
Technical Report
Number 894

Computer Laboratory

UCAM-CL-TR-894
ISSN 1476-2986

Issues in preprocessing current datasets
for grammatical error correction

Christopher Bryant, Mariano Felice

September 2016

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2016 Christopher Bryant, Mariano Felice

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Issues in Preprocessing Current Datasets for
Grammatical Error Correction

Christopher Bryant Mariano Felice

Abstract

In this report, we describe some of the issues encountered when preprocessing two
of the largest datasets for Grammatical Error Correction (GEC); namely the public
FCE corpus and NUCLE (along with associated CoNLL test sets). In particular, we
show that it is not straightforward to convert character level annotations to token level
annotations and that sentence segmentation is more complex when annotations change
sentence boundaries. These become even more complicated when multiple annotators
are involved. We subsequently describe how we handle such cases and consider the
pros and cons of different methods.

1 Introduction

Grammatical Error Correction (GEC) is the task of automatically correcting grammatical
errors in English as a Second Language (ESL) learner texts. As with many other tasks
in Natural Language Processing (NLP), this is achieved by means of large corpora of
ESL learner texts. Unfortunately however, there are not only very few sizeable corpora
available for this purpose, but there are also additional challenges involved in processing
them.

In this report, we describe some of these challenges in the context of two of the largest
datasets for GEC; namely the public First Certificate in English (FCE) corpus (Yan-
nakoudakis et al., 2011) and the National University of Singapore Corpus of Learner
English (NUCLE) (Dahlmeier et al., 2013) along with associated Conference on Natural
Language Learning (CoNLL) test sets (Ng et al., 2013; Ng et al., 2014).

In particular, one issue concerns how to convert character level edit spans to token
level edit spans. While human annotations are often made at the character level, GEC
systems are often trained and tested at the token level; as such, there are problems if
character edit spans do not map exactly to token spans. To give an example, suppose an
annotator wanted to capitalise the first letter of the string the. To do this, they might have
proposed the edit [t → T]. This character level edit does not correspond to a complete
token however, and so additional processing must be done in order to retrieve the intended
token level edit: [the → The].

A related issue concerns sentence boundaries. In particular, there is no guarantee that a
sentence boundary in an original sentence corresponds to an equivalent sentence boundary
in a corrected sentence. Consider the text: “In the morning. He slept.”. The most likely
correction to this string would be to change the first full stop to a comma and then lower
case the first letter of He; i.e. [. He → , he]. This means, however, that while the original
text appears to consist of 2 sentences, the corrected text only contains 1. This poses a

3

problem for sentence-based GEC systems which make the assumption that each input
original sentence is a complete sentence.

In the rest of this report, we shall describe several important qualities of the data and
also make recommendations on how to deal with any issues.

2 Data

2.1 FCE

The public portion of the FCE corpus is available online.1 The data is not explicitly
organised into training and test data, so we must first merge various folders to recreate
it. Specifically, all the folders in the dataset directory containing the string 2000 should
be merged as training data (1141 scripts in total from the year 2000), while the folder
named 0100 2001 6 should be used as test data (97 scripts from the year 2001). These
figures correspond to the descriptions of the data in Yannakoudakis et al. (2011) and the
readme file bundled with the data.

Each file in the training and testing data contains two essays written by the same
author on various topics. This data comes in an XML format that includes a lot of extra
metadata, such as the age and nationality of the author. For the purposes of this report,
we are only interested in the essay text between <coded answer> tags, which can be
further subdivided into paragraphs based on the <p> tags.

One feature of the FCE XML structure is that the edit tags are built directly into the
essay text, as shown in Figure 1.

<p>

This

<NS type="AGV">

<i>are</i>

<c>is</c>

</NS>

a sample annotated FCE paragraph.

</p>

Figure 1: Example FCE XML Paragraph Structure

Here, <NS> denotes the start of an edit, <i> denotes the original string to be changed
and <c> denotes the correction string. In this example, the error type has been labelled
"AGV", which is a verb agreement error. See Nicholls (2003) for a more complete list of
error categories used in CLC data.

