
Technical Report
Number 892

Computer Laboratory

UCAM-CL-TR-892
ISSN 1476-2986

Pipelined image processing
for pattern recognition

A. Daniel Hall

July 2016

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2016 A. Daniel Hall

This technical report is based on a dissertation submitted
October 1991 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Queen’s College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Preface
I would like to thank my supervisor Neil Wiseman for his invaluable help and
guidance during my research and the other members of the Rainbow Graphics Group
for their support. I would also like to acknowledge the support of Professor Needham
as head of the Cambridge University Computer Laboratory. I am grateful to Dr.
HenryS. Baird of AT & T and Professor Per-Erik Danielsson ofLinkoping University
for providing material referenced in this thesis. The benchmark test of the Kurzweil
K-5200 OCR machine was performed by Leslie Plumb of Xerox Imaging Systems.

This dissertation is the result of my own work and includes nothing which is the
outcome of work done in collaboration.

I hereby declare that this dissertation is not substantially the same as any I have
submitted for a degree or diploma or any other qualification at any other university.

I further state that no part of this dissertation has already been or is being currently
submitted for any degree, diploma or other qualification.

Summary
Image processing for pattern recognition is both computationally intensive and
algorithmically complex. The objective of the research presented here was to produce
a fast inexpensive image processor for pattern recognition. This objective has been
achieved by separating the computationally intensive pixel processing tasks from the
algorithmically complex feature processing tasks.

The context for this work is explored in tenns of image processor architecture,
intermediate-level image processing tasks and pattern recognition.

A new language to describe pipelined neighbourhood operations on binary images
('PiNOLa •: Pipelined Neighbourhood Operator Language) is presented. PiNOLa was
implemented in Modula-2 to provide an interactive simulation system ('PiNOSim•:
Pipelined Neighbourhood Operator Simulator). Experiments using PiNOSim were
conducted and a design_ for a topological feature extractor was produced.

A novel algorithm for connected component labelling in hardware is presented. This
algorithm was included in the PiNOSim program to enable the component labelling
of features extracted using the language. The component labelling algorithm can be
used with the topological feature extractor mentioned above. The result is a method
of converting a binary raster scan into a stream of topological features grouped by
connected object.

To test the potential performance of a system based on these ideas, some hardware
('GRIPPR•: Generic Real-time Image Processor for Pattern Recognition) was de­
signed. This machine was implemented using standard components linked to a PC
based transputer board. To demonstrate an application of GRIPPR an Optical
Character Recognition (OCR) system is presented. Finally, results demonstrating a
continuous throughput of 1500 characters/second are given.

Contents

Preface

Summary

List of Figures

1 Introduction

1.1 The image processing problem

1.2 Structure of the thesis .

2 Background and Motivation

2.1 An image processing model

2.2 Hardware image processing architectures

2.2.1 Cellular arrays . . .

2.2.2 Pipeline processors

2.2.3 Neural Nets

2.2.4 von Neumann machines

2.2.5 Technological perspective

2.3 Intermediate-level image processing tasks

2.3.1 Connectivity determination

2.3.2 Feature extraction

2.4 Pattern recognition . . .

2.5 Motivation of research .

ill

V

xi

1

....... 1

. 2

5

.5

.8

.9

. 10

. 14

. 16

. 18

. 19

. 19

. 22

. 24

. 25

3 Initial Experiments, PiNOLa specification and PiNOSim 27

3.1 Initial work 27

3.2 PiNO La specification . 29

3.3 PiNOSim implementation . 34

4 Experiments with PiNOSim and Feature Extractor Design 37

4.1 Edge pixels

4.2 Erosion and dilation

4.3 Skeletonization

4.4 FSkel, RSkel and BSkel

4.5 Feature extractor

5 Component Labelling and GRIPPR design

5.1 Component labelling algorithm . . .

5.1.1 Hardware connectivity process

5.1.2 Software connectivity process

5.2 GRIPPR design

5.2.1 PiNOLa language extensions

5.2.2 GRIPPR simulation

6 GRIPPR Implementation

6.1 Specification
6.2 Hardware optimisation

6.3 GRIPPR hardware ...
6.4 Fabrication and testing

6.5 Software optimisation

6.6 GRIPPR software ..
6.7 Performance evaluation

7 Pattern Recognition and OCR

. 37

. 38

. 40

. 41

. 44

47

. 47

. 48

. 50

. 51

. 51

. 54

63

. 63

. 65

. 66

. 72

. 74

. 75

. 82

85

7.1 Pattern classification and contextual processing for OCR . 85

7.2 A simple pattern recognition method .

7.3 Character recognition implementation

7.4 Character classification results

7.5 OCR processing . .

8 Results and Conclusions

8.1 Final system description

8.2 Performance evaluation

8.3 Conclusions

Appendix

Example training page

Test page 1

. 86

. 88

. 95

. 96

101

101

101

105

107

108

109

Test page 2

Test page 3

Test page 4

References

110

111

112

113

List of Figures

2.1 Bottom-up, stage independent image processing model . 7

2.2 An 8-connected cellular array image processor . 8

2.3 A three stage pipelined image processor 11

3.1 3x3 neighbourhood operator and line store circuit . 27

3.2 3x3 operator implemented as an AND OR plane . . 29

3.3 Effect of 'blocker' feedback function 32

4.1 Connected object separation be erosion/dilation . 39

4.2 The result of three iterations of 'ThinFour' 41

4.3 RSkel, BSkel and FSkel foreground and background . . 43

5.1 Connectivity hardware and software processes . 48

5.2 Simple connectivity data structure 51

6.1 Pipelined 3x3 binary feedback neighbourhood operator . 66

6.2 The GRIPPR feature extraction pipeline . . . 67

6.3 The GRIPPR component labelling hardware . 69

6.4 Connectivity Data Structure 'snap-shot' . 78

7.1 Hypothesis list model of pattern recognition . 86

7.2 Stages in the OCR Processing pipeline 97

8.1 GRIPPR-OCR system, external view 102

8.2 GRIPPR-OCR system, internal view 102

8.3 GRIPPR-OCR system 103

Chapter 1.

Introduction
Image processing for pattern recognition is one of the most stimulating subjects in
science. Historically, image processing has often been at the fore-front of computer
theory and practice. Philosophically, image processing provides a link between the
technological products of our society and an appreciation of the working of our
minds. Commercially, image processing provides the basis for computer technology
to be adopted in complex real-world applications.

1.1 The image processing problem

Real world image data is often characterised by two things:

- An enormous amount of sensory data: the weakness of the von Neumann
machine is the memory access bottleneck; a simple function may require several
memory accesses, and processes which could be performed in parallel must be
performed sequentially. The same simple function implemented in dedicated
hardware can be much faster and use much less silicon and interconnect,
allowing for several functions to be performed in parallel without excessive cost.
The resulting speed is the sole justification for image processing hardware, as
any digital circuit can be simulated on a von Neumann processor, given time
and memory.

- Interpretation of sensory data is algorithmically complex: specialised image
processors tend to be bad at coping with algorithmic complexity. This is
because specialised image processors are normally image-parallel machines
which are optimised to perform low-level sensory manipulation. However, von
Neumann sequential processors are ideally suited to algorithmically complex
processing as a language hierarchy can easily be constructed; micro-code,
machine-code, assembler, programming language, application.

In the book •Intermediate-Level Processing• edited by M.J.B.Duff[l] image process­
ing is characterised as having three levels; low, intermediate and high. The low-level
processing transforms the original n by n pixel image into another n by n array of

values. Intermediate-level processing transforms this array of values into a list of
features. This list of features is then processed at the high-level to interpret the
contents of the image.

A fast throughput is attainable at the low-level of processing by adopting some form
of image parallel processing. This is normally achieved by performing neighbour­
hood functions which transform the value of an image pixel based on its original
value and the values of its neighbours. Such neighbourhood operations have a very
simple mapping on to cellular or pipeline image processing hardware.

At the high-level of processing there is normally much less data than at the low-level.
Thus the throughput of the high-level of an image processing application can often
be matched to the low-level throughput without resorting to massively parallel
processing.

The intermediate-level of processing accesses all then by n transformed image data,
but the task of generating topological features requires non-local processing. There­
fore there is no simple mapping of intermediate level tasks such as topological feature
extraction or component labelling onto image parallel hardware. Thus it is the
intermediate-level of processing which can be the potential bottleneck in many image
processing applications. One way to increase the throughput of the intermediate­
level is to provide specialised intermediate-level hardware.

1.2 Structure of the thesis

This thesis touches on many broad areas of research; image processing, computer
architecture, pattern recognition, optical character recognition. The intention has
been to integrate work in all these areas to produce a complete demonstration of an
image processing application. This could only be achieved by adopting a structured
approach to the research. The chapters of the thesis mirror this structure as each
phase of work produced important results. Briefly, the phases of the research were;
background research, initial experiments, simulation (design/implementation), ex­
periments, system design, system implementation, results.

Several threads run through the thesis structure; The development from ideas about
image processing architecture to physical hardware implementation. The develop­
ment of feature extraction and component labelling algorithms. The development of
a pattern recognition approach matched to the new hardware and algorithms. These
threads are brought together in a specific OCR application which demonstrates the
throughput of the complete system.

The content of the following chapters is given below:

- Chapter 2. Background and Motivation: This chapter surveys the relevant parts
of the image processing field. Sections are included on image processing
architecture, image processing tasks and pattern recognition. Finally an argu­
ment providing the motivation for research is outlined.

- Chapter 3. Initial experiments, PiNOLa specification and PiNOSim implemen­
tation: This chapter describes the early stages of research and the development
of a new language, PiNOLa; Pipelined Neighbourhood Operator Language, to
describe a class of hardware dedicated image processors. The implementation
of an interactive PiNOLa simulation, PiNOSim; Pipelined Neighbourhood
Operator Simulator, is also described.

- Chapter 4. Experiments with PiNOSim and feature extractor design: This
chapter explores the use of the PiNOSim program. A new deterministic feature
extractor is introduced and its characteristics are discussed.

- Chapter 5. Component labelling and GRIPPR design: A new algorithm for
real-time component labelling of continuous images is expounded. This algo­
rithm is then integrated with the feature extractor introduced in chapter 4 to
produce a design and simulation of a Generic Real-time Image Processor for
Pattern Recognition (GRIPPR).

- Chapter 6. GRIPPR Implementation: The specification of the hardware and the
software components of the system is given in the context of an A4, 300 d. p.i.,
OCR task. The GRIPPR hardware and software optimisation and implementa­
tion is then described. Finally some statistics revealing the computational
loading of the components of the GRIPPR system are presented.

- Chapter 7. Pattern Recognition and OCR: In this chapter a simple method for
pattern recognition is presented. This method is implemented in an application
specific OCR system. The recognition and learning processes are discussed as
well as the higher level OCR dependent processing required to format lines of
text etc. Results generated during the learning process, which characterise the
pattern classification performance of the system, are presented.

- Chapter 8. Results and Conclusions: This chapter starts with a look at the fmal
system configuration. Some relative statistics for a commercial OCR system and
the GRIPPR-OCR system are given for comparison. Finally, some areas for
further investigation are discussed and some conclusions are drawn.

Chapter 2.

Background and Motivation
In this chapter a broad overview is given of the different aspects of image processing
for pattern recognition. An argument is also developed which attempts to justify
some of the features that might be useful in a new system.

2.1 An image processing model

The purpose of image processing and pattern recognition is to convert sensory data
into symbolic representations which can then be processed at a semantic level.
Processing at the extreme ends of this transformation appears to be well understood.
At the sensory level algorithms for such tasks as spatial filtering and dynamic
thresholding are well researched. This research is supported by orthodox mathemati­
cal tools such as communications theory and Fourier analysis. At the semantic end
of the transformation lies the logical processing performed by standard computational
languages.

The area between the extreme ends of this process is less well understood and can
be referred to as the •conceptual Gap'. This consists of the intermediate-level image
processing mentioned in the introduction as well as the higher-levels of pattern
classification and contextual processing. Why does the Conceptual Gap exist?
Obviously, the enormous data processing requirements inherent in many image
processing tasks mean that available computational resources often restrict the types
of application that are feasible. However, even given sufficient raw processing
potential we may still fmd that crossing the Conceptual Gap is far from easy. One
explanation for this might be that the algorithms required to cross the Gap are
numerous and not well contained, i.e. each depends on the other in a highly complex
way. This is an argument sometimes put forward by Neural Net protagonists, i.e. that
some problems may be so hyper-complex that only a self-organising, self-learning
machine can perform them[2]. Another approach proposed by M.J.B.Duff is to design
parallel architectures which could cope with complex interaction at the higher levels.

- "The picture that emerges is of a form of pyramid in which inter-processor
connectivity and processor complexity both increase in passing from lower to
higher levels" M.J.B.Duff [3]

The conventional/engineering approach has been to cross the Conceptual Gap for
simple applications and then slowly attempt more complex related applications
evolving algorithms, technology and strategies along the way. The history of OCR
is a demonstration of the success of this conventional approach. Starting with very
simple template matching of special type faces in fixed sizes the techniques have
evolved to the present sophisticated feature and context driven multi-fount, variable­
scale commercial recognition machines.

Two important simplifications often characterise the conventional approach to cross­
ing the Conceptual Gap; bottom-up processing and processing stage independence:

- Bottom-up processing: This is the basic paradigm of many image processing
and pattern recognition applications. The idea is that there is a one way flow
of information and control, as in Fig .2.1, from sensory data to semantic
processing. This is by no means the only paradigm; for instance, some applica­
tions make use of coarse visual information to focus attention on interesting
sections of the image where the detailed image is processed[4]. The human
visual system in particular is different in this fundamental respect. Various
experiments have shown that our ability to direct and orientate the eye in
relationship to a scene is basic to our ability to locate, recognise and learn visual
patterns[S]. The thing that necessitates and enables this top-down process in
humans is the active nature of our vision. The ability to actively locate objects
for recognition within our visual environment is both an added complexity and
a simplification. The added complexity is in arbitrating the control of the eye
between the different reflex, involuntary and voluntary mechanisms that are
known to control the movement, focus and aperture of the eye. The simplifica­
tion is that we can look at an object in a way which makes it look 'right', i.e.
the image of the object can be located on the retina in such a way as to facilitate
recognition. Contrast this with the passive vision system implicit in the bottom­
up approach, here objects for recognition are located at the intermediate levels
of processing with no control over the resolution or exposure of the imaging
system hardware.

- Processing stage independence: The other simplification often made is that
the steps shown in Fig.2.1 are independent. This simplification limits the
algorithmic complexity caused by close interaction between stages. However,
a number of perhaps useful feedback mechanisms therefore have to be omitted,
e.g. the pattern recognition process could tune the parameters of the sensory
transformation dynamically, or the feature extractor could select a method of
recognition based on the feature types and density, etc. etc ..

A typical example of the bottom -up, stage independent approach is shown in Fig 2.1.
The exact position and nature of the stages in the model depends on the algorithms
used, e.g. some approaches will place the feature extraction stage before the object
location stage. The stages of the model are:

"{' 't(t''',!c>-iV' ''''''V',__ 'l''·M' "i"- i<!:R ~ ~1-!x-:~ ~-;- N -!-~.-:-;,:-:-:-:::0 -!-"=..:- ·~...;. ..;....:~ ~.;!
~~ -=-*-=- ~ ::.n.tr-:-.:: ~:~ r:;;::-*~tt:.* :;·~ ~-=-t~ ~ ~t ~-:- ... -:-;.:-.:. ~-~ ~~-:- ~-=- ~-~ ~.;.......w~-=- ... ~·{L.t ... f 1' ~

~u~~~~~.t~~¥~~~;<~ image pixel data -=-;;.-=-~ -=-t.:. {f 1'..... ~ ~ t ~ :r .. t:-;-:- ... -<
~-==~:>~-~ ::: ~- .;-m -=-:::::::::·
.. ~ "!:r .. ~ ... r_ ... ~, ... t ~-~-. ~ .. ~ ~ * -;-i; · -;-tE
~--=- t .. -:- ... :r~ ~ .:--;-.:--:--!-.~ -~ -:--~-~ ~ ... -~-~ ~ ,.....,. ... :;..~-
u-~~ ~ ~t ... t:.:::·::::::t::.::: ~~ n.::~_:.:;.::-::..:n::-u-~ :::~

I
t.;:ny·:;.n:::~ :;.::-:::-:-?:r::~ ~~:: ~ :;_-;: ~ ~ ~-::-~n n:~

Sensory Transformation

transformed pixel data IMAGE

I I
Object Location

I

M Object pixel data

I ' Feature Extraction

m Object feature data

I Pattern Classification

symbol candidates {M,m}

I
Contextual Processing

I I
symbols M

I
Semantic Processing

I I
Actions Store 'M'

Fig 2.1: bottom-up, stage independent image processing model

- Sensory Transformation: This type of processing is often performed on
multilevel image data, to perfonn such tasks as flltering or contrast enhance­
ment. The purpose of this level of processing is generally to improve the
intelligibility of the image and to reduce the information required to describe
the image. The output from this stage of processing is often a binary image.

- Object Location: Before recognition, objects within the image must be located,
this process is often referred to as segmentation.

- Feature Extraction: 1hls stage of processing transfonns pixel data into feature
data. Features generally describe some facet of the image, e.g. a line, and have
parameters, e.g. line length and orientation.

- Pattern Classification: When an object has been located this can be mapped
onto one or more possible symbols.

- Contextual Processing: Information which is not local to the pattern classifi­
cation object can be used to determine which if any of the symbols passed from
the pattern classification stage are plausible.

- Semantic Processing: The symbolic information describing the image is pro­
cessed to perform some useful action.

This simple model of image processing allows one to split different stages in the
processing pipeline between physically different processor architectures optimised
for their particular function.

2.2 Hardware image processing architectures

Within the context of the type of image processing model shown in Fig.2.1 various
processor architectures can be adopted at one or more stages of processing. A brief
guide to the types of processor used for image processing is therefore appropriate.

11

~
11 11

An n by n array of
image processing

elements

11 11 11 11 11

~ 11 11 11 ~
Fig.2.2: an 8-connected cellular array image processor

2.2.1 Cellular arrays

A cellular array image processor is formed from a two dimensional array of proces­
sors as in Fig.2.2 where there is a geomorphic mapping between an image element
and a physical processor. Each processor is linked to its immediate neighbours in a
hexagonal or square grid. Generally cellular arrays correspond to the SIMD (Single
Instruction, Multiple Data stream) architecture where one instruction is broadcast to
all Processing Elements, each P.E. acting on a different part of the image data.

The motivation for producing these architectures is that they are highly optimised
for performing algorithms based on neighbourhood logic. In each clock cycle such
a processor can apply a neighbourhood function to the entire image in parallel. Such
processors are therefore ideal for the low level stages in the standard image process­
ing model such as sensory transformation and feature extraction.

The first detailed work on cellular arrays dates from 1959 when Unger[6] proposed
a processor based on a 4-connected array of 36 by 36 processing elements. This work
laid the foundations not only of cellular array architecture, but also of neighbourhood
logic. The basic principle of assigning P.E. 's to image pixels and linking each P.E.
to its neighbourhood so that neighbourhood functions could be executed in parallel
was established by Unger's design. Unger also foresaw the need for non-local image
processing particularly with respect to determining the connectivity of the image and
proposed specialised ·link circuits' which could propagate information beyond the
immediate neighbourhood quickly.

The implementation of Unger's ideas had to wait for improvements in digital circuit
technology. Physical hardware implementations of array processors did not emerge
until the mid 1960's with the ll...LIAC Ill computer developed by McCormick[7],
though design problems meant that this processor never found commercial applica­
tion.

In the 1970s the cellular array architecture based on CLIP 2[8] and CLIP 3/4[9],
developed at University College London, produced processors with a large number
of discrete processing elements and these have found commercial application par­
ticularly in Biomedical recognition[10].

In the 1980s the evolution of programmable pipelined processors performing neigh­
bourhood logic led to criticism of the cellular array architecture in terms of its
computational efficiency[11]. This criticism should be seen in the context of the
greater image sizes starting to be processed at that time due to improvements in digital
imaging technology in the 1970's and 1980's.

Limitation of cellular arrays

In theory as image resolution increases the potential advantage of cellular arrays also
increases. However, in practice the architecture soon becomes limited by its 1/0
bandwidth. A 1024 by 1024 cellular array could perform 100 neighbourhood
operations on a 1024 by 1024 image in only 100 clock cycles. However, even if a
whole line could be entered into the array simultaneously this would still take 1024
clock cycles to fill the array giving a processor utilisation of under 10%. The practical
problems of having over a million processors also means that almost no real world

J.PPlication could justify the extreme cost involved.

response to this shift in technological balance different cellular strategies have
-een adopted.

Tiling

Tiling has been adopted to split pictures into smaller sub-images so that the IJO
bandwidth can be balanced with processor speed. However, there are some draw­
backs to tiling; it increases the hardware and software complexity and some non-local
functions which rely on global propagation of signals may be poorly defmed at the
tile boundaries.

Embedded sensor arrays

The other development in cellular array application has been to incorporate the array
mto imaging devices to perform the processing of images actually on the CCD
silicon[12][13]. This approach overcomes the input bandwidth limitation, as images
are already mapped onto physical cellular arrays. Provided a reasonable compression
- afforded by the cellular processing the output bandwidth may not be a problem.

. more general criticism of cellular arrays in the system context is that their speed
may not be well matched to the speed of other components in a system. If the task
·- complex, such as many pattern recognition tasks, then the low-level neighbourhood
functions executed efficiently by the cellular array may form only a limited propor­
non of the processing required. Thus the cellular array may be idle whilst higher
non-parallel algorithms process the output of the array. This problem has led to
research into applying cellular array processors to higher level tasks, thereby equali­
sing the throughput of the different components of a system. However, whereas a

ellular array is ideally suited to performing neighbourhood logic, efficiency falls as
intermediate-level, non-local algorithms are attempted[!]. Even such comparatively
ow-level tasks as component labelling are not performed efficiently on cellular logic

arrays[14].

o more neatly match computational resources with application requirement and to
allow for higher-level data dependent algorithms various image parallel architectures
not bound by the strict •cellular' paradigm are being developed. On the one hand

the evolution of existing cellular architectures such as the CLIP series to incorpor­
ate non-local data communication and linear rather than 2-dimensional arrays as in

e CLIP7 A[15]. On the other hand there is the continuing basic research into
different types of array processor; SIMD, Systolic, Wavefront and MIMD. It is
-ecoming increasingly clear that as applications become more sophisticated parallel
processors will have to become more flexible, allowing for different types of

arallelism and processor topologies to be applied to different stages in an application
process[16].

1.2.2 Pipeline image processors

pipelined image processor based on neighbourhood operations is architecturally
ery easy to implement. A raster scan of the image is fed into the neighbourhood

operation unit which constructs a window on the input image by storing some image
lines in shift registers. A function is then applied to the image window which
generates an output pixel. For each pixel of the input image the shift registers are
clocked and the window is moved to generate the next output pixel.

In Fig.2.3, a three stage pipelined 3x3 neighbourhood operation applies an erosion
function to the input image.

:1
~ H Shift Reg. [

~ N Shift Re g.

