.

Pravec, N. A. (2002). Survey of learner corpora. In International Computer Archive
of Modern and Medieval English (ICAME) 26 (1), pp. 81–114.

Prodromou, L. (2008). English as a Lingua Franca: A Corpus-based Analysis.
London: Continuum.

Prokofyev, R., Mavlyutov, R., Grund, M., Demartini, G. and Cudré-
Mauroux, P. (2014). Correct Me If I’M Wrong: Fixing Grammatical Errors by
Preposition Ranking. In Proceedings of the 23rd ACM International Conference
on Conference on Information and Knowledge Management. CIKM ’14. Shanghai,
China: ACM, pp. 331–340.

Putra, D. D. and Szabo, L. (2013). UdS at CoNLL 2013 Shared Task. In Proceedings
of the Seventeenth Conference on Computational Natural Language Learning:
Shared Task. Sofia, Bulgaria: Association for Computational Linguistics, pp. 88–
95.

Quan, L., Kolomiyets, O. and Moens, M.-F. (2012). KU Leuven at HOO-2012: A
Hybrid Approach to Detection and Correction of Determiner and Preposition
Errors in Non-native English Text. In Proceedings of the Seventh Workshop on
Building Educational Applications Using NLP. Montréal, Canada: Association for
Computational Linguistics, pp. 263–271.

Richardson, S. D. and Braden-Harder, L. C. (1988). The Experience of
Developing a Large-scale Natural Language Text Processing System: CRITIQUE.

150 REFERENCES

In Proceedings of the Second Conference on Applied Natural Language Processing.
ANLC ’88. Austin, Texas: Association for Computational Linguistics, pp. 195–202.

Rozovskaya, A., Bouamor, H., Habash, N., Zaghouani, W., Obeid, O. and
Mohit, B. (2015). The Second QALB Shared Task on Automatic Text Correction
for Arabic. In Proceedings of the Second Workshop on Arabic Natural Language
Processing. Beijing, China: Association for Computational Linguistics, pp. 26–35.

Rozovskaya, A., Chang, K.-W., Sammons, M. and Roth, D. (2013). The
University of Illinois System in the CoNLL-2013 Shared Task. In Proceedings of
the Seventeenth Conference on Computational Natural Language Learning: Shared
Task. Sofia, Bulgaria: Association for Computational Linguistics, pp. 13–19.

Rozovskaya, A., Chang, K.-W., Sammons, M., Roth, D. and Habash, N. (2014a).
The Illinois-Columbia System in the CoNLL-2014 Shared Task. In Proceedings of
the Eighteenth Conference on Computational Natural Language Learning: Shared
Task. Baltimore, Maryland: Association for Computational Linguistics, pp. 34–42.

Rozovskaya, A. and Roth, D. (2010a). Annotating ESL Errors: Challenges and
Rewards. In Proceedings of the NAACL HLT 2010 Fifth Workshop on Innovative
Use of NLP for Building Educational Applications. Los Angeles, California:
Association for Computational Linguistics, pp. 28–36.

Rozovskaya, A. and Roth, D. (2010b). Generating Confusion Sets for Context-
Sensitive Error Correction. In Proceedings of the 2010 Conference on Empirical
Methods in Natural Language Processing. Cambridge, MA: Association for
Computational Linguistics, pp. 961–970.

Rozovskaya, A. and Roth, D. (2010c). Training paradigms for correcting errors
in grammar and usage. In Human Language Technologies: The 2010 Annual
Conference of the North American Chapter of the Association for Computational
Linguistics. HLT ’10. Los Angeles: Association for Computational Linguistics,
pp. 154–162.

Rozovskaya, A. and Roth, D. (2011). Algorithm Selection and Model Adaptation
for ESL Correction Tasks. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Human Language Technologies.
Portland, Oregon: Association for Computational Linguistics, pp. 924–933.

Rozovskaya, A. and Roth, D. (2013). Joint Learning and Inference for Grammatical
Error Correction. In Proceedings of the 2013 Conference on Empirical Methods
in Natural Language Processing. Seattle, Washington, USA: Association for
Computational Linguistics, pp. 791–802.

Rozovskaya, A., Roth, D. and Srikumar, V. (2014b). Correcting Grammatical
Verb Errors. In Proceedings of the 14th Conference of the European Chapter of
the Association for Computational Linguistics. Gothenburg, Sweden: Association
for Computational Linguistics, pp. 358–367.

Rozovskaya, A., Sammons, M., Gioja, J. and Roth, D. (2011). University
of Illinois System in HOO Text Correction Shared Task. In Proceedings of
the Generation Challenges Session at the 13th European Workshop on Natural
Language Generation. Nancy, France: Association for Computational Linguistics,
pp. 263–266.