In all, there are 4 basic underlying types of XML edit within any given <NS> tag:

(a) No <i> or <c> : <NS>text</NS>

(b) Only <i> : <NS><i>text</i></NS>

(c) Only <c> : <NS><c>text</c></NS>

(d) Both <i> and <c> : <NS><i>text</i><c>text</c></NS>

Specifically, (a) denotes a mistake that an annotator identified but was unable to correct,
(b) denotes an unnecessary word in the original text, (c) denotes a missing word from

1http://ilexir.co.uk/media/fce-released-dataset.zip

4

<p>

I will wait at the

<NS type="RN">

<i>

<NS type="S">

<i>entery </i>

<c>entry</c>

</NS>

</i>

<c>entrance </c>

</NS>

.

</p>

Figure 2: Example of a Nested Edit in the public FCE data

FCE None <i> <c> <i><c> <NS> <i><NS> <c><NS> <i><c><NS> Total
test 212 458 907 2931 51 4 0 216 4779
train 1445 4714 8985 30728 265 41 0 1893 48071

Table 1: Table showing the counts for the number of edits in the public FCE data sorted by XML

structure. For example, there are 2931 edits in the test data containing both an <i> and <c> tag (i.e.

substitution errors) while there are 216 cases where a similar substitution edit also contains a nested

error. Here, <NS> denotes a nested error somewhere within the outermost error span.

the original text and (d) denotes a replacement of one word for another in the original
text. Additionally, the CLC also allows nested edits (i.e. edits within edits), which means
that there may be another <NS> tag nested within any of the above four types. Note that
the nested edit will always occur inside an <i> or <c> tag if there is one present. An
example of a nested edit is shown in Figure 2, where the string entery is first identified as
a spelling error and corrected to entry and second identified as a replacement noun error
and changed into entrance.

This nesting, while fairly rare, makes processing this data much more complicated, as
there is no limit to the amount of nesting that can occur; there may be multiple nested
edits of various depths inside another edit. See Table 1 for the counts of all the edits in
the FCE data in terms of their XML structure. This table only counts the outermost
<NS> tags so nested edits are not counted twice (or more). In total, roughly 5% of all
errors in the FCE contain nested errors. While there are no instances of nested edits
appearing inside a lone <c> tag anywhere in the public FCE (column <c><NS>), nested
edits do rarely appear inside the <c> tag of substitution edits (column <i><c><NS>) and
so it is not impossible that this may occur in other data. That said, it seems strange that
annotators found errors within their own corrections, and so it is highly likely that any
nested edit within a <c> tag is the result of annotator error.

2.2 NUCLE/CoNLL

Although NUCLE is free, it can only be obtained after submitting a signed license form
to its authors (Dahlmeier et al., 2013).2 The CoNLL-2013 and CoNLL-2014 test data,

2http://www.comp.nus.edu.sg/ nlp/conll14st.html

5

<P>

This are a sentence.

</P>

<MISTAKE start_par="0" start_off="5" end_par="0" end_off="8">

<TYPE>SVA</TYPE>

<CORRECTION >is</CORRECTION >

</MISTAKE >

Figure 3: Example CoNLL SGML Paragraph Structure

on the other hand, is freely available without a license.3,4 All this data is available in 2
different formats: SGML and M2. The M2 format is a preprocessed version of the SGML
data that has been cleaned up and tokenized. Since there is no cleaned up version of the
FCE data, and in the interest of fairness, we only work with the SGML data.

Like the FCE data, there are a few additional metadata tags in the SGML files, but, for
the purposes of this report, we are only interested in the essay text between <TEXT> tags.
These essays can similarly be separated into paragraphs based on the <P> tags, with the
added complication that some essays also contain <TITLE> tags which we also treat as a
paragraph. Unlike the FCE data, however, edits are separate from the text body and are
represented as a list between <ANNOTATION> tags, where each individual edit is enclosed
by a <MISTAKE> tag. As such, Figure 1 would look something like Figure 3 in CoNLL
SGML format.