~
I I I ~x.3 Window

LOGIC '

A
A A

Fig.2.3: a three stage pipeline image processor

The main advantage pipelined processors have over cellular arrays is that for
functions of limited complexity they require much less hardware to implement.
Again, a pipeline image processor can be effectively targeted at the lower level tasks
of sensory transformation and feature extraction.

The basic pipe lined picture processing approach is attributed to Go lay in 1965[17],
his ideas led to the development of the Golay Logic Processor (GLOPR). In the mid
1970's more sophisticated architectures based on multiple image planes where
produced, such as the BIP (Binary Image Processor) developed by S.Gray[18] and
later PICAP developed by B.Kruse[19][20]. These relatively complex machines
were followed by simpler modular architectures e.g. the Cytocomputer architecture
developed by Stemberg[21][22] in the late 1970's and the UPIC[23] and PIFEX[24]
architectures of the 1980's.

Early Pipelined Processors

The Go lay processor was based on a hexagonal neighbourhood as this was considered
to be better suited to connectivity preserving transfonnations. Whilst the architecture
Golay was considering was essentially cellular this was achieved by successively
applying the processor to all the neighbourhoods in the image. GLOPR was applied
to biomedical image processing problems.

The BIP was a more complex machine than GLOPR, which was optimised to perform
template matching operations for OCR. BIP had two picture planes and a function
could be specified on the basis of the pixel values corresponding to the same location
in both planes.

PI CAP

PI CAP - developed in the university of Linkoping, Sweden - was a general purpose
programmable pipe lined image processor. Even in its early specification PI CAP was
a very complex machine[19], e.g. PICAP allowed a function to be the product of its
3x3 neighbourhood and the state of parallel picture planes a type of processing which
was inspired by BIP. Facilities were also included for component labelling and
iterative and interrupted functions. The high complexity of PICAP should be seen
in the terms of the high cost and low integration of electronic components of that
time. The temptation was to squeeze every last drop of efficiency out of computa­
tional hardware. This trend is mirrored in the development of the Complex Instruc­
tion Set Computers of that time.

The complexity and sophistication of the PI CAP hardware led to the development of
specialised algorithms which are highly dependent on the particular facilities of the
PICAP architecture.

For example, a component labelling algorithm was developed which could label one
simply connected object in each pass of the image by use of a special interrupt
function. This function interrupts the normal local neighbourhood operation of the
processor to fetch a new component label from a non-local stack whenever a new
un-labelled connected object is located.

The resulting algorithm is inefficient but it demonstrates how solutions to higher
level problems in an image processing task have to be tackled in the low-level image
processor if the system throughput is to justify the expense of the image processing
hardware. Unfortunately, the inherent inefficiency involved in calculating non-local
functions on a neighbourhood processor often compromise the hoped for level of
erformance.

Cytocomputers

real breakthrough with the cytocomputer architecture was its hardware modu­
-: • . Whereas PICAP tried to maximise the utilisation of a discrete number of

- ges by specifying complex functions, the cytocomputer architecture sought to
-make available a physical neighbourhood processor for each stage in an image
-ocessing task by simplifying and thus reducing the cost of each stage. This

lfelopment was clearly prompted by the emergence of LSI and VLSI technologies

in the late 1970s and early 19so·s. The cytocomputer architecture included separate
types of modules for 2-dimensional (binary) operations and 3-dimensional (multile­
vel) convolutions.

The efficiency of the Cytocomputer architecture, for the type of problem the authors
where considering, led to the conclusion that:

- "Certainly, parallel arrays will continue to be designed and built; however, any
advantages to the users of such systems are in question." R.M.Lougheed,
D.L.McCubbrey [11]

PIFEX

The programmable pipelined processor based on multilevel and binary neighbour­
hood operations reached technological maturity with the PIFEX architecture. PIFEX
adopted VLSI techniques to produce low-cost modules which could perform 12-bit
per pixel image processing of high resolution images. Rather than include different
types of modules as in the Cytocomputer architecture, PIFEX incorporated two
multilevel convolvers, a table-lookup unit and a binary neighbourhood comparison
operator in each module. PIFEX is used commercially for such tasks as satellite image
processing.

Dedicated systems

As well as relatively expensive programmable general purpose pipelined image
processors a number of hardware dedicated systems have been devised
e.g.[25][26][27][28]. There are two main advantages that dedicated systems have
over programmable systems:

- They can be highly optimised to perform particular image processing tasks.
Thus complex algorithm specific structures can be implemented which would
not be appropriate in a programmable system.

- Without the overhead of making the processor programmable the hardware
implementation can be more efficient e.g. a dedicated system might be faster,
cheaper and physically smaller than a programmable system performing the
same tasks.

However, the limiting factor on the application of such dedicated systems has been
a lack of generally applicable algorithms which can be implemented. Normally
image processing algorithms are tailored to the requirements of particular applica­
tions, making the design of dedicated systems less cost-effective.

For instance in their paper "An automatic Wafer Inspection System Using Pipe lined
Image Processing Techniques", Haruo Yoda et al present an image processor based
on pipe lined neighbourhood operators dedicated to that particular task[25]. The
image processor is highly optimised, using forward and reverse sequential/feedback
operations not normally available in general purpose hardware. The image processor
also uses a fixed number of erosion/dilation stages to achieve image smoothing in
the context of the sorts of noise produced by their imaging system. The resulting
system has found application in RAM manufacture yield analysis, replacing human
operated fault diagnosis of failed components.

Whilst being highly practical and cost-effective dedicated non-programmable pi­
pelined image processors have not so far found general application, as the exact
nature of the processing function required nonnally depends greatly on the system
task. However, if algorithms which could be applied to a variety of tasks could be
developed then a generic image processor could be formed by a dedicated pipeline
image processor.

2.2.3 Neural nets

There are many types of artificial neural network. They generally describe a
processor based on a number of simple elements or 'neurons·. Neurons often have a
boolean on/off output which is triggered by summing the inputs to the neuron and
comparing the result with a threshold value. More sophisticated neural nets simulate
the variable pulse rates found in biological neurons by propagating analog outputs.
The sensitivity of a neuron to a particular input is generally given an analog weight.
The connections between neurons could be very complex with connections between
every neuron in the network. Often this is simplified into fully connected layers of
neurons with one way connections between neurons in different layers.

The learning process is normally implemented by altering the weights attached to the
neuron connections. There are many ways to control this process which usually rely
on increasing a neuron·s sensitivity to those inputs that are 'on• when a specific
pattern is presented. Neural nets nonnally have to be trained to associate a given
input pattern with a particular response. Though rules also exist for allowing neurons
to automatically cluster the input patterns into classes without external identification
during the learning process.

eural net strategies have been proposed for all levels of image processing, the
justification for this being the example of animal vision systems where all processing
·- achieved by neural type structures.

There are strong links between biological and computational research into neural
structures and visual pattern recognition. From the biological perspective this is
Decause photo-receptors are amongst the easiest to stimulate in a controlled environ­
ment, thus much of the research into neural mechanisms has been targeted at the
~1 structures of biological systems. From the computational perspective one of
· e key motivations for neural research has been to understand and replicate the high
-erformance of the human visual system.

Jne of the earliest attempts to produce an artificial neural net was the Perceptron
proposed by Rosenblatt[29]. The Perceptron was based on three layers of units
orresponding to different types of cell function. The first layer of sensory units
S-units) transmit an 'all-or-nothing• binary impulse on the basis of the the image

:ixel value presented to each unit. The S-units therefore constitute a sort of
limplified retina. The S-units connect to a set of association-units (A-units), each
"'"Writ connecting to a different but overlapping set of A -units in a random way. Some

_. the connections from the S-units to the A-units are excitatory and others are
Wribitory. The A-units transmit a binary value to the response units (R-units), on the
asi.s of a fixed threshold of an algebraic sum of the excitatory and inhibitory inputs

it. Again the A-units connect to different, overlapping random sets of R-units.

The output of the R-units is the output of the machine and is also fed back into the
machine in the form of inhibitory connections to those A-units which do not connect
to it. Learning is by reinforcement of those A-units and R-units that are stimulated,
in other words once an R-unit becomes or is made active to a given pattern it will
become active more readily the next time that that pattern or similar related patterns
are presented. The reinforcement rule is intentionally vague[30] but in the case of
the Mark I Perceptron and in most other implementations it is implemented by
variable weights assigned to the inputs of the A/R-units. When an A/R-unit is made
active the weighting of those excitatory inputs which are on is increased, making the
subsequent triggering of the unit more likely.

Computationally, the Perceptron has a highly parallel structure which seemed to offer
the prospect of much greater processing power than the von Neumann sequential
programmable machines starting to fmd application at that time. However, the
processing potential of the neuraljconnectionist model remains largely untapped.
Criticism of Perceptrons has often centred on their inability to perform image
processing tasks such as determining connectivity, i.e. Minsky-Paperts •percep­
trons • [31]. This criticism may have been unfair for two reasons. First, it is not clear
that connectivity forms a necessary basis for visual pattern recognition[32]. Second,
the Perceptron was a very simple even stylised neural net, in reality the retina and
visual cortex include many specialised cells which may perform some of the tasks
not achievable by the simple Perceptron.

To address these questions, and fuelled by the underlying physiological research into
vision, a lot of effort has gone into emulating the behaviour of specialised mechan­
isms in the human brain. Thus very advanced models and sometimes even hardware
exist which mimic human retinal cells[33], feature extraction cells[34] and binocular
vision[35].

There is however, a more general problem with neural nets, which is that they do not
cope well with rule based algorithmic as opposed to sensory complexity. Thus a
simple rule such as •select the object of medium size • cannot easily be programmed
into a limited artificial neural net. Many useful tasks contain a great deal of
algorithmic complexity; ignoring this can lead to machines that cannot make use of
readily available rule-based knowledge about how things can be done.

There are two ways around this problem:

- One could build a complete neural based system which is capable of all levels
of semantic as well as sensory processing. Such a system would be able to learn
by instructions as well as experience and would be able to follow rules to
perform tasks such as counting or sorting. However, such a system may not be
attainable without resorting to levels of neural complexity not presently achiev­
able.

- The other more practical solution for present day systems is to integrate the
neural net with a programmable component to perform the algorithmically
complex tasks. The question is, what is the proper division of tasks for a given
system?

Given the development of neuroscience from the study of sensory processing, it is
no surprise that neural nets are often presented as pre-processors and recognisers to

e controlled by a higher-level programmable component. The assumption that is
implicit in this approach is that algorithmic complexity is confmed to the higher
:::emantic levels of processing.

The validity of this assumption very much depends on the particular system being
implemented. In the context of an OCR system a sophisticated neural pre-processor
may be inappropriate. This is because algorithmically complex tasks such as object
location and separation depend on the processing of the data used for pattern
-lassification e.g. if there is a ligature joining two characters we may wish to divide
the features describing the object in two[36], which is algorithmically complex.

Generally, if we wish to make the greatest use of rule based information about how
a task may be performed then this can be achieved by confming the non-algo­
rithmically programmable components (neural-nets) of a system to the core pattern
classification task. This limitation on simple neural nets was recognised by Rosen­
blatt:

Statistical separability alone does not provide a sufficient basis for higher order
abmaction. Some system, more advanced in principle than the perceptron, seems to
be required at this point." Rosenblatt [29]

Whether or not one adopts a neural strategy, the justification for research into any
technique is that one cannot apply an algorithm until it has been discovered. Work
cmrently in progress on emulating the functions of the retina and cochlea give a
profound insight into the sort of algorithms which are required to perform complex
tasks such as continuous speech recognition or stereoscopic vision.

2.2.4 von Neumann machines

The von Neumann architecture is particularly suitable for intermediate and higher
levels of feature processing where the operations tend to be algorithmically complex.

~ively parallel architectures may be capable of executing 1,000 or even 10,000
times the number of instructions per second that can be performed on a sequential
processor. However, such statistics give little insight into the practical consequences
-.: parallel versus sequential processing for computing systems and real world
-tJPlications. In several aspects the sequential von Neumann processor turns out to
"'e better than a simple comparison of integer operations per second might suggest.

Computational aspect

Utilisation: The sequential processor normally achieves 100% utilisation of its
processing potential, i.e. given a problem the processor executes instructions at its
maximum rate until the problem is complete. On a parallel processor however,
atilisation is often limited by the innate degree of parallelism of the problem. Also,
· a parallel processor cannot perform all the steps in a task (e.g. an image-parallel

processor cannot efficiently perform high level pattern classification tasks) then the
ldilisation of the parallel hardware will be limited by the throughput of other
-omponents of the system.

Inter-process communication: Procedures executed on a sequential processor can
communicate with each other at the maximum processor memory bandwidth through
shared variables. When a process is split between many physical processors the
inter-process bandwidth is normally considerably lower than the processor local
bandwidth. The MIPs statistic is only dependent on local memory bandwidth. Such
comparisons therefore give a pessimistic view of the relative performance of the
sequential processor. Maintaining a complex global data structure, as is useful when
determining the connectivity of images, is typical of the sort of problem which would
be limited by the inter-processor bandwidth on a parallel processor

Technological aspect

Sequential processors are used in almost every sphere of human activity. The
implication of this general applicability, whether a priori it is deserved or not, is that
a great deal of human resources have gone into making them extremely efficient.
One could argue that other technologies might perform better in certain situations
given the same level of investment. However, the point is that investment in a
technology is conditioned by its general application. When application-specific
processors are designed the state of the art silicon technology adopted in the latest
sequential processors may not be available. Also the lag time of actually implement­
ing the processor means that there may be a large handicap for the application specific
processor in its underlying technological base.

Programming aspect

The main advantage of sequential programming is the ease with which a language
hierarchy can be constructed. The reason for this is that a sequential process
explicitly defmes when information is available, i.e. when a statement is executed
the proceeding statement is guaranteed to already have produced its result. When .
parallel algorithms are introduced to exploit parallel processing hardware the tem­
poral complexity of scheduling the information flow in a process is exposed to the
programmer[3 7]. Also, for whatever reason, a great deal of application specific image
recognition know-how is embedded in sequential software. The need is to develop
approaches which do not require the re-writing of all this sequentially defined
programming effort.

Though sequential processors have some very good characteristics it is of course
possible to speed up any task for a fixed level of technology by adopting some form
of parallelism. The question is can we retain the concrete advantages of sequential
processing whilst reaping the benefit of some perhaps limited parallelism? Image
processing is characterised be a few computationally intensive tasks which could
easily be performed in parallel hardware. In particular neighbourhood functions are
easy to implement efficiently either in cellular arrays or pipeline processors. How­
ever, the high cost of programmable cellular arrays and pipeline processors would
limit the application of such an approach. A dedicated processor could be im­
plemented very efficiently as neighbourhood operators are inherently simple to
construct. However, in order to justify the design cost of a dedicated approach the
functions to be executed should be generally applicable, otherwise the technology
would risk becoming redundant as processor speeds increase and the particular
•faster' application changes.

- other path to parallelism, ..,. ~ .. s: maining the advantages of a basically sequential
ppoach, is to adopt ·coarse-grained· or ·process• parallelism. This approach simply

ides a sequentially defined program into reasonably self-contained sub-programs
_c ~ can then be executed on separate sequential processors in parallel. The
nmtage of this approach is that the program can be developed as a series of

:ncurrent processes and these can then be implemented on different numbers of
hysical processors to provide a range of cost/performance options at any particular

1 of sequential processor technology. The main draw-back of this approach is
, · the amount of parallelism which can be achieved is severely limited, also care

to be taken to physically place processes on processors in such a way that the
~g of processors is balanced and a high level of utilisation can be achieved. The
~- of image processing model shown in Fig 2.1 fits well onto the coarse grained
oproach as the different levels of processing can be reasonably independent with a

simple ordered flow of data from low-level processes to high-level processes.

1.2.5 Technological perspective

- - e question of which architecture to use for image processing is not simply a product
· their theoretical merits, but also of the underlying technological base. For example,
imaging technologies improve there is a possibility for improving the performance

: pattern recognition by increasing the resolution of the image. However, this has
effect of altering the balance between low-level pixel processing and higher level

cature processing. This is because the feature density will remain roughly constant
w ~ a given task even though more image data is generated as the marginal cost of

imaging falls.

\feanwhile the overall performance of von Neumann computers has been doubling
roughly every five years. State of the art RISC processors will soon be performing

1er 100 MIPs, the T9000 next generation transputer is designed to perform over
_50 MIPs. Coupled with this is a steady increase in memory packing density leading

faster more memory intensive algorithms.

-ne effect of these changes, higher resolution and faster processing, is to bring the
eature generation throughput of hardware and the feature processing throughput of
~are more into balance. Previously hardware image processors have had to
-uform some of the higher level tasks, to which they were not well suited, in order
- achieve a system throughput commensurate with their low-level image processing

..,eed.

'f'tthin this context the need is increasingly for image processors which only perform
- f: pixel processing dependent tasks. Firstly, because this is the most computation-

- . intensive part and therefore the potential bottleneck for image processing
.:.pplications. Secondly, because all the feature processing for many applications can
- ow be performed at real-time speeds on simple microprocessor pipelines. Allowing
llicroprocessors to perform all the feature processing allows greater algorithmic
-tmplexity to be adopted and reduces the cost and complexity of the hardware image
processor. Ofcourse, there will continue to be some tasks that will require fme-grain
-arallelism at every stage, perhaps supported by massively parallel, topologically
-exible, architectures such as the Connection Machine[38].

2.3 Intermediate-level image processing tasks.

To get an idea of what type of processing architecture and strategies have to be
adopted at the intermediate-level it is necessary to look at the two main tasks normally
associated with this level; connectivity determination and feature extraction.

2.3.1 Connectivity determination

A connected object is made up of a set of neighbouring foreground pixels. The rule
used to determine the pixels neighbourhood (4 or 8 connected) determines the type
of connected object.[39]

Is connectivity important?

The Minsky-Papert criticism of neural nets[31] was partly based on the inability of
the Perceptron to determine the connectedness of images. To counter this neural net
protagonists point to the difficulty even humans have in recognising complex
connected objects.

Both points are valid. One cannot expect to train a simple Perceptron to recognise a
fish and then expect it to recognise two fish as anything but a mess. This is because
it cannot fundamentally recognise that there are two distinct objects in the image.
On the other hand if we use connectedness to separate the fish this only works if the
fish images do not overlap.

In fact one could argue that locating objects is an algorithmically complex task and
that there is no single level of processing between image and pattern recognition
output which can determine where an object is located. This is the challenge for
image processing hardware, how can we propagate sufficient information so that
objects for recognition can be located at different levels?

Having stated that connectivity information is not always sufficient for object
location, it is however very useful. Sometimes, as in circuit board analysis connec­
tivity information can be used directly to determine if tracks touch etc.[40]. Some­
times connectivity is usable for object location as in many OCR tasks. The ultimate
justification for propagating connectivity information about an image is that this
facilitates higher levels of object location. For example if a character breaks into two
connected components, provided we recognise the fault, connectivity information
allows us to eliminate the information relating to the break and to re-connect the
character. This can be achieved by the following type of algorithm:

IF fault in adjacent connected objects

THEN

Merge feature Lists

remove features from overlapping broken ends.

END

Component Labelling

The process of component labelling is one of assigning labels to pixels in an image

by nearest neighbour propagation. These labels are then processed so that the
connectedness of the image is revealed.

Component Labelling can be perfonned on sequential processors[14], pipeline
processors[20] or Cellular arrays[41].

The basic raster scan sequential method is quite straightforward[42]. Simply go
through the image sequentially assigning new provisional labels whenever a pixel is
found whose nearest neighbours have not already been assigned a label. If a pixel
has a neighbour that has already been assigned a label then the pixel is assigned the
same value as its neighbour.

This process might produce the following result for a simple image containing two
connected components .

. . 11 . . 2 2 ... 33

. . 11. .22 ... 33

. . 11 .. 2 2 .. . 33

. . 111111. ... 33

A record is kept of the label values that are assigned to neighbouring pixels, such as
the values 1 and 2 in the above picture. Label values are then grouped into a list
structure so that label values that belong to the same connected object are placed into
the same list.

Finally the provisional value labels are replaced by a list value. The above picture
would generate two provisional label lists as there are two connected objects. The
final output would be:

.. 11 .. 11 ... 22

. . 11. .11 ... 22

. . 11. . 11 ... 22

. . 111111. . .. 2 2

The main objection to component labelling as a method for resolving connectivity is
that it is relatively slow when perfonned on a sequential processor. This is due to
the fact that every pixel in the image must have its label neighbourhood inspected
before label assignment. Though this speed limitation can be alleviated by perfor­
ming the provisional label assignment in pipelined hardware, and by pre-processing
the image to reduce the complexity of its connectedness[43] [44].

The other criticism of component labelling is that it is difficult to determine when an
:"lbject is complete until the image is complete. This is because fmding out when a
value is no longer being used requires non-local processing. This follows from the
paper by Stanely M. Selkow[45] analysing the ability of a linear array of processors
to determine connectivity in one pass of an image.

Although one may have anticipated that the complexity of many of the properties
investigated would be less sensitive to the size of the picture, it may be seen that the
connectivity property, which is basic to many of the properties studied, necessitates
- global computation." S.M.Selkow[45].

Other algorithms for resolving the connectivity of raster scanned images rely on

maintaining a tree structure of either edge points [46][47] or pixel runs [48][14].
Though more complex algorithmically, these methods are more efficient on a
sequential processor as fewer physical data items have their connectivity determined.
Also, the connectivity can be resolved once the object is complete, because the
persistence of the data items is bounded, e.g. when a run is encountered we already
know that it is complete. The time taken by these methods can also be justified as
they can generate useful topological feature data, in contrast to the component
labelling method which generates no useful feature data by itself.

Pixel run method

The pixel run method relies on converting the image into a series of one-dimensional
connected elements called runs. Runs are then partitioned into two types, blocks and
hinges. A block is any run which is connected to not more than one other run in the
line above and the line below. Any run connected to more than one run, above or
below is a hinge. The following picture illustrates the decomposition of a connected
object into hinges and runs:

. . . . xxxxx

. . xxxxxxxxx

. • XXX ••• XXX •.•.•

• • • XX ••• XX ••••••
. . xxxxxxxxx
• • XXX ••• XXX •••.•
. . • XX ••• XX ••••••

. ,', .xxxxx

...• BBBBB•..

. . HHHHHHHHH•

• .BBB ... BBB
. .. BB ... BB
. . HHHHHHHHH ••...
. .BBB ... BBB .••..

. .. BB .•. BB ... , ..

. ..• HHHHH

B=Block,H=Hinge

Instead of processing pixel data the algorithm now processes block and hinge data.
The number of data items can be further reduced by amalgamating blocks into 2-D
structures. The connectivity of the blocks and hinges is represented in a tree
structure. The important difference between the pixel run method and the component
labelling method is that when the last block or hinge of a connected object is
encountered, it is known that the object is complete. With the component labelling
method, when the last provisional label associated with an object is encountered it is
not known whether that label is unique or whether it has been propagated to some
other part of the image.

The relative positions of the hinges and the blockjhinge intersections can be used as
topologically dependent features for higher level pattern recognition tasks. However,
the run-length method cannot easily be adapted to the labelling of other features such
as skeletonization features which can be generated in hardware.