REFERENCES 151

Rozovskaya, A., Sammons, M. and Roth, D. (2012). The UI System in the HOO
2012 Shared Task on Error Correction. In Proceedings of the Seventh Workshop
on Building Educational Applications Using NLP. Montréal, Canada: Association
for Computational Linguistics, pp. 272–280.

Sakaguchi, K., Arase, Y. and Komachi, M. (2013). Discriminative Approach to
Fill-in-the-Blank Quiz Generation for Language Learners. In Proceedings of the
51st Annual Meeting of the Association for Computational Linguistics (Volume
2: Short Papers). Sofia, Bulgaria: Association for Computational Linguistics,
pp. 238–242.

Sakaguchi, K., Hayashibe, Y., Kondo, S., Kanashiro, L., Mizumoto, T.,
Komachi, M. and Matsumoto, Y. (2012). NAIST at the HOO 2012 Shared Task.
In Proceedings of the Seventh Workshop on Building Educational Applications
Using NLP. Montréal, Canada: Association for Computational Linguistics, pp. 281–
288.

Sawai, Y., Komachi, M. and Matsumoto, Y. (2013). A Learner Corpus-based
Approach to Verb Suggestion for ESL. In Proceedings of the 51st Annual Meeting
of the Association for Computational Linguistics (Volume 2: Short Papers). Sofia,
Bulgaria: Association for Computational Linguistics, pp. 708–713.

Schiftner, B. (2008). Learner Corpora of English and German: What is their status
quo and where are they headed. In Vienna English Working Papers (VIEWS)
17 (2), pp. 47–78.

Seo, H., Lee, J., Kim, S., Lee, K., Kang, S. and Lee, G. G. (2012). A Meta
Learning Approach to Grammatical Error Correction. In Proceedings of the 50th
Annual Meeting of the Association for Computational Linguistics (Volume 2:
Short Papers). Jeju Island, Korea: Association for Computational Linguistics,
pp. 328–332.

Shannon, C. E. (1948). A Mathematical Theory of Communication. In The Bell
System Technical Journal 27 (3), pp. 379–423.

Sheen, Y. (2007). The Effect of Focused Written Corrective Feedback and Language
Aptitude on ESL Learners’ Acquisition of Articles. In TESOL Quarterly 41 (2),
pp. 255–283.

Shermis, M. D., Garvan, C. W. and Diao, Y. (2008). The Impact of Automated
Essay Scoring on Writing Outcomes. In Proceedings of the Annual Meeting of the
National Council on Measurement in Education. New York, pp. 1–45.

Sidorov, G., Gupta, A., Tozer, M., Català, D., Catena, A. and Fuentes, S.
(2013). Rule-based System for Automatic Grammar Correction Using Syntactic
N-grams for English Language Learning (L2). In Proceedings of the Seventeenth
Conference on Computational Natural Language Learning: Shared Task. Sofia,
Bulgaria: Association for Computational Linguistics, pp. 96–101.

Sjöbergh, J. and Knutsson, O. (2005). Faking Errors to avoid Making Errors:
Machine Learning for Error Detection in Writing. In Proceedings of the
International Conference on Recent Advances in Natural Language Processing
(RANLP). Borovets, Bulgaria, pp. 506–512.

152 REFERENCES

Smucker, M. D., Allan, J. and Carterette, B. (2007). A Comparison of
Statistical Significance Tests for Information Retrieval Evaluation. In Proceedings
of the Sixteenth ACM Conference on Conference on Information and Knowledge
Management. CIKM ’07. Lisbon, Portugal: ACM, pp. 623–632.

Specia, L., Turchi, M., Cancedda, N., Dymetman, M. and Cristianini, N.
(2009). Estimating the Sentence-Level Quality of Machine Translation Systems.
In 13th Annual Conference of the European Association for Machine Translation.
EAMT. Barcelona, Spain, pp. 28–37.

Sun, C., Jin, X., Lin, L., Zhao, Y. and Wang, X. (2015). Convolutional Neural
Networks for Correcting English Article Errors. In Natural Language Processing
and Chinese Computing. Ed. by J. Li, H. Ji, D. Zhao and Y. Feng. Vol. 9362.
Lecture Notes in Computer Science. Springer International Publishing, pp. 102–
110.

Suresh, B. (2010). Inclusion of large input corpora in Statistical Machine Translation.
Technical report. Stanford University.

Swan, M. and Smith, B. (2001). Learner English: A Teacher’s Guide to Interference
and Other Problems. Cambridge Handbooks for Language Teachers. Cambridge:
Cambridge University Press.