Note that as the edits are separate from the text, the exact location of the edit is
instead marked by explicit paragraph and character start and end offset positions. See
Ng et al. (2014), Table 1, for the complete list of error categories used in the NUCLE
framework. The original list of error categories was defined in Dahlmeier et al. (2013),
but a few changes were made for the CoNLL shared tasks.

The same 4 basic edit operations available in the FCE data are also present in the
CoNLL datasets (nested edits are not allowed) with the following differences:

1. When an annotator identifies but is unable to correct an error, the selected error
span is labelled with the category Um (Unclear Meaning) and the <CORRECTION> label
is (usually) left blank.

2. When an annotator wants to insert a missing word into the original text, they must
select an adjacent word and repeat that word in the correction along with the missing
word.

Regarding the latter, given the sentence I want go home into which an annotator wants
to insert to, the annotator could either select want with the correction want to or go
with the correction to go. This was done due to the limitations of the CoNLL annotation
platform which required an edit to consist of at least 1 non-whitespace character. One
consequence of this is that missing word errors look similar to substitution errors, at least
at the character level, and so Table 2 just reports the total number of edits in each CoNLL
dataset.

3http://www.comp.nus.edu.sg/ nlp/conll13st/release2.3.1.tar.gz
4http://www.comp.nus.edu.sg/ nlp/conll14st/conll14st-test-data.tar.gz

6

CoNLL Total
Test 2013 3424
Test 2014 (0) 2397
Test 2014 (1) 3331
NUCLE 44912

Table 2: Counts for the total number of edits in several CoNLL SGML files.

Test data for 2014 features twice in this table because this was the first year that the
data was annotated by 2 annotators. Note also that these figures represent the maximum
number of annotations made by the annotator, including those that were subsequently
pruned in the cleaner M2 version of the data. This is why the total edit counts reported
in the literature may differ slightly between SGML and M2 files.

3 Preprocessing

The main aim of preprocessing is to extract the original and corrected versions of each
paragraph in the input data along with the edits that transform the former into the
latter. In the case of the FCE, we have to regenerate both the original and the corrected
paragraphs, owing to the in-line edit format, but in the case of CoNLL, we already have
the original text so only need to apply the character edits to produce the corrected text.
Unsurprisingly, each dataset thus undergoes slightly different preprocessing.

3.1 Preprocessing - FCE

When regenerating the FCE essays, any edited text enclosed by <i> tags is used only
in the original paragraph while any edited text enclosed by <c> tags is used only in the
equivalent corrected paragraph. Any text that appears inside an edit but is outside an
<i> or <c> tag is used in both sides, as this often indicates uncorrected erroneous text.
Regarding nested edits, we only keep the outermost correction string for the corrected
paragraph and ignore the other intermediate corrections. For example, from Figure 2,
we would bypass the spelling error [entery → entry] and only keep the edit [entery →
entrance].

One disadvantage of the FCE in-line edit format is that it is almost impossible to faith-
fully recreate the original text as it was intended using standard orthography. Consider
the following sentence: I want <NS><c>to</c></NS> go.

This contains a missing word error, to, which an annotator subsequently corrected.
Missing or unnecessary words, however, also affect whitespace, which is rarely considered
part of an edit. As a result, omitting the to in order to recreate the original sentence
results in: I want go, where there is double whitespace between want and go. Such a
phenomenon can be more clearly seen when the missing or unnecessary word precedes, for
example, a comma or other punctuation mark, as one side of the text will then contain
that punctuation mark surrounded by whitespace; e.g. [a b, c → a , c].

Whilst this is a problem if we want to faithfully reproduce the properly formatted
original or corrected text, it is less of a problem for the present work where we ultimately
want tokenized text. As such, where there is unnecessary whitespace, we can simply
replace all sequences of 2 or more adjacent whitespace characters with a single whitespace
character, and where there is a floating punctuation mark, we need not do anything as
this effectively constitutes some early tokenization.

7

It is worth noting, however, that this whitespace problem would become more of an
issue if the text were annotated by multiple annotators, but that the current XML data
format does not support this.