Edge point method

The edge point method constructs a chain-coded contour of the image as it is raster
scanned. The objects are known to be complete when the contour is closed.

In contrast to the Pixel run method of connectivity determination, the method based
on edge points generates little feature data, instead the output of the algorithm is a
stream of chain-coded contours. These have the ability to reconstruct the image fully
and are therefore useful for image compression, but further processing is required to

generate a higher level description of the image. One advantage of the edge point
method is that it is well adapted to multilevel connectivity determination[47].

2.3.2 Feature extraction

Normally, an important step in any pattern recognition task is the transformation of
sensory input data into higher level features.

Feature extraction is performed as features generally have two useful properties.:

- There are fewer features than sensory inputs. Thus processing features instead
of sensory inputs uses processor time and memory more efficiently.

- Features are better discriminators than sensory inputs. i.e. each feature says
'more' about the object to be recognised than any particular sensory input. This
facilitates the recognition process.

Feature extraction has two main drawbacks:

- The transformation from sensory to feature data may itself be highly costly, as
it will require computationally intensive sensory processing.

- The feature transformation may be lossy so that not all the sensory data which
might discriminate between patterns is present in the feature data. This can lead
to ambiguous recognition. Though this has to be seen in the context of a
recognition process which may itself be lossy, i.e. unless we are to maintain a
database containing an exact template of every instance of the training set, some
ambiguity due to the data compression inherent in most pattern recognition
approaches is inevitable.

A myriad of very different feature extraction algorithms exist. From simple pixel
counting schemes to sophisticated approaches based on skeletonization, Euler num­
bers, Hough transforms, characteristic loci, Fourier transformation, hinges and runs,
etc.

In turn these different approaches are executed on a variety of computational
architectures: von Neumann machines, neural nets, cellular and pipeline processors,
custom silicon devices or even analog circuits. Feature types can be subdivided into
topological and non-topological. Topological features have the property that they
fully describe the topology of the input image. This may be useful in itself for
recognition or it may be used to reconstruct the image at a higher level as in circuit
diagram analysis, e.g.[49].

An important class of feature extraction algorithms is that based on binary operations
on the 3x3 pixel neighbourhood. These can be efficiently performed on cellular array
or pipeline image processors.

3x3 binary neighbourhood operations can be used to generate a variety of local
features describing e.g., edge points, corners, junctions. Topological features can be
generated by performing transformations of the image that retain the connectivity of
the image. One such class of topological feature extractor is based on performing

skeletonization [50].

Skeletonization is the process of forming the endoskeleton of foreground connected
components from an input image. The effect of skeletonization can be seen in the
following simple illustration.

. xxxx • •••••• X •• • •••••••

. . . xxxxxxxxx xxx
• • • XXX •• XXXXX •••• x ... x
• • • XX •••• XXXXX ••• • ••• XX ••••• XXX ••••

. . . xxxxxxxx • ••••• X ••• X •••••••

. . . xxxxxxxx x.x

. xxxxx x

. xx x

There are many issues relating to the exact algorithm used and type of skeleton
formed[50]. We will return to some of these issues in the context of pipelined
neighbourhood operators in chapter 4.

Skeletonization of an image is accomplished by successively removing edge pixels
of the foreground components whilst maintaining the connectivity of the image. This
task is performed until only components of 1 pixel thickness remain. One motivation
for skeletonization is that if the nodes of the skeleton are used as features these
features describe the topology of the original image. These topological features can
then be used for direct recognition of different topological classes. The relative
geometric positions of these nodal features are also good discriminators for many
visual pattern recognition tasks.

The big problem with skeletonization is that it requires an indeterminate number of
stages to generate the fmal skeletonized output. This is because only pixels from the
edges of connected components can be removed at each stage and still maintain the
connectivity of the components. Therefore it is difficult to make a machine with a
reasonable number of discrete stages which can guarantee to skeletonize an arbitrary
image, because objects in the image may be very fat so requiring a large number of
stages. This problem is exacerbated as imaging resolution increases.

One solution to the problem is to keep the image in memory and repeat the
neighbourhood operations iteratively until only skeletons are found in the image.
However, this produces a time indeterminate process with high latency between
picture input and feature output. This also implies that skeletonization cannot easily
be applied to a continuous image as might be generated in an industrial conveyer belt
vision application.

Run Length Features

The number of pixels, relative location and connectivity of run lengths in an object
are sometimes used as features. This could be the product of a run length connectivity
algorithm[48]. Run lengths are often used because images are run length coded for
compression reasons anyway. The nature of run length features makes them well
suited to the recognition of printed text founts where the aspect ratio and therefore
length of run is consistent. Also, it has been demonstrated that one can generate
vector data by processing the run length coding of an image [51]. An example of the
sort of features that can be generated by this method are given in[52].

Here, features represent lines at different angles in the image placed relative to other
lines from the same character.

The above picture shows the decomposition of the letter •p• into a set of stroke

features. Each feature has some parameters associated with it, i.e., length, x,y
position in the bounding box and angle.

The main drawback of run length features is that even if the run lengths themselves
are generated in hardware. the run length processing required to generate vectorised
data is still quite high. Also, the selection of features which can be generated
efficiently does not correspond to those features which may be generated by access­
ing the pixel neighbourhood directly.

2.4 Pattern recognition

The requirements of the higher-level pattern recognition task determine what feature
extraction and type of object location is useful. There is no point in propagating
information from the feature extraction process which is not required for pattern
classification. Likewise, enough information should be propagated that it can
actually differentiate between the pattern classes required to be recognised.

In their paper 'Character Recognition- A Review• V.K.Govindan and A.P.Shivapra­
sad classify pattern recognition approaches into one of two categories[53]. These
are the Statistical/Decision-theoretic, and the syntactic/linguistic/grammatical/struc­
tural approaches. This separation divides pattern recognition strategies into one of
two philosophical dispositions.

The fll'st is to regard the features as information about which initially we know
nothing. Statistical analysis can then automatically weight those features that are
found to be good at differentiating patterns. The input features are normally mapped
onto a vector of fued length n, the input pattern can be mapped into an n-dimesional
pattern space, and a pattern class can be defmed as an enclosure within that space[54].

The second is to assume that the structure of the feature data can be interpreted in
some consistent way. This structure can be revealed by processing the interrelations
between features[55]. Formal language-theoretic models can then be used to con­
struct a grammar describing learned patterns and the syntax of input patterns can then
be mapped onto pattern classes by syntax analysis[56]. ·

The performance of the two dispositions depends on the task. If the topology of a

character always describes a pattern fully then the structural/syntactic approach is
very good. In this case the statisticalfdecision theoretic approach performs less well
as it does not ·see' the topology as a unique feature as it is only revealed when the
structure or connection tree is parsed

On the other hand if the image is prone to random discontinuities then a syntactic
approach may be inappropriate as the discontinuities will completely transform the
topology of the character. However, with this type of noise the statistical approach
can often (depending on the feature mapping) locate the character as the •best' or
·nearest' choice. The syntactic approach cannot locate the ·nearest' choice in a useful
way as it is not operating in a uniform pattern space, e.g. the nearest topology if there
is a discontinuity is likely to be the wrong character.

A problem with the Statistical approach which is brought out in the paper "Feature
Identification for Hybrid Structural/Statistical Pattern Classification" by
H.S.Baird[57], is that it is reliant on the input class-conditional distributions being
uni-modal. That is, all patterns to be classified as the same must tend to a contiguous
area inn-dimensional space. Thus, in converting between structural features (such
as those described in the previous section) and a fued length vector for statistical
recognition care has to be taken that this mapping leads to a consistent interpretation,
i.e. small changes in the input parameters must lead to small changes in the statistical
classification vector.

To overcome this problem H.S.Baird proposes a hybrid structural/statistical ap­
proach[57]. In this approach the mapping of input features onto the statistical fixed
length vector is by means of clustering of the input features. The input features are
clustered during the learning process to form regions in the structural feature space.
During the run-time recognition of patterns, a fixed length vector is formed by a bit
being set for each cluster region that intersects an input feature. The resulting n-bit
vector is used to classify the character using a Bayesian statistical classifier.

Optimally, and without any time or memory constraints, one would seek to use a
combination of the two dispositions[56], as in the above example. The main draw­
back with such schemes can be their relatively slow execution speed; the above
hybrid recognition produces a classification speed of only 6 characters/second[57].

2.5 Motivation of research

Interest in the low and intermediate levels of image processing was fuelled by the
perception that this often constitutes the bandwidth bottleneck in visual recognition
systems. Also, the throughput of higher levels of pattern classification and semantic
processing can be increased to match increases in low/intermediate processing by the
adoption of process parallelism on microprocessor pipelines or •fme-grain' parallel­
ism perhaps based on neuralfconnectionist nets.

The continuing increases in visual resolution and microprocessor speeds suggest a
type of image processor for pattern recognition based on the close coupling of image
parallel hardware and micro-processors. The image parallel hardware could perform
the computationally intensive pix.el processing tasks with the higher algorithmically
complex levels of feature processing performed on microprocessors.

If the cost of the system was modest and the processing was general purpose then
such an image processor could fmd application in a range of visual pattern recognition
tasks. Within this context the high cost and restricted structures of programmable
cellular or pipeline processors would be inappropriate. Therefore, dedicated pipeline
processors based on binary neighbourhood operators were investigated.

The major obstacle to the implementation of the type of image processor envisaged
was found to be the lack of suitable intermediate-level algorithms. Suitable algo-.
rithms for feature extraction and connectivity determination would allow for all pixel
dependent processing tasks to be implemented in dedicated hardware. The difficulty
in constructing such algorithms is that the intermediate-level algorithms must gener­
ate non-local information about the low-level pixel data, though only image-local
processing is performed easily on image parallel hardware.

Chapter 3.

Initial Experiments, PiNOLa
specification and PiNOSim
implementation
This chapter describes the early stages of the research and the simulation language
which evolved from this work.

3.1 Initial work

Before starting the research presented here a very simple 3x3 binary neighbourhood
operator had been implemented as a TAHC06 gate array. One of the initial areas of
exploration was how to integrate this gate array with a line store and scanner to
produce a binary low-pass spatial filter. The resulting circuit shown in Fig 3.1 is

.3x.3
Vidi!!D

01 01 Win_
02 02 +

Rl!!sl!!'i FIFO Logic
4Kx9

LSyn.:: Oui:pui:
RO

Clo.::lc
WR

Fig 3.1: 3x3 neighbourhood operator and line store circuit

little more than the gate array and the FIFO component used to implement a variable
length line store. After receiving a reset signal, the circuit in Fig.3.1 writes binary
pixels into the FIFO until the first line-sync. The circuit then reads and writes data
synchronously so maintaining the length of the line store. Two lines of the image
are stored so that a 3x3 window can be constructed from three rows of three binary
latches in the gate array, as shown previously in Fig.2.3

This work was presented in a paper, 'Pipe lined Logical Convolvers for Binary Picture
Processing', published in Electronic Letters[58]. The paper demonstrates the sim­
plicity, speed and low cost of dedicated neighbourhood operator pipelines based on
modern components. (Fast, single chip 4K deep FIFOs as required for variable width,
300 d.p.i. line stores have only been easily available since 1990). However, as was
mentioned in the paper, to realise the potential of 3x3 binary operators requires a
powerful and interactive simulation language. The justification for this conclusion
is two fold:

- Even a single 3x3 binary operator can be extremely complex. Each instance of
the 3x3 window can be given a binary output, independently of the output given
to any other instance of the 3x3 window. As there are 29 different possible 3x3
windows, 512 bits are required to describe a 3x3 operator uniquely. It follows
that there are 2512 distinct 3x3 binary operator functions. If the four post
processed neighbours from a sequential 3x3 ofX:rator are also used to determine
the output then there are approximately 2819 distinct functions. To select one
function from 28192 requires the ability to split the specification of the operators
into separate sub-functions. For instance we might wish to specify the effect of
an operator on the connectivity of the image separately from its effect on the
edges of objects in the image.

- Dedicated pipelined neighbourhood operators are easy to interconnect, very
complex pipelines can thus be constructed. The simulator should therefore be
able to describe any pipeline, parallel pipeline or tree structure.

Existing languages for describing neighbourhood operations tend to be aimed at
specific architectures, often including powerful extensions only available on particu­
lar hardware. For example, the language which programs the PICAP machine uses
notation which specifies the iterative behaviour of functions[20], so that a function
may be repeated an indeterminate number of times dependent on the input image.
This function is only meaningful if the underlying architecture, i.e. a frame store, is
available.

The evolution of a new language followed from looking at how pipelined neighbour­
hood operators could be implemented efficiently in custom silicon. This research
stemmed form a perception that a useful dedicated device would have to consist of
a large number of discrete stages, say 30 or 40. If these stages could be implemented
efficiently in custom VLSI then all the stages could be placed on one chip with a
single wide line-store bus.

The architecture devised to implement neighbourhood operators in VLSI later
developed into a language for describing such operators. The language still has the
potentially useful property of being able to generate an efficient VLSI design from
the specification of an operator in the language.

Each line in the AND plane in Fig.3.2 specifies a 3x3 template which generates either
a •high exception• or •low exception• in the OR plane. These •exception• signals
over-ride the default value of the operator which is the value of the centre pixel of
the 3x3 window. This method has the merit of allowing any possible function to be
constructed whilst only requiring the specification of those templates which are to
effect the output relative to the input.

The decomposition of the neighbourhood operator definition into an AND OR plane
structure allows the operator to be specified in custom silicon without resorting to a
512 bit look-up-table which would take up much greater silicon area.

3x3Window

~ ~ ~ ~ ~ ~ ~ r (()

-I-r9
-I- tR T' ?1_ n

.1, ?= -I-

LJ

y !:r! !:r!
y !:r:! !:<:!

YY;1c
!:r! '-r

I

~

?=1

!:l
~
!:I:!
LJ

OR

r-

~ Default Value

Low Exception

High Exception

Fig 3.2: 3x3 operator implemented as an AND OR plane

3.2 PiNOLa specification

The 3x3 templates implicit in each line in the AND plane in Fig 3.2 can be represented
as a list of 3x3 symbols and an •exception• value. The exception value generated by
a template is either 1 or 0. A ·o· in the template definition represents a low value at
that location in the 3x3 window, a •1• represents a high value and a·-· is don•t care.

A neighbourhood operator requiring three lines in the AND plane could be specified
in the following way:

1 {high exception}
0 1 0

- 1 -

1 {high exception}
1 - 1

0 - 0
1 - 1

0 {low exception}
1 1 1
0 - 0

1 1 1

This is the starting point for the development of PiNOLa (Pipelined Neighbourhood
Operator Language). Each 3x3 template represents an entry in the AND plane
generating either a 1 or a 0 exception to the pre-processed default value, i.e. if the
3x3 window is given the following labels;

a b c
d e f
g h i

The boolean equation for the function specified by the above templates is;

e' := e*/[Any low exception set] + [Any high exception set]

e' := e*/[a*b*c*/d*/f*g*h*i] + [(/a*b*/c*/g*h*/i) +
(a*c*/d*/f*g*h*i)]

Where e' is the value of the pixel corresponding to e in the post-processed image. If
a low exception and a high exception are generated for the same 3x3 window the
output becomes ambiguous. (Though the above boolean equation makes an explicit
assumption about the precedence of high exceptions). To resolve this PiNOLa uses
the concept of a template hierarchy. Each template can be given a hierarchy value
•h• whose default is 0. Whenever a potential ambiguity arises this is resolved by
accepting the output value with the highest hierarchy. If the programmer specifies
an operator which contains an ambiguous output, i.e. differing outputs from templates
with the same hierarchy, this is trapped as an erroneous specification. Many levels
of hierarchy can be specified as in the following function which generates an edge
without corners foreground components of the image.

O,h1 {make all foreground background, level 1}

- 1 -

1,h2,s {retain all edges, level 2}
- 0 -
- 1 -

O,h3,s {delete all corners, level 3}
- 0 -
0 1 -

The 's' parameter in the above definition simply generates all reflective and rotational
symmetric templates, which makes the definitions more succinct. The effect of the
above templates is therefore to: invert all foreground pixels, unless that pixel is at a
4-connected edge, unless that pixel is a 4-connected corner pixel in which case it is
inverted.

A template may include an 'i' parameter which generates the inverse function, e.g.

1,i
0 0 0

0 1 0
0 0 0

The above template changes the value of pixels surrounded by the opposite value.
The 'i' (invert) parameter applies a function specified in terms of the foreground to
the background as well, or visa versa.

To extend the power of the template descriptors further, the concept of an OR AND
OR plane structure was used, which could produce more compact silicon implemen­
tations for some functions. Upper case letters in the template are used to specify a
high OR group. Lower case letter specify a low OR group. e.g.

1

A A A
a - a
B B B

specifies a function which outputs a high exception whenever there is a high value
in the top row, a high value in the bottom row and at least one low value in the middle
left and right edges.

i.e.
e' :; e + [(a+b+c) * (g+h+i) * (/d+/f)]

As well as the standard 3x3 neighbourhood functions there is another class of
'feedback' or 'sequential' function. These functions look at the four post pro'cessed
neighbours available in a pipelined 3x3 neighbourhood operation.

A 'feedback' function is defmed as;

e' := f(a',b',c',e,f,g,h,i)

Using the pre and post processed values generates what is referred to here as a
'hybrid' function, i.e.:

e' := f(a,b,c,d,e,f,g,h,i,a' ,b' ,c' ,d')

A feedback function is implemented in PiNOLa simply by adding an 'f' parameter
to the template definition, e.g. the following 3x3 template produces a feedback
blocking function. The effect of this function on an image is shown in Fig. 3.3.

1,f
- 1 -
1 0 -

Hybrid functions can be specified in two ways. Firstly, simply by mixing feedback
with standard templates as in the following:

O,f,h1 {remove from left, feedback}

0 1 -

1,h2 {inhibit removal of lines if the left edge has this profile}
0 0 -
0 1 1
0 0 -

Hybrid functions can also be specified directly as one template. This is useful if the
interpretation of the post -processed neighbourhood is to be dependent on the fu113x3
pre-processed neighbourhood.

1,f
0 1 0 1 0 0
0 0 0 0
- 1 -

Feedback and hybrid functions have the important property that they can generate
effects which are propagated in the direction of the scan. Within the context of the
type of image processor which we are trying to evolve, feedback functions may be
able to generate non-local information from an image. This is because information

Fig.3.3: effect of 'blocker' feedback function

is propagated through the image by such functions.

The effect of the non-local propagation property can be seen in the blocker function
where in one pass the foreground is propagated in the direction of the scan beyond
the 3x3 neighbourhood.

Using hierarchy it is also possible to split the definition of feedback functions
between a connectivity relationship e.g. •Maintain the connectivity of the image',
and an effect e.g. •erode the foreground components of the image'.

The following three templates specify a function of this type.

1,f,h2,s,i {maintain 4 connect relationship, level2}
a 1 b
a 1 b
a 1 b

1,f,h2,s,i {maintain 4 connect relationship, level2}
a a a
a 1 1

a 1 o

O,s,h1
- 0 -

{delete edges function, level1}

- 1 -

The above templates specify one pass in a connectivity-maintaining edge erosion
function. The connectivity relationship templates are given a higher priority than the
edge erosion template. Thus the function deletes pixels from all edges where deleting
a pixel does not alter the 4-connectedness of the image.

A PiNOLa program can include any number of neighbourhood operator descriptions,
specified in the following format:

BPP name 1
list of templates
END

BPP name n
list of templates
END

The names given to BPPs (Binary Picture Processors) can then be used to describe
a pipeline using the following FLOW statement:

FLOW
BPPname - BPPname <

> BPPname
> BPPname <
I > BPPname
I > BPPname - BPPname
> BPPname

END

To produce a compact and visually intelligible interface the FLOW description has
been given a 2 Dimensional structure. The pipeline symbols have the following
meanings.

- ·-• pipeline continuation from left to right.

- •<• pipeline continuation from left to down.

- ·>·pipeline divergence from above to down and right.

some parameters can also be applied to instances of operators called in the pipeline
FLOW descriptor.

- •d• display output of operator

- •mN• make a pipeline of N consecutive operators

3.3 PiNOSim implementation

Having found a need for a pipelined neighbourhood operator simulator and evolved
a language to describe the simulation, an implementation •piNOSim • was produced.
PiNOSim was implemented in Modula-2. The program is divided into three modules,
Parser, Compiler and Run-time system.

Parser Module

The parser uses recursive descent procedures to construct a list of operators and a
pipeline tree of operator instances. Syntax errors are reported to the user.

Compiler Module

The compiler takes the operator list and generates a list of 3x3 sub-templates for each
template in the defmition. These sub-templates correspond to the original AND OR
format derived earlier. The sub-templates are then purged to remove duplicate
sub-templates, and sorted into hierarchical order. Each possible value of the 3x3
window is then compared with the sub-template list to generate a 512 bit look up
table (8192 bits for Hybrid functions). Instances of these look up tables are then
inserted into the pipeline tree which is then passed to the run-time module.

Run-Time Module

The run-time module takes the pipeline tree and sets up a concurrent process for each
node in the tree. Then chunks (1 024 bits) of the input image are passed to the top
node which then passes processed chunks to its child processes. Those operator
instances that are to display to the screen are allocated a display window.

All the processes in the run-time module were designed to mimic the operation of
hardware, e.g. the line store was implemented as a variable length FIFO, the 3x3
window as an address to a 512 bit look up table and the image data as streams of
boolean values. Optimisations such as run-length coding of image streams or hierar­
chical inspection of the 3x3 neighbourhoods were avoided to maintain the corre­
spondence between software and hardware. This direct correspondence enables the
simulation of the underlying hardware as well as the higher level PiNOLa programs.
One consequence of this approach is that it allows the extension of the hardware

simulation beyond the PiNOLa language, something which was vital for the inves­
tigation of hardware connectivity ~ing described in Chapter 5

Chapter 4

Experiments with PiNOSim and
Feature Extractor Design
PiNOSim was used to investigate a number of image transformations some of which
are included here. This investigation led to the development of a new feature
extraction algorithm.

4.1 Edge pixels

One of the easiest features which can be generated from an image are the edge pixels
between background and foreground components of an image. The edge pixels have
the useful property of retaining a great deal of the original information in the image;
this is the basis of run-length encoding etc. In terms of pattern recognitio~ edge
pixels allow the area of the input object to be determined accurately. The area of an
object is a very useful statistic for some pattern recognition applications as it is highly
immune to variance caused by the rotation of the object. This method of recognition
is used in the automatic identification of shoe segments[59]. The parameters of this
particular recognition task are that nothing is known about the orientation of the shoe
segments and the shoe segments vary greatly in size, making area classification a
very useful initial step in the recognition process.