Tetreault, J., Blanchard, D. and Cahill, A. (2013). A Report on the First Native
Language Identification Shared Task. In Proceedings of the Eighth Workshop on
Innovative Use of NLP for Building Educational Applications. Atlanta, Georgia:
Association for Computational Linguistics, pp. 48–57.

Tetreault, J. and Chodorow, M. (2009). Examining the use of region web counts
for ESL error detection. In Proceedings of the Web as Corpus Workshop (WAC-5).
San Sebastian, Spain: Elhuyar Fundazioa.

Tetreault, J., Foster, J. and Chodorow, M. (2010). Using Parse Features for
Preposition Selection and Error Detection. In Proceedings of the ACL 2010
Conference Short Papers. Uppsala, Sweden: Association for Computational
Linguistics, pp. 353–358.

Tomeh, N., Habash, N., Eskander, R. and Le Roux, J. (2014). A Pipeline
Approach to Supervised Error Correction for the QALB-2014 Shared Task. In
Proceedings of the EMNLP 2014 Workshop on Arabic Natural Language Processing
(ANLP). Doha, Qatar: Association for Computational Linguistics, pp. 114–120.

Tono, Y. (2003). Learner corpora: design, development and applications. In
Proceedings of the 2003 Corpus Linguistics Conference. Lancaster, UK: UCREL,
Lancaster University, pp. 800–809.

Truscott, J. (1996). The Case Against Grammar Correction in L2 Writing Classes.
In Language Learning 46 (2), pp. 327–369.

Truscott, J. and Hsu, A. Y.-P. (2008). Error correction, revision, and learning. In
Journal of Second Language Writing 17 (4), pp. 292–305.

van Beuningen, C. G., De Jong, N. H. and Kuiken, F. (2012). Evidence on the
Effectiveness of Comprehensive Error Correction in Second Language Writing. In
Language Learning 62 (1), pp. 1–41.

REFERENCES 153

Vogel, S., Ney, H. and Tillmann, C. (1996). HMM-based Word Alignment in
Statistical Translation. In Proceedings of the 16th Conference on Computational
Linguistics - Volume 2. COLING ’96. Copenhagen, Denmark: Association for
Computational Linguistics, pp. 836–841.

Wagner, J. (2012). Detecting Grammatical Errors with Treebank-Induced,
Probabilistic Parsers. PhD thesis. Dublin, Ireland: Dublin City University.

Wagner, J., Foster, J. and Genabith, J. van (2007). A Comparative
Evaluation of Deep and Shallow Approaches to the Automatic Detection of
Common Grammatical Errors. In Proceedings of the 2007 Joint Conference on
Empirical Methods in Natural Language Processing and Computational Natural
Language Learning (EMNLP-CoNLL). Prague, Czech Republic: Association for
Computational Linguistics, pp. 112–121.

Wagner, J., Foster, J. and Genabith, J. van (2009). Judging Grammaticality:
Experiments in Sentence Classification. In CALICO Journal 26 (3), pp. 474–490.

Wang, P., Jia, Z. and Zhao, H. (2014a). Grammatical Error Detection and
Correction using a Single Maximum Entropy Model. In Proceedings of the
Eighteenth Conference on Computational Natural Language Learning: Shared
Task. Baltimore, Maryland: Association for Computational Linguistics, pp. 74–82.

Wang, Y., Wang, L., Zeng, X., Wong, D. F., Chao, L. S. and Lu, Y. (2014b).
Factored Statistical Machine Translation for Grammatical Error Correction. In
Proceedings of the Eighteenth Conference on Computational Natural Language
Learning: Shared Task. Baltimore, Maryland: Association for Computational
Linguistics, pp. 83–90.

West, R., Park, Y. A. and Levy, R. (2011). Bilingual Random Walk Models for
Automated Grammar Correction of ESL Author-Produced Text. In Proceedings
of the Sixth Workshop on Innovative Use of NLP for Building Educational
Applications. Portland, Oregon: Association for Computational Linguistics,
pp. 170–179.

Wikipedia (2015). Wikipedia:Simple English Wikipedia. https://en.wikipedia.
org / wiki / Wikipedia : Simple _ English _ Wikipedia [Online; accessed 10
December 2015].

Wilcox-O’Hearn, A., Hirst, G. and Budanitsky, A. (2008). Real-Word Spelling
Correction with Trigrams: A Reconsideration of the Mays, Damerau, and Mercer
Model. In Computational Linguistics and Intelligent Text Processing. Ed. by
A. Gelbukh. Vol. 4919. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, pp. 605–616.