3.2 Preprocessing - CoNLL

Before applying the character edits to the original text in the CoNLL data, we first modify
or prune those that meet certain undesirable criteria.

For example, we modify edits tagged Um (Unclear Meaning), which represent uncor-
rected errors, such that the correction string is the same as the original string. This is
done because often the correction string of a Um edit is left blank by an annotator; this
would otherwise be misinterpreted as a deletion by a system, but we do not want to sim-
ply delete any string that an annotator was unable to correct. We only keep such edits
because they may still be useful for the purposes of error detection.

One error type that we prune completely from the CoNLL data is Cit (Citations),
which is used to identify poor citation practice. This category has not only been used
inconsistently in terms of whether the error is corrected or not, it is also very rare.
Furthermore, it is debatable whether citation practice itself qualifies as a grammatical
error as this would only really affect formal essay texts; other genres, such as fiction or
correspondence, do not require citations.

Other groups of edits removed from the data include those that cross paragraph bound-
aries, those that select entire paragraphs, and those whose corrections include “...”. In
most cases, these edits are not grammatical errors, but rather annotator comments that
suggest the whole essay or paragraph should be rewritten for various reasons. In the
case of the ellipsis, some annotators occasionally used ellipses in the correction string to
denote long sequences of unchanged text; a machine, of course, interprets this literally
and unhelpfully attempts to replace the original text with ellipses.

Finally, another complication when processing CoNLL data is that a small number of
edits overlap with others at the character level. This is normally the result of annotator
error however, since nested edits are not allowed in the NUCLE framework. We handled
these by simply ignoring any edits that overlapped with any previously seen edits. The
new total error counts for each SGML file after edit pruning are shown in Table 3; as this
table shows, this preprocessing mainly affects NUCLE.

CoNLL Before After
Test 2013 3424 3415
Test 2014 (0) 2397 2397
Test 2014 (1) 3331 3331
NUCLE 44912 43878

Table 3: Counts for the total number of edits in CoNLL SGML files before and after preprocessing.

4 From Characters to Tokens

One feature common to both datasets is that edits are defined at the character level. As
most NLP tools require tokenized text however, we need to map these character spans
to token spans. While this is straightforward in the majority of cases, there are several
exceptions that complicate matters. Consider the following tokens and edits:

8

1. Token: WORD. Edit: [. → ,]

2. Token: Forest’view Edit: [Forest’ → Forest’s]

3. Token: dancing Edit: [ing → ed]

4. Token: klever Edit: [kleve → clever]

5. Token: To Edit: [T → to]

In the first example, the annotator wanted to change a full stop into a comma. Unfor-
tunately however, the tokenizer did not separate it from WORD, and instead considers
WORD. (i.e. including the full stop) a complete token. This might be because the text is
in upper case (as some essays in the FCE are) and so the tokenizer perhaps considers it
an abbreviation. In any case, the tokenizer’s mistake results in a character edit that does
not map to a complete token.

A similar thing happens in the second example, where the missing whitespace between
Forest’ and view results in these 2 tokens being joined together; it is no surprise that the
tokenizer is unable to separate them given that it is unreasonable to expect it to consider
all the possible ways a string might be tokenized. In contrast, the human annotator
was able to carry out a mental tokenization of this string, which regrettably led to the
character-token alignment mismatch seen here.

While annotators were typically instructed to only select whole tokens when making
corrections, in practice, this did not always happen. The third example is hence a case
where the annotator only wanted to change the morphology of a given token, and thus
only edited the relevant characters rather than the complete token.

Finally, the last 2 cases are examples of annotator error. Specifically, the annotators
accidentally omitted a character from their edit spans but nevertheless provided a com-
plete correction. Consequently, applying the character level edit in the fourth example
produces the word cleverr, while applying the edit in the fifth example produces the word
too; in other words, the omitted character is duplicated on the end of the correction string.
The last case is especially noteworthy because it unintentionally produces a valid word.