A 4-connected edge can be generated by the following operator:

BPP gen4con {inverts all foreground non-edge pixels}
0

1 1 1
1 1 1
1 1 1

END

The drawback of using edge pixels as features to be propagated from the image
parallel hardware is that there may be a lot of edge pixels and each individual pixel
tells us very little about the object. The implication of this is that a lot of processing

has to take place at a higher. perhaps non-parallel, level to extract super-features from
the boundary data. 'This is the case for the shoe segment identification machine
mentioned above, here the boundary data is transformed into a set of 18 equally
spaced radii from a calculated centroid position. The lengths of the radii are then used
to classify the object. The overall throughput of the system is 2 seconds per shoe
segment using a three processor pipeline and a hardware edge extraction operator.
The extremely difficult recognition problem in this application requires such a
high-level approach, but this would not be feasible if the application required a much
faster throughput. If we wish to recognise objects at a faster rate then we can move
the computational effort down from the software process towards the image parallel
hardware. 'This can be achieved by generating features that are better discriminators
in the hardware neighbourhood operator pipeline.

4.2 Erosion and dilation

As well as generating features, certain applications may require various pre-process­
ing neighbourhood operations to perform such tasks as the removal of small objects,
spatial low-pass filtering and object separation. These effects can be achieved by
performing erosion and dilation. An erosion operator removes the outer layer of
pixels from the edge of foreground objects, a dilation operator adds a layer of pixels
to the edge of foreground objects. Performing a series of erosion stages followed by
a series of dilation stages has the effect of removing small 'salt and pepper'
components of the image and of smoothing jagged edges of the image. By introducing
the concept of maintaining connectivity during the dilation stages, erosion and
dilation can also be used effectively to separate loosely connected components of an
image, something which is used in Biomedical imaging[lO]. This type of processing
is demonstrated by the following PiNOLa program the output of which is shown in
Fig.4.1. The picture is first eroded for five stages and then thickened for the same
number of stages whilst maintaining the 4-connectivity of the image. The input
picture is shown top left and the process progresses left/right top/down. The fmal
picture shows the segmented image restored to its original size.

BPP Erode
O,s
- 0 -
- 1 -

END

BPP ThickMod
{maintain 4 connect}

1, f, h7' s, i
a 1 b
a 1 b
a 1 b

{maintain 4 connect}
1, f,h7' s, i
a a a
a 1 1
a 1 o

1, s {thicken}
- 1 -

- 0 -

END

BPP Input
1

1 1 1
1 1 1
1 1 1

END

FLOW 1
Input / d - Erode / d,mS - ThickMod / d,mS

END

Fig.4.1: Connected object separation by erosion/dilation

The main drawback of erosion and dilation for image smoothing is that it affects the
connectivity of the image. In the context of a particular application this effect may
be tolerable or even desirable as in the above example. However, the particular effect
desired will vary with the particular application. In tenns of OCR processing we
might often wish to reconnect objects in an image prone to discontinuities or
disconnect characters that are joined together as ligatures. The problem is that a
priori we do not know which effect would be more useful and we might wish to apply
different transformations to different parts of the same image. Therefore erosion and
dilation is most useful in those applications where quality of the images is very
consistent as in circuit inspection tasks.

4.3 Skeletonization

Skeletonization is the reduction of all the foreground components in an image to lines
of one bit thickness by a process of connectivity preserving erosion or thinning[SO].
A further distinction is sometimes made between connectivity preserving shrinking
(CPS)[60] and skeletonization. The difference between CPS and skeletonization is
that during the erosion process skeletonization not only preserves the connectivity
of the image but also the ends of thin lines. Thus, if we apply CPS to a simply
connected object, after a number of stages the object is represented as a point, whereas
the skeletonization process will generate a skeleton made up of thin lines representing
the limbs of the original connected component. From the point of view of feature
extraction therefore skeletonization is more interesting as the end nodes of the
skeleton represent topological features in the image.

One of the problems with skeletonization is that it can be quite a slow process. If
feedback functions are not used then a 3x3 operator can only peel off pixels from
one side of the foreground components at a time and still maintain the connectivity
of the image. Thus skeletonization has to proceed by alternately removing pixels
from north, south, east, west, this process therefore requires four stages per layer of
pixels to be removed. Pixels can be removed from all four sides at each stage by
adopting a hybrid function which makes use of the post-processed neighbourhood
pixels. However, care has to be taken to minimise skew due to the direction of scan
in the image as feedback functions are not symmetrical in their effect. The following
PiNOLa statements describe a hybrid operator 'ThinFour• which removes pixels
from all four sides of the components of the image whilst attempting to minimise
skew. The result of three iterations of the operator is shown in Fig.4.2.

BPP ThinFour
{maintain 4 connect}

1, f, h7, s
a 1 b
a 1 b
a 1 b

{maintain 4 connect}
1, f, h7, 8

a a a
a 1 1

a 1 o

{maintain formed edges}
1,h7, 8

0 0 0
1 1 0
0 0 0

1,h7 {skew templates}
0 0 0
1 1 0
1 1 0

l,h7
- 1 0

1 1 0
0 0 0

1,h7
0 1 1
0 1 1
0 0 0

1,h7 {skew to avoid pixel stranding}
1 1 1
1 1 1
1 1 0

o,s {delete edges}
- 1 -

- 1 -

- 0 -

O,s {delete corners}

- 1 1

1 0
END

BPP Input
1

- 1 -

END
FLOW

input /d - ThinFour /d,m3 {display the input then 3 iterations of
FastSkel}
END

The above algorithm is similar to the 3x3 sequential thinning algorithm described by
Hilditch[61]. If a larger neighbourhood can be contemplated then skeletonization by
removal of pixels from all four sides can be performed using a 5x5 window[39].

Fig.4.2: The result of three iterations of •ThinFour•

4.4 FSkel, RSkel and BSkel

Skeletonization provides the basis for topological feature extraction not based on
prior image segmentation. but it is not deterministic. An indeterminate number of
stages are required to skeletonize an image containing components that are of

arbitrary thickness.

Following on from the initial experiments with skeletonization, a new type of pseudo
skeletonization function called 'FSkel" was developed. The interactive ability of
PiNOSim to allow the specification of functions with different hierarchies allowed
experiments with different types of connectivity and edge erosion to be performed
easily. Instead of attempting to minimise skew in the skeletonization process, it was
realised that by ignoring skew it is possible to generate a pseudo skeleton in only one
pass of the image.

This is achieved simply by removing all pixels not required to maintain connectivity
in a feedback operator. The resulting 'FSkel" operator is given as;

BPP FSkel
{maintain 4 connect}

1, f I h7 I SI i
a 1 b
a 1 b
a 1 b

{maintain 4 connect}
1, f 1 h7 1 SI i
a a a
a 1 1

a 1 0

0 1 £ {remove all pixels}

END

this operator removes all pixels
not required to maintain
connectivity

The effect of the FSkel operator on the foreground and background of an image is
shown in the fourth column of Fig.4.3. This gives a somewhat peculiar result, but
clearly there is a one bit thickness output image with the same connectivity as the
original image, a skeleton of sorts.

By experimenting with the preserving of other local properties not just connected­
ness, a particularly interesting operator was discovered, RSkel. This operator preser­
ves the right hand edge of the image as well as its connectedness.

BPP RSkel
{maintain 4 connect}

11 flh7 I SI i
a 1 b
a 1 b
a 1 b

{maintain 4 connect}
1~f~h7~s~i

a a a
a 1 1
a 1 o

O,f {remove from left} -- this operator removes all pixels
-- not required to maintain connectivity

0 0 1 -- or at the right edge

END

Input

arc .
ogle (O'

augen, to
coquett1.

RSkel BSkel

Fig 4.3: RSkel,BSkel and FSkel foreground and background

FSkel

The output from the RSkel operator is shown in the second column of Fig.4.3. On
analysing the relationship between nodes in the post RSkel image with the input
image, a very interesting property was observed. The end nodes of the RSkel output
all specify a point on the maximum extent of a foreground vertical protrusion into
the background. One could propagate the location and direction of these end nodes
as features which describe an important facet of the topology of the components in
the input image.

There is a corresponding operator BSkel which preserves the bottom edge of the input
image as well as its connectedness. The end nodes of the BSkel output describe the
horizontal protrusion of the foreground into the background. The effect of this
operator is shown in column three of Fig.4.3.

By performing the R/BSkel operations in parallel, on separate streams of the same
image, we can generate different •views • of the original image. Features from these
different views could then be associated with the components of the original image
in order to derive feature data describing the image.

The end nodes of RSkel and BSkel describe the limb topology of the image. Taking
the junction nodes would have been sufficient to describe the enclosure topology as
well. However, if instead we perform RSkel and BSkel on the background and take

the end nodes of this transfonnation, the enclosure topology information is provided
as well as the extent of all background protrusions into the foreground. The effect
of these transformations on the background is shown in the bottom row of Fig 4.3.

4.5 Feature extractor

The RSkel and BSkel operators can be used as the basis of a topological feature
extractor. Each function generates two types of end nodes which may easily be
identified in another stage, e.g the BSkel foreground operator generates left and right
handed end nodes corresponding to left and right limb protrusions of foreground
objects into the background. There are therefore eight different end node types, two
each for the RSkel and BSkel foreground and background functions. This is best
shown by looking in detail at the effect of the operators on a simple image.

input RSkel

.. ++++++++ ..

. ,++++++++ ••
......... T ..
• • . . ++++++ ••

. • ++ •... ++ 0.
• • ++ 0 ••• ++ ••
. . ++. 0 •• ++ ••

• • • + ••••• + •.
• • • + ••••• + ••
0 •• +. 0. 0 0 + ••
. . . + ••••• + •• • • ++ .••• ++ ••

• • ++++++++ ••
•• ++++++++ ••

. 0. ,++++++ ••

. • . . . B ..

' ' background pixel
'+' foreground pixel
'T' foreground RSkel
'B' foreground RSkel
'L' foreground BSkel
'R' foreground BSkel
't' background RSkel
'b' background RSkel
'l' background BSkel
'r' background BSkel

BSkel back. RSkel

• • • • ++++ •...
• . . + ••. 0 + •••
. • ,+ •••• + .••
• • ,+ •••. + ...
• • • • • • + 0 ••

0. ,+ •••. + •..
. • L++++++R ..

top end node

. • • • • +++++++
• ••• + •..•..•
• •• + ••• t
• • • + ••• + ••••
• • • + •.. + .•••
. • • + ••• b
• 0 .++ •......
.... ++++++++

bottom end node
left end node
right end node
top end node
bottom end node
left end node
right end node

back. BSkel

• •• 0 ++++
. •• + •..• + •••
• • + ••• 0 •• + ••
• • + •••••• + ••
• • + ••..•• + ••
..+.l++r.+ ..
. ,+ ..••.• +. 0

• • + ••••• ,+ 0 0

• . +. 0 •••• + ••

Thus the effect of the feature extraction is to transform the image into the following
feature map:

input

• . ++++++++ •.

. . ++++++++ •.

• • ++ •••• ++ ••

. . ++ •••• ++ •.

. . ++ .••• ++ •.

.. ++ .••• ++ ••

. . ++++++++ •.

.. ++++++++ •.

feature map

......... T ..

. t

. ... l.rb.... (r,b overlap)

. .L RB.. (R,B overlap)

This transformation produces a very compact description of the image which is not
dependent on the pixel resolution only the topological complexity of the components
in the image. Naturally this process is not loss-less, because the feature map contains
no information about non-enclosing curvature of the components of the image. Thus

this transformation cannot distinguish as separate classes patterns which are only
differentiated by this type of curve. For instance~ the images formed by the letters
·u· and ·v· cannot be differentiated as separate classes on the basis of the relative
curvature of their limbs. More features describing different facets of the image could
be generated to give curvature information. However~ there is a trade-off between
generating more features and the time taken to process these features. The objective
of this research was to demonstrate real-time continuous recognitio~ therefore in the
context of the system which is described in the following chapters~ it was decided
not to extend the feature base.

Generally the RJBSkel features have a very good pattern differentiation to data ratio~
i.e. each feature says a lot about the object and is simply defmed by a three bit feature
type and its X and Y co-ordinate. In the context of OCR a typical character will be
defmed by about ten R/BSkel features. Another useful property of the features is
that they give the exact extent of the foreground/background protrusions~ this
geometric information turns out to be a highly invariant parameter for pattern
recognition and also gives the exact bounding box of the character~ something which
is useful for higher-level OCR processing.

The characteristics of the RJBSkel features determines the style of recognition which
is evolved in subsequent chapters. Each feature describes a non-image-local struc­
tural/topological facet of the image~ i.e.~ 'here is a limb or enclosure pointing in this
direction •. Each feature also contains geometric information~ i.e.~ 'here is a point on
the maximum extent of this limb or enclosure •. All the features of a connected
component taken together uniquely identify the topology of that component. The
reconstruction of this topology without additional connectivity information would
be a difficult computational task. However~ reconstruction is not a necessary basis
for recognition.

Chapter 5

Component labelling and GRIPPR
design

5.1 Component labelling algorithm

The following quote is from the book ·connected Components in Binary Images: the
Detection Problem', by Ronse and Devijver 1984:

"Our work is based on the assumption that the picture is scanned in raster mode and
only a small part of it is accessible simultaneously. This requires that the detection
of connected components be achieved in real-time and in a sequential fashion.

Within this framework, two possible approaches can be advocated. One is based on
border finding techniques, ... the second ... is based on tracking runs of the fig­
ure ... "[48].

I would like to suggest one more approach which can be adopted, given the same
assumptions, this is described below.

Motivation

The original motivation for the connectivity research was to segment the transformed
image generated by the feature extractor described in the previous chapter. The idea
was that a component label assigned in hardware could be used to map features onto
a connected object in software.

Thus the division of the connectivity process would be between pixel dependent
processing in hardware and component label processing in software. This arrange­
ment is shown in Fig.5.1; here the serial scanned image is passed to feature extraction
and component labelling hardware. The output of the hardware process is a stream
of component labelled features and connectivity information. These features can
then be grouped in a software process to generate a stream of connected object feature
lists.

The requirement was also to maintain a data structure that could reveal the connec­
tivity of the image in real-time, i.e. an object is known to be complete when the last
line containing that object has been processed. This is so that pattern recognition
may proceed in parallel with the image processing. Otherwise the advantage of
having a continuous topological feature extractor would have been lost.

Input
Image

Hardware Process

Connectivity
Information

Component
Labelled
features

Software Process

Data Structure

Fig.S.l: connectivity hardware and software processes

5.1.1 Hardware connectivity process

object
feature

lists

The minimum connectivity information which needs to be propagated by the hard­
ware to perform the above task is to signal when two provisional label values are
connected and to signal when a provisional label value has terminated.

Thus the hardware must propagate two data types to the software, JoinVal and
EndVal:

- A Join Val type is propagated when two edge pixels are found to have different
label values. The parameters are the values of the labels.

- An EndVal type is propagated when a label value is no longer current. The
parameter passed is the value of the label which is no longer current.

Thus our image from the background chapter generates the following connectivity
information:

connectivity info (J=JoinVal E=EndVal)
.. 11 .. 22 ... 33
. . 11 .. 22 ... 33

.. 11 .. 22 ... 33 J (1, 2) E (2)

.. 111111 33 E (1) E (3)

However, as already stated in the background section, there is no way of computing
when a provisional label value is no longer current by the application of neighbour­
hood logic. This can been seen by looking at the provisional label value assignment
in the following image.

.. 1111

. . 1 .. 111111.

. . 1 ... 1 ... 1

. . 1

Without propagating non-local information there is no way of knowing at the time
when an end-node is discovered whether its label value has terminated or whether
there are other components elsewhere in the image assigned the same label value.

Therefore an approach based on processing the label values rather than components
of the image has been adopted to determine when a label value has terminated.

Label value termination

To propagate the component labels through the image we already need to store a
whole line of labels in order to access the local neighbourhood. This means that we
can also access in each clock cycle two label values, where one label is directly above
the other. Simply by using these values to index two boolean arrays, we can
determine at the end of each line which values were in the last line but not in the
current line.

The algorithm works by initialising the boolean arrays at the start of each line of
image to be blank. The~ as a line of image is processed, a bit is set corresponding
to the top label value in one array and the bottom label value in the other array, for
each pixel clock. When a line of image is complete, the array indexed by the top
label value contains a bit set for each label value present in the previous line. The
other array, indexed by the bottom label value, contains a bit set for each label value
in the current line. Thus, by cycling through the arrays at the end of each line, it is
possible to determine which label values were in the previous line and are not in the
current line, and signal these values as terminated.

The following example demonstrates how this algorithm works.

. . 11. .22 ... 33

.. 11. .22 ... 33

.. 11 .. 22 ... 33

.. 111111. ... 33

prev vals cur vals EndVal info .

1,2,3
1,2,3
1,2,3
1,3

1,2,3
1,2,3
1,2,3
1,3 E(2)

E (1) E (3)

An EndVal is generated whenever a label value was found to be in the previous line
but not in the current line.

The apparent drawback is the time it takes at the end of each line to cycle through
the boolean arrays which must contain one entry for each possible label value. For
very large complex images, such as pages of text, this might be over 10,000 label
values making the algorithm totally impractical.

The solution to this problem is to recycle the provisional labels in hardware as soon

as an EndVal is generated. Now only enough label values to describe one line of the
image are required; as label values are either propagated from one line to the next
through the components of the image or they are recycled into a label value store.
The largest number of distinct connected components in one line of a binary image
is linewidth/2, i.e. one distinct connected component every other pixel. (If multilevel
images were to be processed in a similar fashion then the maximum number of
connected components on a line is still bounded to one per pixel.)

Recycling label values in this way also produces a number of other useful properties:

- Only a small number of bits are required to describe the labels, therefore
processing of labels becomes much cheaper and simpler. Also serial trans­
mission of labels becomes faster and the software data structure requires less
memory.

- Labels are continually recycled, therefore processing can proceed continuously
on images of infinite length. This is particularly important in many industrial
inspection applications, where stopping the scan may be difficult.

- The method is guaranteed never to run out of label values irrespective of the
complexity of the input image.

Also, as the number of discrete component label values is less than the number of
pixels in a line it is possible to perform the algorithm without any pause between
lines. This can be achieved by having two sets of Boolean arrays for the termination
logic. The function of these arrays can then be time-multiplexed so that when one
set of arrays are being set by the top/bottom label values, the other set is cycled
through to determine which label values have terminated. The function assigned to
each set of arrays then alternates for each line of image input.

5.1.2 Software connectivity process

At the software end, the simplest data structure to support the algorithm is a linked
list of label value vectors pointing to a list of features, as in Fig.5.2. In hardware,
features are assigned the values corresponding to their position in the image. When
a feature arrives it is appended to the feature list pointed to by its label value.

A Join Val type causes the two label value vector lists that contain Join Vallabel values
to be joined together. Care has to be taken that the two label values are not already
in the same list and if this is the case no action should be taken.

An EndVal type causes the feature list pointed to by the label value to be copied to
another member of the label value • s vector list. If the vector list is empty then all the
values that have ever pointed to that connected object are complete and the feature
list is transmitted to the recognition stage.

The following table illustrates the operation of the algorithm. The symbols 'A• to
'E. represent different features that are generated from the image and component
labelled. The connectivity and feature information is generated by the hardware
process. The software data structure consists of vector lists associating component
labels; symbols •1• to '3 •, with features.

.. 1111

. . 1 .. 111111

. . 1 . .. 1 ... 1

. . 1

Without propagating non-local infonnation there is no way of knowing at the time
when an end-node is discovered whether its label value has tenninated or whether
there are other components elsewhere in the image assigned the same label value.

Therefore an approach based on processing the label values rather than components
of the image has been adopted to determine when a label value has terminated.

Label value termination

To propagate the component labels through the image we already need to store a
whole line of labels in order to access the local neighbourhood. This means that we
can also access in each clock cycle two label values, where one label is directly above
the other. Simply by using these values to index two boolean arrays, we can
determine at the end of each line which values were in the last line but not in the
current line.

The algorithm works by initialising the boolean arrays at the start of each line of
image to be blank. Then, as a line of image is processed, a bit is set corresponding
to the top label value in one array and the bottom label value in the other array, for
each pixel clock. When a line of image is complete, the array indexed by the top
label value contains a bit set for each label value present in the previous line. The
other array, indexed by the bottom label value, contains a bit set for each label value
in the current line. Thus, by cycling through the arrays at the end of each line, it is
possible to determine which label values were in the previous line and are not in the
current line, and signal these values as tenninated.

The following example demonstrates how this algorithm works.

. . 11 .. 22 .. . 33

. . 11. .22 .. . 33

.. 11. .22 .. . 33

.. 111111. ... 33

prev vals cur val s EndVal info .

1,2,3
1,2,3
1,2,3
1,3

1,2,3
1,2,3
1,2,3
1,3 E(2)

E (1) E (3)

An EndVal is generated whenever a label value was found to be in the previous line
but not in the current line.

The apparent drawback is the time it takes at the end of each line to cycle through
the boolean arrays which must contain one entry for each possible label value. For
very large complex images, such as pages of text, this might be over 10,000 label
values making the algorithm totally impractical.

The solution to this problem is to recycle the provisional labels in hardware as soon

as an EndVal is generated. Now only enough label values to describe one line of the
image are required; as label values are either propagated from one line to the next
through the components of the image or they are recycled into a label value store.
The largest number of distinct connected components in one line of a binary image
is linewidth/2, i.e. one distinct connected component every other pixel. (If multilevel
images were to be processed in a similar fashion then the maximum number of
connected components on a line is still bounded to one per pixel.)

Recycling label values in this way also produces a number of other useful properties:

- Only a small number of bits are required to describe the labels, therefore
processing of labels becomes much cheaper and simpler. Also serial trans­
mission of labels becomes faster and the software data structure requires less
memory.

- Labels are continually recycled, therefore processing can proceed continuously
on images of infinite length. This is particularly important in many industrial
inspection applications, where stopping the scan may be difficult.

- The method is guaranteed never to run out of label values irrespective of the
complexity of the input image.

Also, as the number of discrete component label values is less than the number of
pixels in a line it is possible to perform the algorithm without any pause between
lines. This can be achieved by having two sets of Boolean arrays for the termination
logic. The function of these arrays can then be time-multiplexed so that when one
set of arrays are being set by the topfbottom label values, the other set is cycled
through to determine which label values have terminated. The function assigned to
each set of arrays then alternates for each line of image input.

5.1.2 Software connectivity process

At the software end, the simplest data structure to support the algorithm is a linked
list of label value vectors pointing to a list of features, as in Fig.5.2. In hardware,
features are assigned the values corresponding to their position in the image. When
a feature arrives it is appended to the feature list pointed to by its label value.

A Join Val type causes the two label value vector lists that contain Join Vallabel values
to be joined together. Care has to be taken that the two label values are not already
in the same list and if this is the case no action should be taken.

An EndVal type causes the feature list pointed to by the label value to be copied to
another member of the label value's vector list. If the vector list is empty then all the
values that have ever pointed to that connected object are complete and the feature
list is transmitted to the recognition stage.

The following table illustrates the operation of the algorithm. The symbols •A• to
•E• represent different features that are generated from the image and component
labelled. The connectivity and feature information is generated by the hardware
process. The software data structure consists of vector lists associating component
labels; symbols •1• to •3 •, with features.

connect. info feature info data struct.