Wilcox-O’Hearn, L. A. (2013). A Noisy Channel Model Framework for
Grammatical Correction. In Proceedings of the Seventeenth Conference on
Computational Natural Language Learning: Shared Task. Sofia, Bulgaria:
Association for Computational Linguistics, pp. 109–114.

Wilcox-O’Hearn, L. A. (2014). Detection is the central problem in real-word
spelling correction. In arXiv: 1408.3153 (cs.CL).

Wu, J.-C., Chang, Y.-C., Mitamura, T. and Chang, J. S. (2010). Automatic
Collocation Suggestion in Academic Writing. In Proceedings of the ACL 2010

https://en.wikipedia.org/wiki/Wikipedia:Simple_English_Wikipedia
https://en.wikipedia.org/wiki/Wikipedia:Simple_English_Wikipedia
1408.3153

154 REFERENCES

Conference Short Papers. Uppsala, Sweden: Association for Computational
Linguistics, pp. 115–119.

Wu, J.-C., Yen, T.-H., Chang, J., Huang, G.-C., Chang, J., Hsu, H.-L., Chang,
Y.-W. and Chang, J. S. (2014). NTHU at the CoNLL-2014 Shared Task. In
Proceedings of the Eighteenth Conference on Computational Natural Language
Learning: Shared Task. Baltimore, Maryland: Association for Computational
Linguistics, pp. 91–95.

Wu, Y. and Ng, H. T. (2013). Grammatical Error Correction Using Integer Linear
Programming. In Proceedings of the 51st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). Sofia, Bulgaria: Association
for Computational Linguistics, pp. 1456–1465.

Xiang, Y., Yuan, B., Zhang, Y., Wang, X., Zheng, W. and Wei, C. (2013).
A Hybrid Model For Grammatical Error Correction. In Proceedings of the
Seventeenth Conference on Computational Natural Language Learning: Shared
Task. Sofia, Bulgaria: Association for Computational Linguistics, pp. 115–122.

Xie, W., Huang, P., Zhang, X., Hong, K., Huang, Q., Chen, B. and Huang, L.
(2015). Chinese Spelling Check System Based on N-gram Model. In Proceedings of
the Eighth SIGHAN Workshop on Chinese Language Processing. Beijing, China:
Association for Computational Linguistics, pp. 128–136.

Xie, Z., Avati, A., Arivazhagan, N., Jurafsky, D. and Ng, A. Y. (2016). Neural
Language Correction with Character-Based Attention. In arXiv: 1603.09727
(cs.CL).

Yannakoudakis, H., Briscoe, T. and Medlock, B. (2011). A New Dataset
and Method for Automatically Grading ESOL Texts. In Proceedings of the
49th Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies. Portland, Oregon, USA: Association for Computational
Linguistics, pp. 180–189.

Yi, B.-J., Lee, H.-C. and Rim, H.-C. (2013). KUNLP Grammatical Error Correction
System For CoNLL-2013 Shared Task. In Proceedings of the Seventeenth
Conference on Computational Natural Language Learning: Shared Task. Sofia,
Bulgaria: Association for Computational Linguistics, pp. 123–127.

Yi, X., Gao, J. and Dolan, W. B. (2008). A web-based English proofing system for
English as a second language users. In Proceedings of the Third International Joint
Conference on Natural Language Processing: Volume-II. IJCNLP. Hyderabad,
India: Asian Federation of Natural Language Processing, pp. 619–624.

Yoshimoto, I., Kose, T., Mitsuzawa, K., Sakaguchi, K., Mizumoto, T.,
Hayashibe, Y., Komachi, M. and Matsumoto, Y. (2013). NAIST at 2013
CoNLL Grammatical Error Correction Shared Task. In Proceedings of the
Seventeenth Conference on Computational Natural Language Learning: Shared
Task. Sofia, Bulgaria: Association for Computational Linguistics, pp. 26–33.

Yu, L.-C., Lee, L.-H. and Chang, L.-P. (2014). Overview of Grammatical Error
Diagnosis for Learning Chinese as a Foreign Language. In Workshop Proceedings
of the 22nd International Conference on Computers in Education (ICCE 2014).
Nara, Japan: Asia-Pacific Society for Computers in Education, pp. 42–47.

1603.09727

REFERENCES 155

Yuan, Z., Briscoe, T. and Felice, M. (2016). Candidate re-ranking for SMT-based
grammatical error correction. In Proceedings of the 11th Workshop on Innovative
Use of NLP for Building Educational Applications. San Diego, CA: Association
for Computational Linguistics, pp. 256–266.