4.1 Automatic Tokenization

In order to detect where character edits do not map to token edits, we first need to
tokenize the text. We did this using spaCy5 v0.101.0, a relatively new NLP library that
not only includes a large number of NLP tools, but is also very fast and easy to use. One
particular advantage of spaCy is that it keeps track of the character start positions of
each token even after tokenization, which makes converting character-level edit spans to
token-level edit spans a lot more straightforward.

Before determining whether a given character span mapped exactly to a token span
however, we first stripped the leading and trailing whitespace, if any, from the character
span; given that annotators sometimes omit characters from the peripheries of their edits,
they also sometimes accidentally include unnecessary whitespace at the starts and ends of
their edit. The total number of character-to-token mismatches is hence the total number
of edits for which the character start and end offsets do not exactly match any of the token
start and end character offsets determined by spaCy. The counts for these mismatches
are shown in Table 4.

5https://spacy.io/

9

Dataset Mismatches Total Edits %
FCE Test 20 4779 0.42%
FCE Train 250 48071 0.52%
CoNLL 2013 6 3415 0.18%
CoNLL 2014 (0) 8 2397 0.33%
CoNLL 2014 (1) 3 3331 0.09%
NUCLE 2580 43878 5.88%

Table 4: The total number of character-level edits that do not map exactly to token-level edits for

various datasets.

The most surprising result from this table is that NUCLE is affected by mismatches
more than any other dataset by a large margin. In fact while typically fewer than 0.5%
of all edits in other datasets involve an alignment mismatch, this climbs to almost 6% in
NUCLE. In particular, there are far more morphological annotations (e.g. [ing → ed])
in NUCLE than any other dataset, which perhaps indicates that some annotators either
overlooked the need to annotate tokens or were otherwise unaware of this requirement.
In any case, this makes the resolution of this problem much more significant as it affects
more than just a tiny handful of edits.

4.2 Just Add Whitespace

One solution to the character-to-token alignment problem is to surround each edit with
whitespace. If we make the assumption that annotators only edit complete tokens, as
instructed, this implies there is a token boundary before and after each edit. As such,
by artificially surrounding each edit with whitespace, we can ensure that the tokenizer
tokenizes the text at these positions. This ultimately means that character edit spans
always map to token edit spans.

Whilst this approach correctly handles the WORD. and Forest’view cases mentioned
at the start of this section, it fails to handle the other 3 cases. Specifically, using this
method, [dancing → danced], [klever → clever] and [To → to] are all respectively realised
as [danc ing → danc ed], [kleve r → clever r] and [T o → to o]. Given that these last 3
cases are all instances of annotator error however, we might reasonably consider them an
acceptable loss.

Unfortunately however, one side effect of inserting whitespace around each edit is that
it fundamentally changes the original text for each annotator. This is not a problem if
there is only one annotator, which is true for the vast majority of current datasets, but
becomes more of an issue when there are multiple annotators. In particular, this affects
the CoNLL-2014 test data which was initially annotated by 2 annotators for the shared
task and subsequently annotated by a further 8 annotators in Bryant and Ng (2015).

To give an example of the problem, we can again consider the string Forest’view. While
one official CoNLL annotator edited the substring [Forest’ → Forest’s], as previously
discussed, the other annotator edited the whole string [Forest’view → Forest’s view].
Given that we now insert whitespace around each edit, this means that the original
text becomes Forest’ view for the first annotator (i.e. with whitespace), but remains
Forest’view for the second (i.e. without whitespace). Ultimately, this means we end up
with 2 different tokenized versions of the same original text.

This is highly undesirable as we do not want the annotations of one annotator to affect

10

the tokenization and annotations of every other annotator.

4.3 The CoNLL Approach

An alternative to adding whitespace around an edit is to instead grow its character span,
if necessary, until it aligns with the nearest token boundary. To give an example, consider
the token dancing, which an annotator wants to change into danced by means of the
correction [ing → ed]. The character span of the edit is hence 4 to 7, while the character
span of the token is 0 to 7; consequently, we must increase the range of the edit span to
agree with the token span.