.All. B22 .. C33 [A,l] [B,2] [C,3] {l:A} {2:B} {3:C}

. . 11 .. 22 ... 33•

.. 11. .22 ... 33 J(l,2)

.. llllllD ... 33E ... E(2)

.................. E(l) E(3)

[D, 1] [E, 3]
{1,2:A,B} {3:C}
{l:A,B,D} {3:C,E}

{A, B, D} { C , E}

When the last label value is removed from a vector list then the features are
propagated as connected objects, i.e. { A,B,D} and { C,E} .

The above algorithm is not optimal as there is a large overhead in joining linked lists
whilst maintaining the integrity of their structure. Instead a more complex algorithm
which relies on a group data type was implemented. This requires no list management
for most Join Vals as it is immediately obvious if two values already point to the same
group. The joining of two groups is relatively rare. This algorithm is detailed in
Chapter 6, GRIPPR implementation.

Anew
component

labelled feature

label value vectors Feature Lists

vector links
"

~------------~ F

* max N=linewidtb/2

Fig 5.2: Simple connectivity data structure

5.2 GRIPPR design

Having produced algorithms for pipeline feature extraction and component labelling,
it was now possible to consider the design of an image processor; GRIPPR (Generic
Real-time Image Processor for Pattern Recognition).

5.2.1 PiN 0 La language extensions

The fl!St step was to simulate the interaction of the component labelling algorithm
with the feature extractor. This was achieved by extending the PiNOLa language to
include a component label generator called from within a PiNOLa pipeline flow

descriptor, e.g.:

FLOW
Dummy <

END.

> operator A
> operator B
> ID

The 'ID' command assigns labels to the components of the image presented by the
operator 'Dummy'. The latency of the ID process is the same as the latency of the
operators A and B. Thus labels generated by ID can be used to associate pixels in
the transformed outputs of A and B with objects in the original image.

To generate features such as end nodes from an operator it is not necessary to have
a separate stage. Instead, it is only required to have one or more piggy-back look up
tables which generate a different output from the same 3 x 3 window.

This principle was included in PiNOLa with the language extensions shown in the
following program.

BPP RSkel This part remains unchanged
1,h7,f,s {Maintain 8 connect}
1 a -
b 1 a
- b 1

1,h7,f,s {Maintain 8 connect}
1 a -
0 1 a
- 1 -

1,h7,f,s {Maintain 8 connect}
1 a -
0 1 a
1 a -

1,h7,f,s {Maintain 8 connect}
- 1 -

0 1 0
- 1 -

O,f {delete all pixels not at right edge}

0 1 1

END

BPP dummy {does nothing}
1

1 1 1
1 1 1
1 1 1

END

BPP EndSp o t {This produces an output wh en the end node }
0 {of a skeleton is located}

l ,s
- 0 0
- 1 0
- 0 0
END
FLOW

Dummy <
> RSkel /pl+EndSpot+/bl" E"
> I D

END

The format of the PiNOLa piggy-back feature extractor is:
BPPname /pl+BPPname+ /bl " idl " .. /pn+BPPname+ /bn"idN"

Thus the statement - RSkel/p1 +EndSpot+fb1"E" - specifies a feedback operator
RSkel with a non-feedback operator EndSpot looking at the same 3x3 window.
EndSpot generates features identified by the string "E". These features are compo­
nent labelled by the ID process and are then passed to a higher level process for
grouping by connected object.

input image RSkel output EndSpot output

. xxxxx........ x 0 0 ••••••••• E • •• . ••••

.... xxxxxxx.. xxxxxx

. . . xx xx 0.. x x
• 0 .xx xx 0 •••• x ... 0 .x
. . . xxxxxxxx xxxxxx ...•...
• , .XXX •• XXX....... • ••• X •• , •• X, ••• ,, .

0 •• xx xx 0 •• x. 0 ••• x

connected object output
(feature type + x,y)

. . . xx xx....... x x....... E E... (E:10,2 E:5,9 E:11,9)

In the above pictures the stages of image transformation performed by the language
extensions are shown. The input image is transformed by the feedback operator
RSkel and then the piggy-back operator EndSpot generates a feature labelled 'E' by
applying a different look up table to the RSkel 3x3 window.

The implementation of these language extensions in PiNOSim was quite tricky, given
that the different processes do not actually run in parallel but concurrently. The time
frame of 1024 pixels for each concurrent neighbourhood operator instance before
switching context produced a reasonable performance, but it makes the synchroni­
sation between features and component labels difficult.

The feature extractor was implemented in PiNOSim as a list of 512 bit look up tables
that could be associated with a particular instance of a concurrent neighbourhood
operator process. Each piggy-back feature extraction operator generates an entry in
a timing stack, whenever the output of the feature operator is high.

The component labelling process, ·m·, was implemented as a special type of
concurrent process called in the same way as the standard neighbourhood operator
processes. Intemall y instead of a binary line-store the process accesses a line-store
of label values. This enables it to construct the label value neighbourhood and so to
perform the label propagation task as well as generating Valloin data.

Two other data structures are required for the label value processing in the component
labelling algorithm. The flrst is the end logic memory arrays; these are used to
determine which value labels have become non-current in the last line of image. The
second data structure is a FIFO store of label values. The label propagation task
accesses the top of the label value FIFO to fetch new label values. The V alEnd logic
writes label values that have become non-current into the bottom of the label value
FIFO.

The component labelling process generates a timing stack containing labels, ValJoin
and ValEnd data types. After each 1024 bit time frame a new Module called STAT
is called. The STAT Module interleaves the feature and connectivity stacks so that
they appear to have been generated in parallel. STAT also generates useful infonna­
tion about the numbers and types of information propagated.

Finally yet another Module, SORT is called which is passed the interleaved feature
and connectivity stack. The SORT Module performs the connected object feature
grouping task, and it generates a list of connected object feature maps scaled onto 16
x 16 grids which are then stored as a text flle.

The benefit of including the feature extraction and component labelling processes as
extensions to the PiNOLa language is that it allows experimentation with many
different structures. PiNOSim allows any type of operator, pipeline or feature
extraction supported by the language to be simulated with the component labelling
algorithm.

5.2.2 G RIPPR simulation

At this stage it was possible to simulate the performance of many different feature
extraction operators and to see how they performed for a variety of images. This
demonstrated the robustness of the feature extractor based on the RSkel and BSkel
operators described in the previous chapter.

When component labelling the end nodes of the background RfBSkels, there is a
potential problem in associating these nodes with a foreground object. However, one
of the useful properties of the RjBSkel operators is that the end nodes are always at
an edge. Therefore, one pixel to the right of a background RSkel end node is a
foreground pixel. Likewise one pixels below a background BSkel end node is a
foreground pixel. We can therefore associate any background end node with a
connected foreground object simply by expanding the objects in the image sent to
the component labelling algorithm by one pixel along the left edges and one pixel
along the top edges.

The following PiNOLa FLOW descriptor associates background end nodes with
foreground connected objects.

FLOW
dummy <

> invert < -- invert image
I > RSkel /pl+Endspot+/d1"1RS "
I > BSkel /pl+EndSpot+/d1" 2BS"
> ExpandTopLeft - ID expand image

END.

Where ExpandTopLeft is defined as;

BPP ExpandTbpLeft
1, {Expand Top}

- 1 -

1, {Expand Left}

- - 1

END

This might cause some objects that were previously unconnected to become con­
nected. However, one could restrict ExpandTopLeft to retaining the 8-connectivity
of the image. This works because background end nodes are never generated
between two distinct 8-connected objects. The easiest way to understand this is to
see that to generate an end node a partial enclosure must be created in the R/BSkel
operator window. An enclosure in a 3x3 window is only possible if there is only one
8-connected object in the window. e.g. the following 3x3 enclosure leaves no room
for more than one 8-connected object.

- 1 -

1 0 1

Thus we will never generate a background node at a location where, because we are
maintaining the 8-connectivity of the image, we failed to expand the image.

The purpose of the component labelling hardware is merely to associate the features
that are generated with connected objects. Within this context there is no reason not
to process the image passed to the component labeller so as to reduce the amount of
connectivity information which needs to be propagated to the software process,
provided the association task can still be accomplished. Two approaches were
adopted:

- The input to the feature extraction and component labelling hardware is first
passed through a low-pass spatial filter which reduces the connectivity content
of the image by removing unconnected or poorly connected pixels. This reduces
the amount of connectivity information which is generated by the aliasing of
straight edges of image components. The same approach is adopted by Gotoh
T. et alin their paper •High-speed algorithm for component labelling • [44]. This
paper describes an optimised version of the standard component labelling
algorithm, i.e. no recycling of label values.

- A further optimisation of the process is possible in our case as only the
component labelled features are output, not the entire image. By passing the
input to the component labeller through a blocking function, as described in
Chapter 3, we can substantially reduce the connectivity complexity of the image
by filling in holes in the foreground connected components. This can be done
whilst maintaining the connectivity of the image so that the labelling of fore­
ground components enclosed by other foreground components is not affected.

The final description of the GRIPPR image processor is given by the following
PiNOLa code. The ·smooth' pre-processing function is complex as it not only
performs a low pass spatial flltering but also thickens thin components of the image
to aid the feature extraction process, whilst maintaining the 8-connectedness of the
image. The RSkel and BSkel operators have been modified to preserve 8 rather than
4-connectivity. Finally, the •blocker' function performs the blocking function de­
scribed above as well as expanding the top and left edges to enable the association
of background features with foreground components.

[This is GRIPPR]

BPP RSkel
1,h7,f,s {Maintain 8 connect}
1 a -
b 1 a
- b 1

1,h7,f,s
1 a -
o 1 a
- 1 -

1,h7,f,s
1 a -
0 1 a
1 a -

1,h7 ,f,s
- 1 -
0 1 0
- 1

0,£

0 1 1

END

BPP BSkel
1,h7,f,s {Maintain 8 connect}
1 a -
b 1 a
- b 1

1,h7,f,s
1 a -
0 1 a
- 1 -

1,h7,f,s
1 a -
0 1 a
1 a -

1,h7' f, s
- 1
0 1 0
- 1

O,f
- 0 -
- 1 -
- 1 -

END

BPP smooth
1,f,h10 {low-pass spatial filter and thicken)
0 0 1
1 0 0
1 1 1

1,£ {Thicken top)
0
0

1 1 1

1,£ {Thicken left)
- - 1
0 0 1

1

1,h8,f {thicken, override background 8 connectivity)

0 1
1 0

1,h8,f {thicken, override background 8 connectivity)

1 0 -
0 1 -
1,s,i,f,h2 {smooth)

1 -
1 0 1

1,h7,f,s,i {Maintain 8 connect)
1 a -
b 1 a
- b 1

1,h7 ,f,s,i
1 a -
0 1 a

1 -

1,h7 ,f,s,i
1 a
0 1 a
1 a

1,h7 ,f,s,i
- 1 -
0 1 0
- 1 -
END

BPP invert
O,i

- 1

END

BPP dummy
1
1 1 1
1 1 1
1 1 1
END

BPP block
1,h7,f,s,i {Maintain 8 connect}
1 a -
b 1 a
- b 1

1,h7,f,s,i
1 a -
0 1 a
- 1 -

1,h7,f,s,i
1 a
0 1 a
1 a -

1,h7,f,s,i
1

0 1 0
- 1 -

1,f {blocker function}
- 1 -
1 0 -

1,f {expand left}

0 0 1

1,f {expand top}
- 0 -
- 0 -
- 1 -

END

BPP PRTspot
0

1,h2
0 0 0
0 1 0

END

BPP PRBspot
0

1,h2

0 1 0
0 0 0
END

BPP PDRspot
0

1,h2
- 0 0
- 1 0
- 0 0
END

BPP PDLspot
0

1,h2
0 0 -
0 1 -
0 0 -
END

FLOW
smooth <

dummy <
> RSkel /d/p1+PRTspot+/b1"1RT" /p2+PRBspot+/b2"2RD"
> BSkel /d/p1+PDLspot+/b1"3DL"/p2+PDRspot+/b2"4DR"

> block - ID
> invert

END

RSkel /d/p 1+PRTspot+/b1 " 5RT"/p2+ PRBspot+/b2"6RD"
BSkel /d/p1+PDLspot+/b1"7DL"/p2+PDRspot+/b2"8DR"

The effect of GRIPPR on the following scanned image can be seen in the feature
maps generated from the image by the PiNOSim execution of the above program .

. 1

. 11111

. 11111

. 11111

. 11111

. 111 ... 11111

. 111111 111 .. . 1111 .. 11111 11

. 111111111 111111111111 1111 111111

. 111111111111 111111111111 1111 111111111

. 111111 ... 1111 11111 .. 111111 1111 11111 ... 1111 • .

. . . . 111111 11111 1111 ... 111111 1111 1111 1111

. . . . 111111 1111 1111 11111 1111 111 1111

. . . . 111111 1111 1111 11111 1111 11111.11111111

. . . . 111111. 1111. ... 1111 ... 11111. 1111 11111.11111111

. . . . 111111 1111 1111111111 1111 1111 1111

. . . . 111111 1111 111111111 111111 ... 11111

. . . . 111111 1111 11111111 11111 ... 11111 1

. 11111 11111 1111111 11111 ... 111111 11

. 111111.11111 11111111111 111111 1111111.1111

. 111111111111 111111111111 111111 1111111111

. 11111111111 1111111111111 111111 111111111

. 1111111 11111111111111 11111 111111

. 111 1111 111111

. 111 11111

. 111111111111

. 1111111111

. 11111

As there are four connected objects in the above image, PiNOSim generates four
feature maps. The number labels in the feature maps are taken from the FLOW
definition in the GRIPPR specification.

New object: Ax- 50 Ay• 8 W•14 H•1S
1111111111111111

N• 1 x•11 y• 1 1
N• 2 x•12 y•16
N• 4 x•15 y•13
N• 1 x•15 y•12 5
N• 6 x•12 y•12
N• 3 x• 1 y•11 8
N• 2 x•15 y• 9
N• 4 x•16 y• 8 3 4
N• 3 x• 8 y• 8 2
N• 8 x•10 y• 6
N• 5 x•10 y• 4 -3

6 1
4

2

New object: Ax· 41 Ay• 2 w- 6 H•21
1111111111111111

N• 4 x•16 y•16 1
N• 2 x•16 y•16
N• 3 x• 1 y•15
N• 8 x• 1 y•13 -3
N• 3 x• 1 y• 4
N• 1 x•11 y• 1

-8

-3
42

New object: Ax- 6 Ay• 7 W•15 H•17
1111111111111111

N• 2 x•10 y•16 1
N• 4 x•16 y-12
N• 6 x•10 y•12
N• 8 x•11 y-11 5
N• 7 x• 8 y•ll
N• 3 x• 1 y•10
N• 5 x•10 y- 4
N• 1 x•11 y- 1

-3
7 8

6 4

2

New object: Ax• 24 Ay• 6 W•14 H•22
11111111 I

N• 1 x•15 y- 1 1 6 1
N• 2 x•10 y•16
N• 4 x•16 y•14
N• 3 x• 1 y•14 5
N= 8 x•10 y•14
N= 6 x•10 y•14 - 3 7 86 4
N• 5 x•10 y•14
N= 7 x• 6 y•14 - 8
N• 7 x•12 y• 9 7
N• 8 x• 2 y• 8
N• 4 x•16 y• 6
N• 8 x•10 y• 6
N• 6 x•10 y• 6
N• 7 x• 7 y• 6 -3 7 865 4
N• 3 x• 2 y· 6
N• 5 x• 8 y• 4 2
N• 6 x•13 y· 1
N• 1 x• 8 y• 1

NoPatterns•4 NoNodes•57 Average•14

Once GRIPPR had been fully designed and simulated, work began on the implemen­
tation of a GRIPPR machine.

Chapter 6

GRIPPR Implementation
To evaluate any complex system it is necessary to get a flavour of the detailed
low-level implementation. This is because systems that may appear to be theoreti­
cally elegant can become less so at the implementation stage. Neural nets are a good
example of a theoretically elegant idea which is sometimes limited by incompatible
implementation technology. Neurons are simple to construct as mathematical equ­
ations but when these are transferred to 2-dimensional silicon with a limited inter­
connect the implementation can become turgid. Biological neural systems utilise a
3-dimensional interconnect wherein the number of neurons a connection can reach
grows as a cube law of its length, a technology not presently available. Cellular
arrays usually have a very elegant hardware implementation as their structure is
regular, 2-dimensional and tessellates well. However, the detail of programming
such arrays to perform non-local neighbourhood tasks and input/output operations
can result in lower performance than might be expected from a comparison of the
relative Pixel-Ops per second statistics.

The good technological fit of the GRIPPR approach to image processing for pattern
recognition should become clear as the detail of its implementation is discussed.
Performing only image local operations in the hardware produces a relatively simple
machine with a deterministic performance. Performing non-local operations on a von
Neumann processor allows the utilisation of sophisticated data structures for deter­
mining the connectivity of the image.

To implement a system based on the GRIPPR design it was necessary to fmd a
convenient task. A4 document OCR was selected as a good demonstration task as
many systems already exist for comparison, and imaging hardware is readily avail­
able. The TAXAN TX-300 scanner was chosen as a suitable imaging device because
it was cheap and has a very simple, fully documented, image interface.

6.1 Specification

The specification of the GRIPPR hardware implementation is derived from the
specification of the TX-300 scanner. The TX-300 scanner generates an A4 binary

image at 300 d.p.i. in 9.9 seconds. The average throughput of the scanner is therefore
850K pixels per second. This is made up of an 800ns (1.25Mhz) video clock and a
line-sync between lines of image lasting 965us.

To process the image in real time, GRIPPR must be able to deal with the maximum
text density in standard documents. The maximum text density is of course almost
infinite, but in the context of text which is recognisable when scanned at 300 d.p.i.
the maximum text density was found to be about 100 characters per square inch. e.g.

12345678901234567890
22222222222222222222
33333333333333333333
44444444444444444444
55555555555555555555

This gives 9350 characters per A4 page which produces a maximum throughput of
944 characters per second for the TX-300 scanner. A throughput of 1000 characters
per second was therefore made the design goal of the system.

The earlier simulation of GRIPPR gave a maximum of about 20 data items (Fea­
tures,EndV a1s and Join Vals) per character input. Therefore, the minimum data
bandwidth for the GRIPPR hardware to software interface was 20,000 data items per
second.

Using 9 bit component labels the bits per item are as follows:

- Feature Type: identifter=3 bits, Xpos=12 bits, component label=9 bits, Total=
28bits

- EndVal Type: identifier= 3 bits, component label=9bits, Total= 12 bits

- JoinVal Type: identifier=3 bits, component labels= 18bits, Total= 21 bits

Clearly, the maximum pixel by pixel output bandwidth of GRIPPR is potentially very
high as a feature data type could be generated every clock cycle giving 28/ (800 x
10-9

) = 35 M bits per second. However, this is not a problem as provided the
sequence of the data items is maintained (including an end of line flag), the data
structure will still be valid. A simple FIFO output buffer can therefore be used to
equalise the peak output rate to the average throughput. The implication of this type
of output buffer is that the different data types are assigned the same width in the
store, as the type of the data will not be known until it has been read by the software
process. If data is transferred as bytes then the minimum hardware to software
bandwidth will be 32 x 20,000 which is 640,000 bits per second.

A B006 transputer evaluation board was available as a potential processor for
GRIPPR. Some simple calculations based on the GRIPPR simulation in PiNOSim
indicated that one 20Mhz T800 transputer would be able to perform the feature to
connected object stream conversion at the necessary real-time rate of 20,000 data
items per second. Furthermore, a transputer link provides a very simple high speed
interface of 1.2 M Bytes per second, which is ample for GRIPPRs requirements.

The GRIP PR hardware could therefore be specified as a black box with a reset, video
clock, video data and line-sync input, and a transputer link output having the same
functionality as the GRIPPR PiNOSim simulation.

6.2 Hardware optimisation

Feature Extractor optimisation

A direct translation of the PiNOLa description of GRIPPR would have required two
lines of image store per neighbourhood operator stage. Obviously, there is no need
for the 'invert' operator as an inversion can simply be implemented as a discrete
inverter in the pipeline.

There are six remaining operators; smooth, blocker, RSkel, BSkel, and background
RSkel and BSkel. With two line store stores per operator this would give 6x2 = 12
bit wide line store. However, just as standard parallel neighbourhood operators can
be executed in a piggy-back fashion sharing the same line store, the same principle
can be applied to feedback operators which can share the same pre-processed line
store. As five of the operators occur at the same level, four of the twelve line store
elements are redundant. Thus a single 9 x 4K deep FIFO provides all the line store
for the GRIPPR feature extractor.

Connectivity optimisation

Initially it was the intention to time multiplex the EndVal connectivity logic as
discussed in chapter 5. However, this generated a very complex hardware intercon­
nect so instead use was made of the 965us line-sync provided by the TX-300. The
GRIPPR hardware therefore has two modes of operation. In the first mode during
image data transmission the machine is entirely event driven by the input video clock.
During a line-sync, control switches to an internal lOMhz clock which is used to
cycle through the previous and current label value tables to generate EndVal types
for component labels which became redundant in the previous line of image data.

Only 511 label values are used, even though theoretically a 2544 pixel wide image
could have 1271 separate connected components. In practise however, the aliasing
constraints on imaging small objects mean that an image containing 511 separate
connected components on a 2544 pixelline is highly unlikely. The advantage of
limiting the label values to 511 is that the label line store and the non-current label
value store can both be implemented by single 9 bit wide standard FIFO integrated
circuits, which simplifies the design.

Output buffer optimisation

Each pixel clock cycle can result in a feature data item or JoinVal data item being
written into the GRIPPR FIFO output buffer. The sequence is not important as the
feature component label value is still valid after a Join V al. If speed is critical, a two
stage output buffer could be designed so that both JoinVal and Feature data items
could be written simultaneously. The first stage of the buffer would have a wide bus
'funnelling' into the a second 32 bit stage by means of some control logic.

However, as speed is not critical (the input clock cycle is 800ns and the FIFO cycle
time is lOOns) a more elegant solution is to time multiplex the output buffer. This
works by writing feature data items during one phase of the input clock and JoinVal
data items during the other phase of the clock.

lnpu ~ t
Pl P2 P3 LSl

- ~

r+~ _I
L--t P4 PSI- LS2 1---

LJ I - ~

- ,-- ,--

c.__. P7 P8 P9
'-- '-- '--

Output
L1

Fig 6.1 :Pipe lined 3x3 binary feedback neighbourhood operator

6.3 GRIPPR hardware

Feature extractor

The basis of the feature extractor is the pipeline feedback 3x3 binary neighbourhood
operator shown in Fig.6.1. The line-store components LS 1 and LS2, and the 1 bit
latches Pl..P9, are used to construct the 3x3 neighbourhood. The line-store compo­
nents are implemented using a 4K x 9 bit FIFO. The line-store FIFO is automatically
set to the width of the input image minus three by reading in the first line of the image
minus the first three pixels. Thereafter the FIFO mimics a shift register of that length
by executing both a read and a write cycle for each input pixel.