Yuan, Z. and Felice, M. (2013). Constrained Grammatical Error Correction using
Statistical Machine Translation. In Proceedings of the Seventeenth Conference
on Computational Natural Language Learning: Shared Task. Sofia, Bulgaria:
Association for Computational Linguistics, pp. 52–61.

Zhang, L. and Wang, H. (2014). A Unified Framework for Grammar Error Correction.
In Proceedings of the Eighteenth Conference on Computational Natural Language
Learning: Shared Task. Baltimore, Maryland: Association for Computational
Linguistics, pp. 96–102.

Zhao, T., Hoshino, A., Suzuki, M., Minematsu, N. and Hirose, K. (2012).
Automatic Chinese pronunciation error detection using SVM trained with
structural features. In Spoken Language Technology Workshop (SLT 2012). Miami,
Florida, USA: IEEE, pp. 473–478.

Zhao, Y., Komachi, M. and Ishikawa, H. (2014). Extracting a Chinese Learner
Corpus from the Web: Grammatical Error Correction for Learning Chinese as a
Foreign Language with Statistical Machine Translation. In Workshop Proceedings
of the 22nd International Conference on Computers in Education (ICCE 2014).
Nara, Japan: Asia-Pacific Society for Computers in Education, pp. 56–61.

Zhao, Y., Komachi, M. and Ishikawa, H. (2015). Improving Chinese Grammatical
Error Correction with Corpus Augmentation and Hierarchical Phrase-based
Statistical Machine Translation. In Proceedings of the 2nd Workshop on Natural
Language Processing Techniques for Educational Applications. Beijing, China:
Association for Computational Linguistics, pp. 111–116.

	895.pdf
	Summary
	Acknowledgements
	Contents
	List of Abbreviations
	1 Introduction
	1.1 English in the modern world
	1.2 Second Language Acquisition
	1.3 Grammatical errors
	1.4 Automatic error detection and correction
	1.4.1 Challenges

	1.5 Research goals
	1.6 Thesis structure

	2 Background
	2.1 Grammatical error correction systems
	2.1.1 Early approaches
	2.1.2 Data-driven approaches
	2.1.2.1 Corpus-derived rules
	2.1.2.2 Language models and n-gram counts
	2.1.2.3 Classifiers
	2.1.2.4 Machine translation
	2.1.2.5 Other approaches

	2.2 Data
	2.2.1 Native data
	2.2.2 Learner data
	2.2.2.1 Cambridge Learner Corpus
	2.2.2.2 NUCLE

	2.2.3 Artificial data
	2.2.3.1 Deterministic approaches
	2.2.3.2 Probabilistic approaches

	2.3 Shared tasks
	2.3.1 Helping Our Own 2011 & 2012
	2.3.2 CoNLL 2013 & 2014
	2.3.3 Other shared tasks

	3 Evaluation methods
	3.1 Previous work
	3.1.1 Traditional evaluation metrics
	3.1.2 Evaluation in HOO 2011 & 2012
	3.1.3 Evaluation in CoNLL 2013 & 2014: M2 Scorer

	3.2 Towards a new evaluation method: I-measure
	3.2.1 Annotation
	3.2.2 Alignment
	3.2.3 Metrics
	3.2.3.1 Weighted accuracy
	3.2.3.2 Metric behaviour
	3.2.3.3 Measuring improvement

	3.2.4 Experiments and results

	3.3 New directions: crowdsourced evaluation
	3.4 Statistical significance
	3.5 Analysis and discussion

	4 Experiments on constrained error correction
	4.1 Rationale
	4.2 Random generation
	4.2.1 Error type analysis

	4.3 Probabilistic generation
	4.3.1 Experimental set-up
	4.3.2 Error type analysis

	4.4 Analysis and discussion
	4.4.1 Comparison with systems in the CoNLL-2013 shared task

	5 Experiments on general error correction
	5.1 Experimental set-up
	5.1.1 Data
	5.1.2 Error patterns
	5.1.3 Generation method
	5.1.4 Generated datasets

	5.2 Experiments and results
	5.2.1 Base texts
	5.2.2 Context window
	5.2.3 Lexical vs. PoS patterns
	5.2.4 Generation mode
	5.2.5 Dataset size
	5.2.6 Upper bounds

	5.3 Comparison with systems in the CoNLL-2014 shared task

	6 Conclusions
	Appendices
	A CLC error taxonomy
	B NUCLE error taxonomy
	C Example I-measure annotation for the CLC
	D Penn Treebank PoS tags
	E CLAWS2 PoS tags
	F CLC-train error type statistics
	G Probabilistic AEG samples
	References