We can do this by calculating the difference between the edit start span and the token
start span to learn the extent of the mismatch; in this case 4− 0 = 4. By subtracting this
value from the edit start span, we hence obtain a new character edit span that corresponds
to a token boundary. While this solves the character alignment problem, a second step
is to also update the correction string. Specifically, as we have now increased the size
of the edit span by 4 characters, we must also add these 4 characters to the start of the
correction string. In this case, this means we add danc to the original correction string
ed, to produce the expanded edit [dancing → danced]. Note that a similar process can be
applied to growing the end of an edit span.

One rare complication to the above concerns a token that has been partially annotated
more than once. For example, let us say the annotator wanted to change dancing into
Danced by means of 2 edits: [d → D] and [ing → ed]. As neither of these edits maps
to a complete token, growing the character span will produce 2 edits for the same token:
[dancing → Dancing] and [dancing → danced]. In such cases, it is more complicated to
recover the intended edit [dancing → Danced] and so we instead just keep the first edit.

The main advantage of this approach is that it correctly handles all the cases where an-
notators only edited morphology or capitalization. As this mainly only applies to NUCLE,
it should hence be no surprise that this was the approach adopted in the CoNLL shared
tasks where NUCLE was the official training corpus. The disadvantage of this approach,
however, is that character span expansion can also have unintended consequences. For
example, growing [Forest’ → Forest’s] in the string Forest’view, results in the correction
[Forest’view → Forest’sview] which, unlike the whitespace-adding method, is not what
the annotator intended. That said, at least this approach does not modify the original
text in any way and is hence more compatible with multiple annotators.

4.4 Putting Everything Together

Thus far, we have mainly discussed how to align the character span of an original string
with an original token. This is not the only alignment problem, however, and we similarly
want to align the character span of a corrected string with a corrected token. Although
the problem is the same, there is in fact a small difference between the two cases which
means we proceed as follows.

Firstly, we make use of the CoNLL character expansion approach to ensure original
character spans map to original token spans. This is important because, unlike using the
whitespace expansion method, we want the original text to remain the same regardless
of the number of annotators. This produces a tokenized original text where the original
token edit spans are well defined.

Secondly, instead of processing the corrected text in the same way and then trying to

11

S Back to a hundred years ago , water was never a concern .

A 0 2|||Rloc-||||||REQUIRED|||-NONE-|||0

A 2 3|||Mec|||A|||REQUIRED|||-NONE-|||0

A 12 13|||Mec|||,|||REQUIRED|||-NONE-|||0

S While , today it is different .

A 0 1|||Mec|||while|||REQUIRED|||-NONE-|||0

A 1 2|||Mec||||||REQUIRED|||-NONE-|||0

Figure 4: An example of improper sentence alignment in NUCLE v3.2 (M2 format).

align it with the tokenized original text, we instead make a copy of the tokenized original
text and simply apply the edits to that to produce the tokenized corrected text. This also
saves having to tokenize everything twice and avoids tokenization inconsistencies.

One complication, however, is that the correction strings of the edits are usually not
tokenized. As such, if we applied them directly, we would effectively be inserting frag-
ments of untokenized text into tokenized text. To resolve this, we instead tokenize the
edit fragments individually before applying them. We can then POS-tag and parse the
corrected text without needing to call the tokenizer again.

The output from this processing hence produces parallel original and corrected tok-
enized texts where all the edit spans always only map to complete tokens.

5 From Paragraphs to Sentences

Another important aspect of processing GEC datasets is sentence segmentation. Up until
now, we have been operating at the paragraph level, rather than the sentence level, simply
because paragraphs are the minimal unit of text in the input files. While there is no strong
empirical reason why we should convert paragraphs into sentences, other than the fact
that this has long been a convention in NLP, we nevertheless also attempt to carry out
sentence segmentation here.6 Unfortunately however, this is not straightforward in GEC
given that annotators sometimes edit sentence boundaries.