At each pixel clock cycle, data is propagated in the direction of the arrows shown in
Fig 6.1. The outputs from the 3x3 window, Pl..P9, are passed to the logic component
L1 which performs the particular operator function. In the case of a 'feedback•
operator, the output of the operator is fed back into the latch P6; there is therefore no
direct connection between PS and P6. All the operators used in GRIPPR turn out to
be of the feedback type.

The logic component L1 is constructed from a 512x1 bit PROM. The 3x3 window
simply addresses the PROM as a look-u~table to generate the output value in each
clock cycle. Piggy back operators as described earlier can simply by implemented
by a 512xn bit PROM where each field in the look-u~table represents a different

ut Inp __, ~ ___. J
L...., I' H J-- 4 I' f-----. I--

L....--...., I _. L -

I
~ ~ ~

ol
Cl Smoothed C2

image o2

~

f--. r H j-
1-t L r-

t---o3 C3
t--- _r H o4

L....--...., L r-
11111 ~WAil m

11 7
[\ C6 Output to

12 component
labeller

f.
f. I' H r

'-- 1-o

--~~ o4
C4

o5

f-.

I'
____,

L----,. L r-
~ ~ lilllll

C5 f---+ o6
f---+

o7

Fig 6.2: The GRIPPR feature extraction pipeline

function, only one of which is fed back to the 3x3 window.

It seems natural to show the pixels entering the neighbourhood operator at the top
left and being propagated left-right, top-down. However, one should realise that
assuming a left-right, top-down raster scan the 3x3 image presented by Pl..P9 is
rotated by 180 degrees, as the pixel represented by Pl is the newest and therefore the
rightmost pixel in the bottom row of the window.

The speed of the device is only limited by the speed of the FIFO line store as 512 bit
RAM and latch access times are relatively fast. To execute a Read/Write cycle on

t-

the 80ns access time FIFOs which were used takes a minimum of lOOns, giving a
maximum throughput of 10 M pixelsfsecond. FIFOs with cycle times of 35ns are
available if greater throughput is required

The complete feature extractor diagram is shown in Fig.6.2 . Note the line-store
optimisation of the neighbourhood operators C2 .. C6, that all the share the same first
line-store component.

-The operator Cl executes a smoothing function which reduces the number of small
features in the image by effectively performing a form of low-pass spatial filtering.
This filtering also improves the performance of the component labelling function of
GRIPPR by reducing the instance of label joins and label terminations.

The operators C2 .. C5 perform the RjBSkel transformations and the end node feature
extraction. This is implemented by using the first 3 output bits of 512x4 bit PROMs.
One bit is fed back to the 3x3 window to generate the RjBSkel transformation, the
other two bits signal the presence of different types of end-nodes in the image.

The operator C2 performs the RSkel transformation and its outputs ol and o2
represent the top and bottom end nodes of that function. The operator C3 performs
the BSkel function and its outputs o3 and o4 represent the left and right end nodes
of that function.

Instead of specifying different background functions, the operators C4 and CS are
identical to C2 and C3 except that the input image is inverted by the logic gates 11
and 12.

The operator C6 has three functions. First it provides the correct pixel delay, so that
labels that are assigned to the feature outputs ol..o8 actually correspond to the same
connected component in the original image. Second, the operator performs the
connectivity maintaining expansion required so that background nodes can be
associated with their corresponding foreground objects. Third, the operator performs
the blocking function, described earlier, which reduces the amount of connectivity
information which needs to be propagated by the GRIPPR component labelling
hardware.

Anyone familiar with state of the art semi-custom gate array technology will note
that the whole feature extractor, minus the line store components, could easily fit
onto a single chip. Though 57 latches and 14 512xl bit look-up-tables are used, much
of this circuitry would be redundant in a highly optimised design. For instance, many
of the latches could be shared and the look-up-tables could be replaced by the
OR-AND-OR structure referred to in the PiNOLa specification chapter.

Such a device would still be limited by the external line store access time. High speed
line store components[62] designed for HDTV applications could be used to give a
maximum throughput of SOM pixelsfsecond.

Finally, it is certainly technologically feasible to place the entire circuit including the
line store, which is only 8 bits wide and a few thousand bits deep, on a full custom
VLSI chip. Such a device could have a cycle time approaching iOns giving a
maximum throughput of nearly 1 OOM pixelsfsecond.

'---~----ot Label Value Termination ~_,1---+nl
Logic (LVTL) EndVal

~ Output

ValCur ValPrev
(512xl (512xl
RAM) RAM)

r. !&--connectivity - r-

label bus
r h ...

+ T1 L f-1 T2

'---- '----

Junction
ll9llsmms l HI !

_ ... K2 Kl KO

I

~ Label Line Store ..Jii b
(4Kx9 FIFO) ~ P K3

,,~!r •If ~F I
~..s_

r.-~
Non-current l....s~
Label Value ~ Label Propagation

Logic(LPL) ~ ~512x9 FIFO)

Binary
image
input

Features
Component

r- labelled feature
output

~
'----------t-+ JoinVal

V output

Fig 6.3: The GRIPPR component labelling hardware

Component Labeller

The component labelling hardware appears to be an order of magnitude more
complex than the feature extraction hardware. This is because the feature extraction
complexity is neatly hidden in the look-up-tables whereas the complexity of the
component labeller is expressed in its fairly hideous inter-connect.

512 component labels are ~ 0 always being assigned to background pixels. All
the label buses shown in Fig. 6.3 are therefore 9-bits wide.

The label line store is constructed from a 4Kx9bit FIFO which is initialised in the
same way as the feature extractor line store to mimic a shift register which is
image-width minus 3 bits deep. The component label and feature line store FIFOs
share the same read and write clocks.

The label value FIFO which is used to store non-current label values is constructed
using a 512 x 9bit FIFO. This is initialised to contain the 511 non-zero label values.

The local label neighbourhood used to describe the component label propagation
rules has the following visual mapping assuming a top/down, left/right scan.

KOK1 K2

K3

This corresponds to the 9 bit label latches K0 . .3 in Fig. 6.3, though again the mapping
is not obvious.

The current line value memory ValCur and the previous-line value memory ValPrev
are implemented as 512 x 1 bit RAM's. ValCur and ValPrev are initialised to contain
all O's before each line of image is input.

The component labeller has two modes of operation

In the first mode the component labeller is controlled by the input pixel clock. Whilst
in this mode the Label Propagation Logic (LPL) assigns labels to input pixels.
Background pixels are always assigned the value 0. Whenever a new foreground
connected component as located, i.e. when KO .. K3 are all null and the input pixel is
set, then a new label value is fetched from the label value FIFO by the LPL and
inserted into the label store K3 at the next clock cycle. If the input pixel is connected
to any of the neighbourhood value stores, i.e. one of KO .. K3 is non-null, then the
value of the non-null value store is propagated to K3 at the next clock cycle.

The other function of the LPL is to signal when two label values are found to be
labelling the same connected component in the image. This is done whenever K1
and K3 have different values and K2 is null. The values K1 and K3 are then
propagated to the software system so that features which may have been assigned to
the values in K 1 and K3 separately are known to originate from the same connected
component of the image.

The LPL is implemented by a set of 22V10 Programmable Logic Devices (PLDs)
which perfonn the null and inequality comparisons, and by a set of tri-state buffers
which enable the different values to be routed into the K3 label store. The operation
of the LPL is controlled by another PLD executing the following rules (lnPic is a
boolean value representing the input pixel).

routeK3 := f(K3=0) * (lnPic)

routeKJ := (K3=0) * (lnPic) */(Kl=O)

routeK2 := (K3=0) * (Kl =0) * (lnPic) * /(K2=0)

routeNew := (KO=O) * (Kl=O) * (K3=0) * (lnPic)

routeNull := flnPic

Join:= (K2=0) * /(KJ=O)* /(K2=0)* (KJK2)

The actual implementation is somewhat more complicated due to the complex timing
characteristics of the various circuits, but the basic logic is the same.

In this mode of operation the ValPrev and ValCur memories are addressed by the
label stores KO and K3 respectively. For each clock cycle the bit addressed by K3
is set to 1 in the ValCur memory and the bit addressed by KO in the ValPrev memory
is set to 1. The effect of this is that after a line of image is input, ValPrev has a bit
set for every value that was previously in the label line store and ValCur has a bit set
for every value that is currently in the label line store.

In the second mode of operation the component labeller is controlled by an internal
10Mhz clock. This mode of operation is entered during the line-sync between lines
of image. The label value termination logic (LV1L) takes the internal clock and
cycles through the 511 non-zero addresses of the ValPrev and ValCur memories.
Whenever a value is found whose corresponding bit is set in the ValPrev memory
and not set in the ValCur memory an EndVal is signalled. The value which is no
longer current is thereby propagated to the software system so that the value can be
dissociated from any features which may have been labelled by it, and so that the
completeness of connected objects can be revealed in real-time. When an EndVal is
signalled the value is also written into the label value FIFO so that it can be re-used
in the next line if needed.

As it reads the ValCur and ValPrev memories the LV1L also sets all values to 0 so
that the memories can be used again for the next line of the image.

This method implies that there has to be sufficient time between lines of image to
cycle through the V alCur and ValPrev memories. However, if there was not
sufficient time to do this between lines of the image the L VTL could operate in a
time-multiplexed fashion with two sets of memories. The sets of memories would
alternate between performing the read and write states.

Whilst the component labeller may appear complex it would actually be simpler than
the feature extractor to implement in semi-custom or custom technologies as are there
are no look-up-tables masking the complexity.

The need to have the non-current label values in a physical FIFO store appears to
limit the speed of the device. However, on inspection of the algorithm it becomes
clear that at most one new label is required every two clock cycles. Thus the
maximum speed of a circuit designed around a 35ns cycle time label FIFO would be
57 M pixelsfsecond. In Practice the implementation limit is therefore the propagation
delay implicit in the component label routing equations; as determining an inequality
between two numbers, then using that information to enable a 9 bit latch, takes a
significant multiple of the minimum gate delay for a particular technology.

A TAAC20 gate array with 2000 gates should be able to perfonn all the non-memory
functions associated with the component labeller. Assuming a propagation delay of
about 10 gate delays taking 4 ns each, a throughput in the order of 25M pixelsfsecond
should be feasible. Full custom design might give about 50M pixelfsecond through­
put.

6.4 Fabrication and testing

To reduce the cost of implementation and allow for hardware de-bugging it was
decided to implement GRIPPR using two rather than four layer PCBs. The PCB
CAD system available was the now outdated REDAC and REDBOARD schematic
design and layout software from RACAL.

Initially GRIPPR was designed as four 'Euro • sized cards to take advantage of the
inherent modularity of the system. The modules were: feature extractor, label
propagation logic (LPL), label value termination logic (LVTL) and output buffer.
However, in reality the interconnect between these modules was too complex to fit
easily onto a back plane. The design for the machine was therefore rationalised to fit
onto a single board measuring roughly 12" by 14".

Electronic considerations

De-Coupling: In designing a two layer board there is a danger that noise due to
ground bounce will be a problem. Particularly as the circuit is highly parallel with
about 200 latches changing state on a common clock cycle. The situation was further
aggravated by having to use unnecessarily fast components; the 9-bit latches used
for neighbourhood operations and component label propagation are only available
in circuits with propagation delays of less than 1 Ons.

To overcome this potential hazard great attention was paid to the ground and power
layout. An interleaved comb structure was adopted with power and ground running
along the axis of the I.C.s The gap between power and ground lines was designed
so that surface mount ceramic chip capacitors could be soldered underneath the chip
carriers at the ground and VCC pins of the I.C.s; this provides very good de-coupling
as the capacitors are physically close to the power pins and the capacitor lead
connections have minimal inductance. Leaving the exact layout of the de-coupling
capacitors out of the schematic and PCB design process also reduced the complexity
of the design task.

Timing: The hardware was initially designed to generate internal timing signals, for
controlling the state of busses and the output buffer time-multiplexing, by dividing
down a high frequency internal clock. However, there are two problems with this
approach. First the need to synchronise with external signals means that the worst
case synchronised clock cycle will always be shorter than the actual pre-synchronised
clock cycle. Second, the high frequency internal clock needed to alleviate the above
problem, and to provide the timing resolution necessary for internal signals, would
itself introduce further hazards in a circuit which is already prone to noise.

A better approach was found to be the generation of internal timing signals by using
digital delay-lines. This is achieved by taking the external video clock and passing

this signal through a delay-line before ORing the delayed signal with the original to
generate a higher frequency clock. This makes the operation of the machine entirely
event driven during image transmission.

Transputer Links: The T800 transputer has two modes of communication. The
standard transputer link throughput of 800K bytes/second is achieved by sending
acknowledge bits after each 8 bit packet has arrived. The other, faster mode of
communication available on the T800 is optimised for 32 bit transfers and achieves
a throughput of 1.2 M bytes/second with a greatly reduced CPU overhead. The T800
communicates in the second mode by issuing a pre-acknowledge to the 8-bit packet
transfer after the first bit is received. The effect of this is that acknowledge and data
bits are on the link-in and link-out data transmission lines at the same time. To enable
the second mode of operation over the required 2 meters of cable great care had to
be taken to minimise cross-talk. Individually screened twisted pair cable was used
which was terminated and earthed at both ends as near to the line connections as
possible.

Fabrication

The PCB layout Gerber photoplot flles generated by the PCB CAD system were sent
by e-mail direct to the Manchester University PCB fabrication facility. Previously
the PCB designed for the smoothing circuit in chapter 3 was plotted 2: 1 on to drafting
fllm and given to a local company which was a rather laborious and error prone
process.

The code to program the feature extractor PROMs was generated from PiNOSim by
translating the internal look-up-tables for each neighbourhood operator into a suitable
text file format.

Testing

In order to get a reasonably complex circuit such as GRIPPR working, a great deal
of thought has to be given to how the circuit can be tested and de-bugged. Simply
plugging all the components together would probably produce a circuit with a great
number of errors, making the isolation and debugging of particular errors difficult.
GRIPPR was therefore assembled and tested in stages, corresponding to the different
modules of the machine.

To enable the functional characteristics of the machine to be tested various programs
were written. A test program was written to feed images pixel by pixel from a PC to
the machine, and OCCAM programs were written to take the output from GRIPPR
for decoding and display.

The electronic performance was tested using a 16 channel digital storage scope, an
event counter and oscilloscopes.

First the input, timing and output circuitry was assembled. Communication bugs
were corrected at this stage by sending reset signals from the PC to the transputer via
GRIPPR. Next the feature extraction pipeline was assembled and this was tested by
extending PiNOLa to include an •export/import' facility, so that images could be
output from PiNOSim for external processing and then imported back into the
simulation for display. It was very satisfying to see the same images being generated

by software and hardware.

The component label propagation and label value tennination logic was difficult to
test in stages as they are highly interdependent. One useful test was to throw an image
with many thousands of connected objects at GRIPPR and see if it was able to keep
recirculating the 511 connectivity labels without dropping any. As the other parts of
GRIPPR had already been verified, the bugs that were found at this stage were
relatively easy to track down.

For example it was found that the machine was able to recycle label values up to a
certain value and then the output buffer would behave erratically. This was traced
to a contention problem on a tri-state bus caused by inadequate pull-up resistors. The
bus drivers produced glitches on the power lines for label values with several bits
set, which in turn corrupted the internal pointers inside the FIFO output buffers. Once
identified this and other similar problems were quickly remedied.

6.5 Software optimisation

Before looking at the OCCAM code implementation of the feature stream to con­
nected object stream algorithm it is necessary to look at the optimisations used for
efficient real-time performance on a transputer. Optimisation of the algorithm is
required as the core process of maintaining the connectivity data structure is indi­
visible i.e. it would be difficult to divide this process for parallel execution as it relies
on an process-global data structure. Thus the connectivity algorithm could form the
potential bottle-neck for a system based on GRIPPR.

Three types of Optimisation were found to be useful, i.e. throughput was increased
by more than 25%.

Using single dimension array access

The obvious translation from Modula-2 record types to a language with only simple
types is to replace the record type with a two dimensional array. The first dimension
being the pointer to the record and the second dimension being the type index.
However, this requires two levels of indirection for each record element access. A
more efficient translation is to have a separate one dimensional array for each record
field.

Thus, stack A StackPtr. FieldA : = v

becomes, Stack_FieldA [StackPtr] : = v

not, Stack [StackPtr] [FieldA] : = v

A voidance of static chaining

Memory access to global variables in OCCAM is by means of a static chain through
the calling sequence of procedures. For an algorithm which relies heavily on the
processing of global data structures, and which could have a reasonable depth of
procedural calls such as the connectivity algorithm, static chaining would be very

inefficient.

There are two ways around this problem in OCCAM. One can use the OCCAM
'RETYPE• command to bring global variables into local scope when the procedure
is called. Alternatively, if the procedure is only called from one location, the
procedure code can simply be included as a routine in the calling process. The latter
approach can be adopted relatively elegantly within the OCCAM folding editor,
which can structure very complex routines into procedure like statements. The result
of pursuing this optimisation is that almost the entire connectivity algorithm is coded
as one procedure except for a few procedures that are called from many different
parts of the algorithm. The reason for not including all procedures in the main process
is to keep the size of code as small as possible. This is important so that as much code
as possible will fit into the T800 processor's fast on-chip memory.

Use of on-chip memory

Access to the T800 4K byte internal memory is at least three times faster than off
chip external memory access. Rather than organising this memory as a cache (which
would produce performance effects that would be difficult to predict) the transputer
simply places the internal RAM at the base memory address. OCCAM makes good
use of this fact by placing scalar values and pointers in a WORKSP ACE placed at
the bottom of memory. Provided that the program does not use a great number of
such variables, all pointers and loop index variables will have very fast access times,
which has a dramatic effect on the performance of the code. Normally a program
uses under 4K bytes of WORKSPACE thereafter procedure code is placed in the
on-chip memory in program lexical order. The reason that single element variable
access is more critical than code access is that the transputer instructions are only 8
bits wide whereas the memory access is 32 bits. Therefore four instructions are
fetched simultaneously for every code fetch cycle. Care has to be taken to minimise
the size of the WORKSPACE and procedure code in order that critical code runs in
on-chip memory. The lexical order of declaration of procedures also determines
which code runs in on-chip memory, which can be a problem as there is no forward
reference facility in OCCAM.

For a comprehensive discussion oftransputer performance maximisation see 'Trans­
puter Technical Notes·[63].

6.6 GRIPPR software

The GRIPPR software takes in a stream of Feature, JoinVal and EndVal data items
and generates a stream of connected objects. The input stream comes from the
GRIPPR hardware and the output goes to an application-specific recognition stage.
A connected object generated by the hardware is defined as an x,y location in the
input image, an absolute height and width, and a list of features. Each feature has a
type corresponding to the outputs ol..o8 from the GRIPPR feature extraction hard­
ware. Each feature also has an object relative x,y co-ordinate which is normalised
onto a 16x 16 grid. The largest dimension of the object is scaled onto the grid and all
the other feature positions are scaled by the same amount, which leaves the aspect
ratio of the object unchanged.

Input buffer

The rate at which the software consumes data items depends on their effects. In
particular, when the last component label value that is assigned to an object is
tenninated by an EndVal, the software process must group the features of that object
into a list, scale the features and output them to the application specific process.

In order to balance the throughput of the GRIPPR software with the GRIPPR
hardware, the FIFO output buffer was made large enough to contain the data
generated by one line of text at the maximum text density. The reason for this is that
the line of image corresponding to the bottom of a line of text will cause all the
connected objects, i.e. characters, in that line to become complete, so all the
connected object grouping, scaling and transmission is concentrated in that image
line. Given 100 characters per line and 20 data items per character a 2000 itemjword
deep FIFO should guarantee that when the software process is fully saturated, it is
never waiting for input.

Algorithm

There are many ways to implement the connectivity algorithm described in the
previous chapter. Some ideal characteristics of a good algorithm might be:

- There should be as little indirection as possible between feature input and
assigning that feature to the connectivity data structure, as indirection takes time
and features are the most common data item.

- Joining two components should not require all the structures that point to those
components to be changed.

- The algorithm should never have to resort to searching all the data structures
for references, e.g. when an object becomes complete all the features belonging
to that object must be directly available.

- As there are many more component label value assignments than connected
components, checking when an EndVal causes a connected component to
become complete must be quick.

The simplest algorithm which ~as mentioned in chapter 5 constructs a linked list of
component label value vectors which point to lists of features. JoinVal simply joins
label value vector lists and features are appended to the corresponding label value
vector feature list. An EndVal causes a label value vector to be dissociated from its
vector list and its feature list to be appended to another member of the vector list.
When an EndVal causes a label value vector which is not linked to any other label
value vector to tenninate, its feature list constitutes the connected object.

However, in practise there is no way of linking two lists without some conception of
the top and bottom, which implies either searching each vector list for top and bottom
each time they are joined, or having top and bottom pointers from each cell which
must all be amended from one list when it joins onto another list. Also, continually
re-assigning feature lists to new label value vectors every time an EndVal is
encountered is inefficient because many component label values never actually point
to any feature.

To overcome these problems, the concept of a •group' is introduced. A group
associates label value vectors with features. This adds one level of indirection to
feature processing as the label value vectors now point to groups and the groups point
to the feature lists. However, Join Vals are now faster as most of the time a null label
value vector can simply be assigned to the same group as its non-null partner. When
two non-nulllabel value vectors are joined, instead of having to update all the group
pointers in one list, the groups are just linked together.

A connected object is complete when no label value vector points to it, this can be
determined by a vector counter. Whenever a feature arrives and its label value vector
is null it is assigned a new group and the group's vector counter is initialised to 1.
As new label value vectors join the group the counter is incremented. As EndVal
types dissociate .label value vectors from the group, the counter is decremented.
When the counter reaches 0, which can only happen once for each group, any groups
that are linked to that group are checked. If all counters are 0 the connected object
is complete.

Data Structures

There are three complex data types, corresponding to, the label value vector, the
group and the feature types. These complex types break down into one-dimensional
arrays as described in the software optimisation section. The following OCCAM
source code is included so that an idea of the small size and low complexity of the
data structures can be gained. The label value vector type is referred to as ID Vec, the
group type is referred to as Group V ec and the feature type is referred to as Node Vec.

VAL INT MaxiDVec IS 512 :
VAL INT MaxNodeVec IS 5000 :
VAL INT MaxGroupVec IS MaxiDVec
[MaxiDVec] INT IDVec.Group:
[MaxNodeVec] INT NodeVec.NType:
[MaxNodeVec] INT NodeVec.Ab:
[MaxNodeVec] INT NodeVec . Ot:
[MaxNodeVec] INT NodeVec.NextN:
[MaxNodeVec] INT FreeNodeVec:
[MaxGroupVec] INT GroupVec.TopGroup:
[MaxGroupVec] INT GroupVec.NextGroup:
[MaxGroupVec] INT GroupVec.PCount:
[MaxGroupVec] INT GroupVec.TopN:
[MaxGroupVec] INT FreeGroupVec:
INT TopFreeNodeStack:
INT TopFreeGroupStack:

Fig 6.4 shows a visual ·snap-shot' of the connectivity data structures describing one
incomplete connected object. During operation of the algorithm the IDVec.Group
pointers change continuously as new label values are joined to existing label values
and then the old values are terminated. The Group and Feature data items persist
until no label values point to them, at which time all the Features belonging to the
Group list represent one connected object.

The label value vector array (IDVec.Group) has a fixed dimension of 512 as there
are at most 512 current component label values available in the GRIPPR hardware.
The Feature (NodeVec) and Group (GroupVec) data types are implemented as
RECORD types with pointers to physical NodeVec and GroupVec locations being
held on a stack. When a Feature or Group element is requested a pointer is fetched

Label value vector type Group type

11

Feature type

extN
-N

N • Null

Fig.6.4: Connectivity Data Structure 'snap-shot'

from the top of the corresponding stack. When a Feature or Group becomes
redundant, i.e. when a connected object becomes complete and is propagated to the
higher-level application process, the pointers are returned to the top of their stacks.

At any time irrespective of the length of the image there can only be 511 incomplete
connected objects. However, as a connected object may be fonned from any number
of Groups a very complex or continuous image might require a large Group stack.
We could overcome this by amalgamating Groups whose vector counters were 0 with
Groups that it was linked to. However, Features must persist as long as their
connected components are incomplete, an infinite image might have an infinitely
long connected component and therefore require an infinite Feature stack.

This is not a problem in the present application where the length of the image is
limited by the A4 scanning frame, but if a continuous scan system were being
produced, e.g. for conveyer belt inspection, care would have to be taken that
persistent visual components of the image such as the edges of the conveyer did not
exhaust the Feature stack. This type of problem is difficult in real-time systems
because one cannot simply stop the scan even if the occurrence of the problem is
extremely rare. It would be easy to construct a system whose guaranteed real-time
throughput was limited by the need to purge a stack, even if this takes only 10ms
once a week.

Procedures

The outennost level of the run-time feature stream to connected object stream process
is shown in the following code:

WHILE Go
SEQ

input ? InWord
Noitems := Noitems + 1
CASE InWord /\ #70000 -- mask data type bits

#30000
Y := Y + 1 EndOfLine, increment global Y position

#40000
do info

#60000
do join

#10000
do end

#70000
Go := FALSE

Feature fold; put features into
connectivity structure

JoinVal fold; associate label values

EndVal fold; dissociate label value,
check for complete object and process

EndOfFrame, return control to O.S.

The • ... ' symbol signifies an OCCAM •fold' which simply obscures the program text
which lies in the fold. The OCCAM compiler simply •unfolds' all the program text
to discover the lexical order. Folds are used rather than procedure statements for the
efficiency reasons given in the software optimisation section. The process simply
loops round reading input from the GRIPPR output buffer and switching on the type
of data item, i.e. Feature, EndVal, JoinVal, EndOfLine or EndOfFrame. When an
EndofFrame item is found the process terminates and returns to the transputer
operating system. The EndOfLine type is required so that feature data items may be
assigned a •y• co-ordinate without having to explicitly transmit this from the
GRIPPR hardware with every Feature.

The Feature fold

The purpose of the Feature fold is to assign features to the connectivity data structure.
The Feature fold unpacks the ·1nword' 32 bit data item to reveal the x co-ordinate
of the feature, its component label value and its type.

The x co-ordinate of the feature is skewed as the horizontal position of an image is
delayed/shifted right by two pixels per neighbourhood operator stage, relative to the
line-sync. As there is a depth of two operator stages in the GRIPPR pipeline the
image is shifted right by 4 pixels. Pixels with a horizontal position of less than 4 are
therefore from the preceding line of the image.

Having de-skewed the co-ordinates of the feature, the feature is assigned to the Group
that is pointed to by the label value vector corresponding to the feature's component
label value. The type of the feature is represented as an 8 bit value, with one bit set
for each of the possible GRIPPR feature types ol..o8 If more than one feature type
bit is set, as could happen for a diagonal component which has a RSkel top end-node
and a BSkel right end-node at the same location, a separate Feature data item is
generated for each instance of the feature type. If the label value vector is null i.e.
the component label value is not associated with any Group, a new Group is fetched
from the Group stack, the label value vector is updated and the Group vector counter
is initialised to 1.

The Join Val fold

The purpose of the Join Val fold is to associate component label values so that features

that have or will be labelled by those values will be associated with the same
connected object. After unpacking the label values one of four situations will occur.

- Both label values are null: A new Group is fetched, the corresponding label
value vectors are updated and the Group vector counter is initialised to two.

- One label value is null, the other non-null: The null label value vector is
assigned the same Group as the non-null label value vector, and the Group vector
counter is incremented.

- Both label value vectors point to the same group: no action is taken.

- The label value vectors point to different groups: The two Group lists are joined
if the Groups have different •Top Group' pointers i.e. they are not already joined.
The •Top Group' pointers of all the Groups in one of the Group lists are updated.
This operation is potentially expensive, but in practise is relatively rare and
Group lists are normally short.

The EndVal fold

The purpose of the EndVal fold is to dissociate label values from Groups and to check
for the completion of connected objects. If a complete connected object is found
then all the processing up to and including the transmission of the object to the
application specific process is performed in this fold.

Normally an EndVal just decrements the vector counter in the Group pointed to by
the label value which is terminated. If the vector counter becomes 0 then the other
Groups which may be associated with that Group are checked, if all Group vector
counters are 0 then the features associated with the Group list constitute a connected
object. When a connected object is located the features are copied into 8 arrays one
for each feature type and the Feature and Group data elements which were used to
describe the object are returned to their respective stacks.

Before the co-ordinates of the features are normalised, pairs of features correspond­
ing to protrusions of 1 pixel depth are removed. Features of this kind are often the
consequence of aliasing on straight lines in an image .

. . 1111111

. . A11111111

. . . 11 . . . 1111. .. .

. . . 11 111

. . Bll 111

. . 111 ... 111

. . 11111111.

. . A111111

The image on the left is scanned and the feature types corresponding to the foreground
BSkelleft end-nodes, shown as • A •, and the background BSkel right end-node shown
as •B • are generated. As the vertical bar in the image falls on an image cell boundary

the noise inherent in any imaging system causes some small features to appear. The
information content of the top AB pair is very low as the the protrusions are only 1
pixel deep and are therefore known to be the likely product of aliasing, rather than a
determinant of the connected object pattern class. Removing all such pairs from the
feature list is quite fast once the features are separated into different types as each
type of feature can only form a pair with one other type of feature.

This sort of image smoothing to remove shallow edge features can be achieved in
programmable pipeline or cellular array processors by executing some erosion and
dilation operations. However, there are two respects in which a feature level
approach may be superior. First, one can question the efficiency of performing many
millions of pixel operations per second when the same effect can be achieved at the
feature level in only a few thousand cycles per second. Second, the parallel ero­
sion/dilation approach cannot effectively be under the control of the recognition
process, e.g. we cannot easily perform different erosion/dilation steps on different
components of the same image on an image parallel processor.

Looking ahead to the OCR application implementation, this sort of variable smooth­
ing has been adopted. A two stage recogniser is used, the first stage looks at the
features as they are generated by GRIPPR, if this recognition fails the feature pattern
is passed to the second recognition stage. The second stage applies the same small
protrusion elimination algorithm to the 16 x 16 grid normalised feature co-ordinates.
The effect of this is to remove features generated by protrusions that are small relative
to the size of the character. Thus the GRIPPR approach allows the significance of
features to be varied dynamically for each individual component of the image. The
GRIPPR software is designed to demonstrate a high throughput, a slower more
sophisticated system could weight the significance of features by the relative depth
of the protrusions which generated them.

The bounding box of the connected object is found very efficiently as the feature
type and co-ordinate of the extreme top, bottom, left and right edges are already
known, e.g. the top of the bounding box is given by the y co-ordinate of the top end
node from the foreground RSkel operation. It is often very useful to have the exact
bounding box of a connected component as this helps when formatting connected
objects into composite characters, words and lines of text. One of the draw backs of
the standard symmetrical erosion skeletonization is that it does not give the exact
bounding box of the connected component. Once the bounding box has been found,
the feature co-ordinates are normalised onto a 16 x 16 grid and the connected object
is transmitted down a transputer link to the application specific process.

The Output Buffer process

For an OCR application some of the processing must be related to the formatting of
lines of text as opposed to just recognising individual characters. This creates an
uneven rate of consumption of connected objects, therefore just as it was necessary
to have an input FIFO buffer an output FIFO buffer is also required. (this is assuming
the GRIPPR software and the OCR application are not implemented on the same
physical processor, in which case efficient utilisation is provided by the concurrence
between the different processes.) This output buffer is given a higher priority than
the OCR process using the OCCAM PRI PAR statement which ensures that the
GRIPPR software process is never waiting to output connected objects while the

OCR process is formatting lines of text. Normally an OCCAM FIFO buffer process
is implemented as two concurrent processes. This was found to be unnecessarily
inefficient and instead the OCR process is made to explicitly request data from a
single buffer process. Starvation of the OCR process is prevented by giving its
request a higher priority than the incoming GRIPPR connected components using
the OCCAM PRI AL T statement. Blocking of the GRIPPR software is prevented by
transmitting the whole buffer at one time to the OCR process and then guarding its
data request by a buffer empty flag.

6. 7 Performance evaluation

The loading of the different parts of the GRIPPR software process for the test pages
Test1 and Test4 from the appendix is given below.

Test1 contains 1,280 12 point characters in 5 founts, made up by 1360 connected
objects. Test4 contains 35,000 simply connected dots.

The loading on each part of the software process is given as a percentage of the total
processor time used. As the scanner is relatively slow, the software process is often
idle waiting for data items from the hardware process.

The loading of the EndVal fold is split between four separate tasks; maintaining the
data structure, clustering connected objects once complete, smoothing small protru­
sions from objects, and normalising and transmitting the feature data.

Process Test1 Test4
Feature Fold 33.1% 33.2%
JoinVal Fold 3.3% 0.01%

EndVal 4.8% 5.1%
Clustering 26.2% 30.0%
Smoothing 8.5% 1.8%

Scale/transmit 24.0% 30.0%
IQ1aJ. 100% l QQo/g

The following table gives the total time taken by the software process for each page,
the time taken to scan the page and the processor utilisation. The fmal statistic gives
the number of objects of the type found in the test image which can be processed per
second of processor time, i.e. the maximum attainable throughput of the GRIPPR
software.

Processor Time
Time Available

Processor Utilisation
Objects Processed

Objects/sec processor time

Test1
829ms

9896ms
8.3%

1,360
1,641

Test4
7679ms
9896ms

77.6%
35,000

4,558

The ability to process, scale and transmit over 1,600 reasonably complex patterns or
4,500 simple patterns per second demonstrates the speed attainable when all the
computationally intensive pixel processing tasks are performed in hardware. For

some simple applications where all that is required is to count and size objects a
throughput of over 5000 objects per second should be attainable on one T800 20Mhz
transputer. This throughput is irrespective of the resolution or speed of the image,
provided the video bandwidth of the GRIPPR hardware is matched to the imaging
system.

Chapter 7

Pattern Recognition and OCR
The application specific pattern classification and higher level processes needed to
demonstrate GRIPPR are presented in this chapter.

7.1 Pattern classification and contextual processing
for OCR.

The process of converting images into symbolic representation requires not just the
classification of patterns in the image but also contextual processing. Generally
pattern classification can be regarded as the mapping of transformed sensory data
onto a learned state. Contextual processing is the application of non-pattern-local
information to constrain the pattern classification output or process.

The distinction between pattern classification and contextual processing is important
in the design of a pattern recognition applicatio~ because the contextual information
available in a particular application will determine what information should be
propagated by the pattern classification process. Generally, if there is a high level
of redundancy in the text to be recognised, as in English words, then we would much
prefer to propagate more than one possible candidate for a character than make a
false substitution as contextual processing can arbitrate between different plausible
candidates.

Ideally, the pattern classification process would yield a list giving the probability
attached to each possible symbol mapping of an input pattern, we could call such a
list an •hypothesis list •. In practice, the probability data might not be needed for
contextual processing. We might therefore apply a threshold to the hypothesis list
giving a binary list representing all the pattern classes above a certain likelihood for
a particular input pattern. This threshold value could be varied dynamically, e.g.
dependent on the quality of the image. However, if the pattern classification process
is fairly robust we might wish to accept all possible pattern class mappings consistent
with the input patte~ i.e. each pattern class not set in the hypothesis list must be
actively eliminated as a plausible candidate.

If the pattern classification process is feature driven then we can extend the hypo­
thesis list idea to features. The pattern classification process could generate an
hypothesis list of all the pattern classes consistent with each feature in the input
pattern. The plausible hypothesis list for the pattern as a whole is simply the dot
product of the feature hypothesis lists.

A recogniser based on this plausible hypothesis principle should have a low false
substitution rate as it is not concerned with some relative notion of greatest likelihood.
Such an approach might therefore be appropriate in applications where contextual
redundancy is high such as in Document Image Processing (DIP) document retrieval
systems. In DIP systems all paper documents are scanned and tagged for electronic
storage as images, to provide intelligent access to such images the documents can
also be OCR processed ar scan-time. When a query is generated e.g. fmd all
documents referring to 'Maverick Industries', the contextual information embodied
by the query can be used to determine which documents contain plausible candidates
for the text string. The nature of this recognition task is that ambiguities must be
propagated by the recognition process as the contextual information required for
arbitration between plausible pattern class candidates is only available when the
query is generated.

Fl {A~l,B-2}

F2 {A=3,B=l}

F3 {A=5,B=2}

Input features

Pattern
Hypothesis

list

Feature
Hypothesis

lists

Fig. 7.1: Hypothesis list model of pattern recognition

7.2 A simple pattern recognition method

Underlying the above discussion is a very simple model of how pattern recognition
may be performed. The good thing about the model is that it allows the easy
exploitation of the inherent 32 bit parallelism of 32 bit processors.

The basis of the model is that each feature of the object to be recognised generates a
hypothesis list of which pattern classes it might belong to. The hypothesis lists are
represented as n bit words, with a bit set representing each class that is consistent
with the feature that points to the hypothesis list. The list of consistent hypotheses
for all features from an object is generated by logic ANDing the hypothesis list for
each feature in the object.

A recogniser based on the hypothesis list model is shown in Fig 7 .1. The figure shows
the recognition of a pattern made up of three features. The parameters of the features
are used to map each feature onto a hypothesis list representing the plausible
candidates for that feature. The plausible candidates for the pattern is the logic AND
of the feature hypothesis lists.

There are two basic parameters to the model, feature divergence and class depth:

Feature Divergence: This controls the mapping of a feature onto an hypothesis list.
Feature data and/or object data can be used for divergence.

For example the most obvious divergence is by relative scaled x and y co-ordinates,
i.e. features are always mapped onto a grid, each location of which corresponds to a
hypothesis list. Divergence can be increased by, for example, increasing the grid
resolution, diverging between different node types, diverging between different
complexities of object or diverging by the size of objects.

There is very little time penalty to divergence as it is quick relative to then bit ANDs
(for n >= 128). The constraint on divergence is the memory capacity of the system.
For instance, placing features in raster order and then diverging on the resulting
sequence would require about rnF hypothesis lists, where T is the number of types
of feature and mF the maximum number of features per pattern. In the present
application there are 8 node types and the maximum number of features per object
is about 30 which would give an hypothesis list space of 830 lists, which is
impractical. Therefore, to optimise the memory utilisation of the system care has to
be taken to diverge on that data which discriminates best between different classes.

Class Depth: The other parameter of the model is the number of classes. For instance
in OCR we might have a different class for each character in each fount. This serves
two purposes. First it gives more information for higher level contextual processing
e.g. we may assume that within a word only one fount is used allowing us to remove
inter-fount ambiguities. Second the pattern recognition performance is improved
because ambiguities caused by allowing characters to be made up of features from
different founts does not occur. The effect of increasing class depth is linear in
processor time and memory usage for a given level of divergence.

To demonstrate the high throughput of GRIPPR, which is the objective of the OCR
system, it was decided to use the minimum class depth of one class per ASCII
character. i.e. 128 bit hypothesis lists.

The learning process within this model is extremely simple. Simply start with a blank
hypothesis list space. Then using the same feature divergence that will later be used
for recognition fmd the hypothesis list for that feature. Then add the symbol
corresponding to the input training pattern to the hypothesis list. This process is
repeated for each feature in the training pattern and for all training patterns.

·Fuzzy• recognition in the context of this model is required if we wish to assign a
pattern to a class if that pattern has any feature which varies from those presented at
the learning stage. i.e. there is no way of simply fmding the •nearest" alternative.
Fuzziness can be implemented in several ways within the context of the model. The
word •fuzzy • is used here to imply the classification of patterns which do not
correspond exactly to the training set and is not related to Fuzzy Set theory which
implies computation using non-binary arrays.

At recognition time several similar features can be generated from a feature by
dithering some parameter/s of the feature. All the hypotheses lists generated by these
dithered features can then be ORed together to generate a •fuzzy• list. The •fuzzy•
lists from all the features can then be ANDed together to give the fmal fuzzy
hypothesis list. The main drawback with this approach is that it is slow at recognition
time, though if it was only applied infrequently i.e. when non-fuzzy recognition has
failed then this might not be a problem.

Fuzziness can be introduced in a similar way at learn time, by generating dithered
patterns from each pattern example of a class. This has no effect on run-time speed.
The only drawback with this approach is that one has to decide the degree of fuzziness
at the learning time whereas one might wish to vary this dynamically or incremen­
tally. The problem can be alleviated by having different recognisers corresponding
to different levels of fuzziness, though this requires more memory.

If the recogniser is required to recognise patterns that may have drastically incorrect
or missing features, such as a piece of dirt on a character. This can be achieved by
ORing some or all of the feature generated hypothesis lists together. For instance
one could OR pairs of hypothesis lists together so that no one feature could eliminate
any class from the fmallist. This would produce a very ambiguous output, with lots
of potential classes for the input pattern. However, in the context of generating
plausible candidates for higher level contextual processing after initial recognition
has failed, it could be useful.

7.3 Character recognition implementation

Various different character recognition strategies were tested. The main requirement
of these strategies was that they should be quick and simple to implement and that
they should demonstrate the high throughput of the GRIPPR process. The specifi­
cation of the OCR process throughput was that it should be able to recognise 1000
characters/second on one T800 20Mhz processor and 2 Mbyte RAM. The OCR
process has to include some contextual processing and lexical formatting as well as
the basic pattern classification task of character recognition.

A structural approach

The first approach to be tested within the hypotheses list model presented earlier was
basically structural, i.e. it sought to map characters with similar structures together
for differentiation by feature detail. The motivation for adopting this approach was
that the x and y co-ordinates of the features generated by GRIPPR are not equally
consistent. The •depth• of the protrusion represented by the feature is always

extremely accurate and invariant. However, the other 'perpendicular• co-ordinate of
the feature is more variable, particularly for straight edges where its value becomes
ambiguous .

. . . . 111111 1111111

. . . 111111111 Bl11111111

. . . 11 11 111 11. .. .

. . . 11 lC 11 lD

. . . 11111111 11111111

. . . 1111111 1111111.

. . . 11 11

. . . 11 11

. . . 11 11

. . . Al 11

For example, in the above picture the left end-node of the BSkel foreground operation
generates the features A and B from two very similar objects. The relative depth of
the left hand foreground protrusion into the background is the same for both patterns
giving a normalised x co-ordinate of 0 for both features. However, the 'perpendicu­
lar' y co-ordinate of the left protrusion is ambiguous as the protrusion is effectively
spread from top to bottom. This results in the feature A having ay co-ordinate of 15
whereas feature B has ay co-ordinate of 2. However, the perpendicular co-ordinates
of the features do often give useful, consistent, information as is the case for the right
end-node foreground BSkel features C and D above. The y co-ordinates of features
C and D are consistent as the right protrusion of the letter P is vertically defmed.

To alleviate this perceived problem an attempt was made to separate objects with
different structures by ordering the features in some consistent way and then using
only the more consistent depth co-ordinate of each feature to differentiate between
pattern classes that share the same ordering /structure.

In the context of the simple hypothesis list recognition model introduced earlier, the
divergence for each feature is flrst by the type of structure of the object and then by
the feature positions within that structure and lastly by the protrusion depth of the
feature. However, given that one co-ordinate of a feature may be ambiguous it is
difficult to generate a consistent ordering of features to determine the structure. One
way round the problem is to generate two ordered sequences of features, one for the
x-consistent BSkel features and one for they-consistent RSkel features.

This system gave a very high hit-rate as both the ordering and the feature data used
are highly consistent. However, by effectively throwing so much of the data away
some strange ambiguities are caused. As in the following case showing the ordered
sequences generated by the characters •2• and ·s·.

.. ·*********T

... **· t**

. . . LB **

. **

. I** •.

. . ·*********R
**
** 0 0

. . . ** *T

. . ·**1 b**

.. . L*******BR

Pattern 1
BSke1 features LO,L0,12,IB,R10,Rl0
RSke1 features TO,t2,B3,b14,B15

... *********T

. .. ** t**

. .. ** BR
**. 0 ••••••••••••

... **1

... L*********
• ••••••••• 0 **
•••• 0 0 •• 0. 0 **
. .. *T I**
. .. ** b**

... L*******BR

Pattern 2
LO,L0,12,r8,R10,Rl0

TO,t2,B3,b14,B15

The ordered lists of features for the above characters are exactly the same. The
inability to fundamentally distinguish between a •2• and a •s• is a severe limitation.
as the contextual information within numerical strings e.g. telephone numbers, is
very low. An attempt was therefore made to incorporate additional information into
this character recognition approach, e.g. the perpendicular co-ordinates of the ex­
treme features were used to resolve the •2• versus ·s· ambiguity. However, the
implementation was starting to become inelegant with no clear method, simply a
collection of solutions bundled together by necessity. Also, given that the underlying
recognition model is so computationally efficient it seemed a shame to implement a
strategy which is dependent on the sorting of features within an object, a task which
takes longer than the basic feature divergence and hypothesis list logic AND process
for an average character.

A connectivity syntactic approach

In response to these perceptions a connectivity syntactic approach was tested. This
approach relies on parsing the connectivity of an object, differentiating between
different pattern classes on the basis of the feature types and parameters at each node
of the connection tree. The GRIPPR process of connected object extraction effec­
tively parses the connection tree of the input pattern. Thus the order of the features
generated by this process should be invariant for the same topology of connected
object. Preliminary simulation of the ordering produced by the connected object
extraction process indicated that there was a significant amount of topological
consistency in the ordering of features.

The character recognition implementation now became very efficient, simply diverg­
ing on the feature list ordering, which is already given, and then on the feature type
and depth co-ordinate. This solves the ambiguity for the '2 • versus '5' problem above
as the two patterns generate a different ordering of features, e.g. the 'T' feature type
generated on the fifth line from the bottom in both patterns will be near the end of
the feature list for the '2 ', but at the beginning of the feature list for the • 5 •.