To give an example of the problem, consider Figure 4, which contains an extract from
the latest version of NUCLE (v3.2) in M2 format. Given that the annotator wanted to
change the full stop at the end of the first sentence into a comma, and hence combine
these two sentences, it seems inappropriate to list them separately. Instead, they should
be combined such that the original and corrected text constitute at least one complete
sentence. If this is not done, a system trained on this data might learn that it is acceptable
for some sentences to end with a comma, which seems undesirable.

That said, we are only able to combine the above sentences in this way because we
already know the corrected sentence, which is not the case in a realistic grammar checking
scenario. In that instance, with only the original sentence to work with, it might be
beneficial for a system to entertain the possibility that even a sentence final full stop can
change.

Ultimately, whether we should sentence tokenize based on the original, corrected or

6Although most parsers require sentence tokenized input before they can parse, spaCy is unique in that
it can parse whole documents at once and then use this information to determine sentence boundaries
afterwards. The authors of spaCy argue that this is more reliable than other sentence segmentation
methods which typically rely on punctuation and upper casing to predict sentence boundaries.

12

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Orig A B C . D E , F G . H I . J .
Cor A B . D E . F G , H I ? J K .

Table 6: Mock paragraph structure containing multiple sentences, where each letter denotes a token in

those sentences. The challenge is to determine how the sentences should align.

both texts remains a contentious issue. It might even be most desirable to bypass the
problem altogether and simply operate at the paragraph level instead.

5.1 Sentence Alignment

In fact the difficulty of the sentence segmentation problem is further compounded by the
fact that such sentences also often occur inside a larger paragraph where other sentence
boundaries may change. Ultimately, this becomes an alignment problem. While you
could use sentence alignment techniques from the field of Machine Translation to solve
this problem (for example, see Smith et al. (2010)), our situation is much simpler in that
we: a) do not have to deal with different languages, b) do not have to account for sentence
reordering or other effects, and c) already have the exact mapping that “translates”
Paragraph A into Paragraph B. As such, we can use a more heuristic approach.

It is easiest to explain this approach by means of an example. Table 6 hence shows
an example of a typical paragraph containing several sentences, where the letters A-K
represent tokens in those sentences. If there was only one sentence on either the original
or corrected side, we would not need to do anything as the sentences would already be
minimally aligned. This is not the case here however, and so we must work out the proper
alignment.

Firstly, as sentence segmentation of the corrected paragraph is likely to be more ro-
bust than for the potentially ungrammatical original paragraph, we choose the corrected
paragraph sentence boundaries, as determined by spaCy, as our starting point. In Table
6, this means we consider everything between the range of 0-3 to be the first corrected
sentence. We then undo any of the edits that fall exclusively within this range to obtain
an equivalent original sentence boundary. In this case, this means we add C back into
the sentence to obtain a span of 0-4 for the original. If it is then true that spaCy also
detected a sentence boundary at position 4 in the original paragraph, we declare these
sentences aligned and move on to the next case, as we do here.

Having aligned the previous sentence, we now know that the next sentence starts at
position 4 in the original paragraph and position 3 in the corrected paragraph. As the next
sentence boundary in the corrected paragraph is 6, we also know that the next candidate
corrected sentence spans tokens 3-6. As before, we again undo the edits in this range to
obtain an equivalent original sentence boundary position, which we this time determine
to be located at position 7. This time, however, no equivalent sentence boundary was
detected in the original sentence at position 7 and so the sentences do not align.

Instead, we look ahead to the next corrected sentence boundary, which is at position 12.
Note that although there is a sentence boundary at position 10 in the original paragraph,
it similarly does not have an equivalent sentence boundary in the corrected paragraph,
so we do not want to align the sentences here either. If we now consider our corrected
sentence to span from 3-12, we can again calculate the corresponding original sentence

13

boundary by undoing the edits and determine it to be at position 13. This has also been
identified as a sentence boundary in the original paragraph and so we align the sentences.

This second case is more complicated than the first, in that the minimal alignment
actually consists of 2 sentences. Additionally, it also involves a full stop becoming a
question mark, which shows that sentence final punctuation edits need not necessarily
indicate sentence boundary changes. Finally, when we reach the last corrected sentence
boundary at position 15, we need not do any more processing, as with only one sentence
to align, whatever is left will align by definition.

After each alignment, a final step is to update the token edit spans for each new sentence.
Previously, all the edits were defined in terms of tokens in a paragraph, so we must take
the new sentence segmentation into account and redefine the spans in term of tokens in
a sentence.

5.2 Multiple Annotations

One complication to the above is that sentence segmentation becomes more difficult when
a text is annotated by multiple annotators. Since there is no guarantee that all annotators
will agree on the same sentence boundaries, the tokenization may be different for each
annotator. For this reason, in order to keep everything consistent across all annotators, we
only tokenize on sentence boundaries upon which all annotators agreed. The disadvantage
of this is that globally optimum sentence segmentation might change with each additional
annotator, but there is no way to avoid this unless we back off to paragraphs.

6 Conclusion

We have shown that it is not easy to process the largest publicly available datasets for
GEC and that different implementation details can result in slightly different versions
of the same corpus. Without a standard way of processing the data, this inconsistency
ultimately means different approaches to GEC using the same data may not be strictly
comparable.

Additionally, while character edit spans that do not exactly map to token edit spans
typically make up less than 0.5% of the data, we found that this rises to almost 6% in
the NUCLE corpus. This shows that the problem sometimes affects more than just a
negligible amount of edits, which is especially important given that NUCLE was used as
the official training corpus of the CoNLL shared tasks. We resolved these problems by
expanding the range of the character edit to align with a complete token in the original
text, and by adding additional whitespace around any correction string in the corrected
text.

Given that sentence fragments are also considered a type of grammatical error, we also
showed that sentence segmentation of GEC text is more difficult when annotators change
sentence boundaries. This means we cannot rely on the sentence boundaries in the original
text alone for sentence segmentation, but must also make use of the corrected sentence
boundaries to extract only complete sentences from the data. Of course the corrected
sentences are unknown in a realistic grammar checking scenario however, and so it may
be easier to model at the paragraph level instead.

14

References

Christopher Bryant and Hwee Tou Ng. 2015. How far are we from fully automatic high quality
grammatical error correction? In Proceedings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages 697–707, Beijing, China, July. Association
for Computational Linguistics.

Daniel Dahlmeier, Hwee Tou Ng, and Siew Mei Wu. 2013. Building a large annotated corpus of
learner english: The nus corpus of learner english. In Proceedings of the Eighth Workshop on
Innovative Use of NLP for Building Educational Applications, pages 22–31, Atlanta, Georgia,
June. Association for Computational Linguistics.

Hwee Tou Ng, Siew Mei Wu, Yuanbin Wu, Christian Hadiwinoto, and Joel R. Tetreault. 2013.
The CoNLL-2013 shared task on grammatical error correction. In Proceedings of the Seven-
teenth Conference on Computational Natural Language Learning: Shared Task, pages 1–12,
Sofia, Bulgaria. ACL.

Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian Hadiwinoto, Raymond Hendy Susanto, and
Christopher Bryant. 2014. The CoNLL-2014 shared task on grammatical error correction.
In Proceedings of the Eighteenth Conference on Computational Natural Language Learning:
Shared Task, pages 1–14, Baltimore, Maryland, USA. ACL.

Diane Nicholls. 2003. The cambridge learner corpus: Error coding and analysis for lexicography
and elt. In Proceedings of the Corpus Linguistics 2003 conference, pages 572–581.

Jason R. Smith, Chris Quirk, and Kristina Toutanova. 2010. Extracting parallel sentences from
comparable corpora using document level alignment. In Human Language Technologies: The
2010 Annual Conference of the North American Chapter of the Association for Computational
Linguistics, pages 403–411, Los Angeles, California, June. Association for Computational
Linguistics.

Helen Yannakoudakis, Ted Briscoe, and Ben Medlock. 2011. A new dataset and method for
automatically grading esol texts. In Proceedings of the 49th Annual Meeting of the Associa-
tion for Computational Linguistics: Human Language Technologies, pages 180–189, Portland,
Oregon, USA, June. Association for Computational Linguistics.

15