Though this method did not have the same problems as the structural approach
adopted previously, the general performance was disappointing. The ambiguity
between topologically distinct classes was still quite high, this was mainly due to the

component labelling optimisations performed in the GRIPPR hardware. The block­
ing operation in particular has the effect of reducing the topological complexity, and
therefore the topological information content of the connectivity process. The
topological nature of the GRIPPR features would have allowed the object to be
reconstructed at a higher level and this could have produced a more topologically
discerning ordering for syntactic recognition. However, within the context of the
1000 character/second specification the reconstruction process would have con­
sumed too much CPU time. Another perhaps more important problem found with
this syntactic approach is that it suffers from a relatively high false substitution rate.
This is caused by small amounts of input pattern variance leading to a different
ordering of the same features. Once the order is corrupted all the feature data will
be interpreted incorrectly, also any attempt to locate the ·nearest • pattern class by the
•fuzzy• strategies mentioned earlier often leads to the false classification of the
pattern. This is a general criticism of the syntactic recognition approach; because
the variance of features cannot be treated independently, there is no simple way of
uniformly relaxing the specification so as to locate •nearest" alternatives.

A simple geometric approach

Consideration of how the independence of features could be maximised led to the
development of a simple geometric approach to the interpretation of features.

The simplest geometric approach would be to locate each feature onto a 2-Dimen­
sional grid of hypothesis lists. Noise in one feature would then in no way effect the
interpretation of any other feature. We could also first diverge on the type of each
feature so that only features of the same type were located onto the same grid. This
level of divergence would still generate a significant level of unnecessary ambiguity
as a pattern with very few features could map onto a pattern class which was always
defined by a greater number features. To avoid this the recogniser diverges on the
number of features of each type. This last divergence means that feature interpreta­
tion is no longer completely independent as the presence or absence of a feature
within an object will alter the interpretation of features of the same type. However,
the number of protrusions of a given type within a pattern is highly invariant.

The size of the hypothesis list space is the product of the different types of divergence:

Type of feature = 0 .. 7

Number of Features = 0 .. 15

X co-ordinate of Feature = 0 .. 15

Y co-ordinate of Feature= 0 .. 15

If there are no features of a certain type then this information is treated as a special
type of feature, mapping onto a different hypothesis list for each type that was absent.
The above divergence describes a recogniser with 8x16x16x16 = 32K hypothesis
lists, and even this small size is unnecessarily large for alpha-numeric characters as
there can be up to 15 protrusions of each type. The reason that such complex patterns
were considered was to allow the recogniser to be tested with chinese characters,
though this has yet to be attempted.

If noise does vary the number of features of a certain type in the pattern then this is
unlikely to lead to the false classification of the pattern as the interpretation of features
of other types is still valid. Within this character recognition approach it is possible
to deal with the ambiguous •perpendicular• co-ordinates directly because unexpected
variance in one feature will rarely lead to false classification of the object. Therefore,
initially we can simply ignore the problem and hope that we have sufficient variance
and noise in our training set to enable most patterns to be classified correctly. We
can only afford this cavalier attitude because we know that unexpected variance in
the perpendicular location of any one feature is likely to lead to the initial non-classi­
fication of the pattern rather than false classification. We can contrast this with
methods based on pattern global structure or syntax, here unexpected variance in the
co-ordinates of one feature can lead to the structure or syntax being corrupted which
in turn results in the false interpretation of all features and thus to a more likely false
classification.

'Fuzzy' recognition

If the initial pattern classification which is only based on the variance of the training
set fails, then we can perform a second stage of •fuzzy• recognition. The greater
variance of the •perpendicular• co-ordinates of the features can be acknowledged by
reducing the discriminatory power of those co-ordinates. The increased ambiguity
of the second stage recogniser is acceptable as the proportion of patterns failing the
initial classification is relatively low. A more detailed description of the second stage
recogniser is given in the following description of the learning process.

The learning process

Thought has to go into the practicalities of the learning process. Generally it is better
to expend resources at the learning stage than during the run-time operation of the
recogniser. However, one must also match the learning process to the computational
and/or human operator resources available. Fortunately, the hypothesis list method
used for pattern classification is very efficient to implement at the learning stage.
Each feature generated by a pattern in the training set simply goes through the same
divergence as during the recognition process, inserting its pattern class in the
resulting hypothesis list.

To generate an image with as much variance as possible the training page shown in
the Appendix was designed in Postscript. The training page gives a good spread of
text sizes in five different founts; Helvetica, Times-Roman, Courier, Palatino and
NewCenturySchoolbook. These founts were selected because they are all very
common and yet represent quite different type faces, e.g. Helvetica is a sans-serif
fount and Courier is fued width. To allow for the recognition of a very dense page
to demonstrate the throughput of the system 6 point Helvetica numerals were also
included. The characters are repeated several times in order to capture the aliasing
noise always present when a binary image is formed. Composite characters, i.e.
•;:!?ij' are separated into their constituent connected components by means of a size
threshold and these are then labelled as separate pattern classes.

In order to capture the skew variance of the characters some means had to be found
of tilting the image. Using PostScript commands to angle characters by a few degrees
on a standard 300 d.p.i. laser printer was found to be useless as when the angle is

resolved at 300 d.p.i. the shape of small characters remains unchanged. A high
resolution 1200 d.p.i. photo typesetter was tested, this skewed characters to a
sufficient resolution, but also generated stroke widths too fme to resolve by 300 d.p.i.
scanner. The solution was to print different versions of the test image with a slanted
line printed along the top of the page, after the sheets are printed they can then be
guillotined along this line. The sheets are then fed into the roller type scanner flush
to the top of the sheet thereby generating angled images. This method can also be
used to place a horizontal crop line at the top the page, guillotining to this line ensures
that the image is exactly vertical, i.e. it compensates for the +/-1 degree skew often
found in printers. Four pages are generated for each pattern class, one centred, one
left skewed, one right skewed and one test page without a crop mark. The purpose
of the test page is to generate statistics about the performance of the recogniser
automatically as part of the learning process.

It proved important during the development of the recognition algorithm to be able
to trace back from the learning process to a particular member of the training set, to
a physical printed character on a page. Otherwise it would have been difficult to
understand the exact nature of the ambiguities and false assignments thrown up
during the leamftest process. Backtracking to a printed character was made possible
by storing the compressed feature data from the training set on disk and by adopting
a suitable naming convention. When a page is scanned it is tagged by its pattern class
identifier (normally the ASCII code number) and whether the page is centre, right,
left or test. This tag is then used to name a compressed list of connected object feature
lists corresponding to the characters in the image. Each connected object is also
tagged by its physical location on the page. The fmal implementation has been
trained to recognise 74 different pattern classes, which requires 4x74=296 pages to
be processed. The pages with numeric characters contain 480 character instances the
other pages contain 360 character instances, giving a total of 111,360 characters. Of
these characters, 83,520 comprise the training set and 27,840 comprise the test set.

Printing the training sheets on an apple LaserWriter 11 took approximately 7 hours.
The page scanning process lasted about 5 hours and the fmallearning program takes
about 1 hour to execute. The learning program simply goes through the files in the
training set inserting the pattern class given by the flle name into the stage-1 and
stage-2 hypothesis list corresponding to each feature for each connected object.
When this task is complete the resulting recognisers are tested by attempting to
recognise the patterns in the test set. Statistics are then generated for the hit rate, the
ambiguity rate and the false substitution rate for the stage-1 and stage-2 recognisers
separately and as well as their combined performance. The hit rate is the proportion
of patterns in the test set which are recognised correctly, though not necessarily
uniquely, i.e. it includes ambiguous responses as long as the correct classification is
one of the plausible candidates. The ambiguity rate is the proportion of candidates
generating more than one plausible candidate. The false substitution rate is the
proportion of patterns that produce a classification, but where the correct classifica­
tion is not a plausible candidate. These results are also decomposed by pattern class
so that the performance of the recognition process for individual pattern classes can
be assessed. The overall results are given in section 7.4.

The stage-2 recogniser

Three different ways of increasing the second stage recognisers immunity to noise

and variance were adopted:

- Elimination of relatively small protrusions: The simple · and computationally
efficient algorithm introduce in the GRIPPR implementation chapter for the
elimination of aliasing feature noise is adopted for the post scaled features. This
has the effect of eliminating features of small relative depth which tend to be
more prone to, or more likely the product of, noise than features of greater depth.
It would not be valid to perform this filtering and then simply re-apply the
pattern to the same recogniser as this might lead to _false classification. The
algorithm only works because it is applied consistently to the stage-2 recogniser,
first to the training set in the learning program, and then to the input pattern in
the run-time program.

- Real co-ordinate dithering: The pre-scaled co-ordinates of each feature in the
training set are dithered by +/- 1 pixel position, i.e a separate instance of each
feature is formed which has a real co-ordinate dithered around its original value,
which may or may not correspond to a different grid position once the feature
position is scaled. This has the effect of capturing any possible aliasing depend­
ent positional variance not captured directly by the training set.

- Scaled 'perpendicular• co-ordinate dithering: The scaled perpendicular co-or­
dinates of each feature are dithered+/- 2 grid positions. This has the effect of
reducing the discriminatory power of the possibly ambiguous perpendicular
co-ordinates of a feature, as mentioned earlier.

Recognitiol}. database compression

Instead of storing a full 128 bit hypothesis list for every location in the feature
divergence space, only a 32 bit pointer to a hypothesis list table is used. Adopting
this form of compression reduced the memory requirement of the hypothesis list
storage by a factor of 0.29 for the fmal OCR system. Each recogniser requires 32K
of hypothesis list pointers and 19440 distinct hypothesis lists were used requiring
about about 76K 32 bit words. Thus the total recognition database memory require­
ment is ((32K x 2) + 76K) x 4) = 560K bytes of memory.

Recognition implementation

The run-time recognition process loads a copy of the stage-1 and stage-2 feature
divergence pointers and the hypothesis list table. Then the recognition process
accepts connected objects from the scanner via the GRIPPR process. The stage-1
recogniser is implemented by calling the following OCCAM2 code for each con­
nected object.

HitList :• IdListAll -- set the working hypothesis to include all possible classes
--{{{ RecogFine
lastpos :• 0
SEQ 1•0 FOR 8 for each feature type

SEQ
NurnOfT :• NumType[i]
IF

NumOfT 0 -- if number of type i > 0
SEQ

SEQ 12mlastpos FOR NumOfT -- for each feature of type i
SEQ

HPtr :• FineVec[(((((i<4)+NumOfT)<4)+ -- divergence
List.Ab[i2])<4)+List.Ot[i2]]

Hi tList [0] : = HitList [0] /\ HListStack [HPtr] -- Long AND

--]] J

HitList[l] := HitList(l] /\ HLis tStack[HPtr+l]
Hi t:List [2] : • HitList (2] /\ HListStack [HPtr+2]
HitList[3] := HitList[3] /\ HListStack [HPtr+3]

lastpos : • lastpos + NumOfT
TRUE - - the number of type i • 0

SEQ
HPtr :• FineVec [i] -- No features of this t ype
HitList [0] : = Hit List [0] /\ HListStack [HPtr]
HitList(l] :• HitList[l] /\ HListStack[HPtr+l]
HitList [2] : • HitList [2] /\ HLi s tStack [HPtr+2]
HitList(3] := HitList[3] /\ HListStack[HPtr+3]

The above code is extremely efficient as the working hypothesis list can be stored in
on-chip memory using the 'PLACE IN WORKSPACE• OCCAM statement. Only
additions and shifts are used to index the feature divergence space pointer 'Fine Vec •.
The code for the stage-2 recogniser is exactly the same except that the feature list is
ftltered to remove features of small depth and a different feature divergence space
pointer 'Coarse Vec • is used.

Recognition proceeds by first attempting to classify the object with the stage-1
recogniser. If the stage-1 recogniser fails to classify the object then the object is
passed to the more accepting stage-2 recogniser.

7.4 Character classification results

The results for the character classification process are generated' by testing 27840
separately scanned characters against the stage-1 and stage-2 recognisers and then
against the combined recogniser formed by only using the stage-2 recogniser for
those patterns that are not classified by the stage-1 recogniser.

Hit rate
Ambiguity rate

False-substitution rate

Stage-1
97.83%
21%
0.16%

Stage-2
99.93%
39.4%

0.01%

Combined
99.8%
21.6%

0.17%

The stage-1 recogniser exhibits a relatively low ambiguity and hit rate. This is due
to the fact that input patterns have to correspond exactly to previously learned features
in order to be classified. The stage-2 recogniser exhibits a much higher ambiguity
and hit rate as it is more accepting of features which may not correspond exactly to
features found in the training set.

By only using the stage-2 recogniser when the stage-1 recognition fails we are able
have the relatively low ambiguity of the stage-1 recogniser in most cases, whilst
producing a hit-rate close to that of the stage-2 recogniser. The fmal combined
ambiguity rate of 21.6% seems quite high, but this is for a system without any

contextual processing. Therefore, a great deal of inter-case ambiguity, e.g.
·ss,cC,oO,pP,xX,vV,uU• etc. is present. Also, the small patterns representing full
stops and the top of ij are highly ambiguous, but this ambiguity disappears when
composite characters are recognised at a higher level.

The false substitution rate of 0.17% for the combined recogniser is due mainly to the
stage-1 recogniser. False assignments happen when the variance of the learning set
does not fully capture the variance of the test set. The main source of variance in the
test set vis a vis the learning set appears to be the fact that the skew variance captured
by the learning set is too coarse. Rather than throw away the skew variance present
in the test data this data is also entered into the learning process after the above
statistics have been generated. The effect of increasing the learning base by a third
is to increase the combined ambiguity rate from 21.6% to 21.9%, this extra 0.3%
represents those patterns which were most likely to generate false assignments.

7.5 OCR processing

Character recognition is only one part of the OCR process. A minimum requirement
for any OCR system is also to maintain the lexical order of the text and to separate
words by spaces. The stages in the OCR processing pipeline are shown in Fig 7 .2.
The program is actually defined in terms of recursive procedures, but these could
easily be re-written as separate pipeline con-current process and then placed on
separate processors for parallel execution.

The line store window

To overcome the problem of separating a non-lexical stream of characters into lines
of text requires that when a character has been recognised the resulting hypothesis
list and the positional parameters of the character are placed in a temporary text-line
store. This store acts like a sliding window moving down the page, the height of the
window is such that it should capture any skewed lines completely within the
window. The bottom of the window grows downwards as new characters arrive,
when the window reaches the required size the line of text associated with the top
character in the window is processed. The top of the window then shrinks to the
highest remaining character in the window, like a caterpillar moving down the page.
The characters to be associated with a line of text are found by searching for left and
right neighbours of the top character. As the search progresses along a line of text
the height expectation is adjusted to allow for skewed lines.

Composite character processing

Once the text-line has been found processing proceeds to the recognition of compo­
site characters, i.e. characters such as •;:!?ij' which are made up of more than one
connected component. The method adopted is to recognise the components of the
character as separate symbols, mapping onto the ASCIT codes 1 .. 1 0 which do not
correspond to printable characters anyway. When a hypothesis list is found whose
first 32 bit word is non-zero the positional parameters of its neighbours are checked
to determine if they overlap in the vertical dimension. If a pair is found which does
overlap they are processed by some hand-crafted code to determine which if any of

the composite characters they represent. The redundancy in composite characters is
so high that this process is highly reliable. A more sophisticated feature combining
approach would have to be adopted to recognise complex composite patterns such
as chinese characters or whole alphanumeric words.

ConnectedO bject
Stream

Recogniser

Hypothesis lis t and
data positional

Place in line store window

line store w' mdow

Extract top line in window

line of chara cters

Recognise composite characters

inter-character space processing

Wordsepara
of charact

ted line
ers

Simple contextual processing

Output to A SCII
textbuf£ er

Fig.7.2: Stages in the OCR processing pipeline

Space processing

A lot of effort has gone into the seemingly trivial task of separating lines of text into
word strings. Various character local algorithms were tested. The best local algo­
rithms depend on the inequality of spaces before and after a character. However, this
only works for certain founts and has particular difficulty with single letter word and
flXed space numbers in proportional founts. Other local algorithms rely on relating
the height and width of characters to its surrounding spaces. However, a non-char­
acter local text-line based algorithm was found to be most effective. This algorithm
scans along the text-line forming inter-character spaces into a histogram. The
histogram is then analysed in relation to the average character height to discover the
local minima which separates inter-character from inter-word spaces. This presumes

that there is a unique threshold value applicable to the whole line, which is generally
the case. The threshold value is then applied to the text-line to separate words.

Simple contextual processing to resolve inter-case ambiguity

Inter-case ambiguity accounts for most of the ambiguity generated by the recognition
process, as without contextual information it is extremely difficult to differentiate
between the character pairs 'sS,cC,vV,pP,ll, ... •. Mter the text-line is separated into
word strings some very simple rules can be applied to resolve most inter-case
ambiguity. These rules rely on the fact that most characters are recognised unam­
biguously, we should therefore be able to determine the case of a word and thereby
resolve any inter-case ambiguity for individual characters within the word. A typical
rule is that if a character to the left of a case-ambiguous character is lower-case then
the ambiguous character is also forced to become lower-case. The fact that this rule
is not always true may lead to false substitution, this obviously represents an
application specific trade-off, one might prefer to leave all contextual processing
until a specific query is generated as in DIP retrieval. However, for most applications
the trade-off is relatively small as most characters are recognised unambiguously and
most words follow the case rules consistently. Some words which may be fairly
common in some applications such as 'NewCenturySchlbk' are often processed
incorrectly giving the output 'Newcenturyschlbk' as the characters 'cC and 'sS'
generally cause inter-case ambiguity. Therefore though the method adopted here has
the virtue of simplicity in a practical application a method based on relative character
sizes would probably perform more consistently.

Final output

After contextual processing the text-line is fmally translated into an ASCII repre­
sentation. If the hypothesis list is empty, the character is assigned a question mark,
'? ·, if more than one bit is set in the hypothesis list then each corresponding character
is printed within curly brackets e.g. '{B,8}'. The resulting representation is not
stored on disk immediately as the speed of writing to the 7. 7Mhz ffiM PC AT host
system is slow using the standard BIOS subroutines available through the OCCAM
host interface. Therefore, the times taken to process the images presented in chapter
8 do not include the writing of the ASCII representations to disk.

No attempt has been made to provide a more sophisticated user interface as the OCR
system is only intended as a demonstration of the underlying processing throughput.
The idea is that the GRIPPR design is sufficiently general purpose to allow existing
application specific know-how to be adopted rather than reconstruct every possible
application of the technology from scratch.

The output of the GRIP PR based OCR system for test page 1 given in the Appendix
is shown below, (the symbol 'Q' is substituted for'?'):

{ILt)he qu ick brown fox j umped over the lazy dog 9 0 8 {11) 7 2 6 3 5 4
THE QU{Ir)CK BROWN FOX JUMPED OVER THE LAZY DOG
The qu ick, brown. fox: j umped; {OQo)verQ the - 1 az y! (dog) *
the quick brown fox jumped over the {Il)azy dog 9081726354
THE QU{Il) {CG)K BR{Oo)WN F{Oo) {Xx) JUMPED {Oo)VER THE LAZY DOG
The quick, brown. fox: jumped; overQ {lt)he -lazy! (dog? *
the quick brown foxjumped over the lazy dog 9081726354
THE QUICK BR{Oo)WN F{Oo)XJUMPED {Oo)VER THE LAZY DOG
The quick, brown. fox: jumped; overQ the -lazy! (dog) *
the quick brown fox jumped over the lazy dog 9081726354
THE QUICK BROW? F{Oo) {Xx) JUMPED {Oo)VER THE LAZY DOG
The quick, brown. fox: jumped; overQ the -lazy! (dog) *
the quick brown foxjumped over the lazy dog 9081726354
THE QUICK BR{Oo)WN F{Oo) {Xx) JUMPED OVER THE LAZY DOG
The quick, brown. fq~: jumped; overQ the -lazy! (dog) *
t he qu ick brown fOx j umped over {rt)he lazy dog 9 0 8 1 7 2 6 3 5 4
THE QUICK BROWN FOX JUMPED O{UV)ER THE LAZY DOG
The qu ick, brown. fox: jumped; {Oo)verQ the - lazy! (dog) *
the quick brown fox jumped over {lt)he {Il)azy dog 9081726354
THE Q{Uu) {Il)CK BR{Oo)WN F{Oo) {Xx) JUMPED {Oo)VER THE LAZY DOG
The quick, brown. fox: jumped; overQ {lt)he -lazy! (dog) *
the quick brown fox jumped over the lazy dog 9081726354
THE QUICK BROWN FOXJUMPED {Oo}VER THE LAZY DOG
The quick, brown. fox: jumped; overQ the -lazy! (dog) *
the quick brown fo{Xx) jumped over the lazy dog 9081726354
THE QU{1It)CK BROW? F{Oo) {Xx) JUMPED {Oo)VER THE LAZY DOG
The quick, brown. fox: jumped; {Oo}verQ the -lazy! (dog) *
the quick brown fox jumped ov?r the lazy dog 9081726354
THE QUICK BR{Oo)WN FOX JUMPED {Oo)VER THE LAZY DOG
The quick, brown. fox: jumped; overQ the -lazy! (dog) *

The output shows a good recognition perfonnance, with particularly few false
substitutions. The ambiguities which are present are mostly inter-case ambiguities
e .g. {Oo} or {Xx }. The word separation algorithm is not very well honed and
sometimes fails to separate words or separates characters which should be part of the
same word, particularly the Courier numbers. The statistics describing the recogni­
tion perfonnance for the different test pages is given in chapter 8.

Chapter 8

Results and Conclusions

8.1 Final system description

The photograph in Fig 8.1 shows how the OCR system is set up for use. The box
under the TAXAN scanner contains the GRIPPR hardware and an RS232 circuit to
command the scanner. To scan a document it is placed in the scanner and the green
start button is depressed. This causes the scanner to feed the document through at
its maximum speed and the image to be processed in real-time by the rest of the
system. The three red error lights correspond to different FIFO flags in the circuit;
image too wide for the line store, empty non-current component label value store,
full output buffer. Any detected error causes all processing to stop and the machine
has to be re-initialised (switched on and off).

A photograph of the inside of the GRIPPR hardware box is shown in Fig 8.2. The
plastic card is included for size comparison this is also approximately the size a
transputer module. The empty sockets along the top and bottom of the PCB were
included to allow for the easy modification of the hardware; some of these sockets
were populated during the hardware de-bugging process. Fig 8.3 shows the processor
implementation of the fmal OCR system.

8.2 Performance evaluation

Three test pages are used to characterise the GRIPPR-OCR performance. These pages
were also scanned into a state of the art dedicated OCR machine the Kurzweil K -5200
from Xerox Imaging Systems for comparison. The test pages are shown in the
Appendix.

Testl

Testl is a page of English words (The quick brown fox ... etc.) in the five founts learnt
by the GRIPPR-OCR system. The semantic context in the document is sufficient for

the very simple contextual inter-case arbitration processing implemented by the

Fig. 8.1: GRIPPR-OCR system, external view

Fig. 8.2: GRIPPR hardware, internal view

•start' Signal RS232
Scanner Control

Circuit

Binary Pixel
Stream

GRIP PR
GRIP PR GRIPPR-OCB

PC Host
Hardware

Software Software
Disk File Features+ T80020Mhz Connected lf800 20 Mhz

Component Object ASCllText
Labels Feature Lists

Fig. 8.3: GRIPPR-OCR System

GRIPPR-OCR system.

Test2

Test2 contains the same charactets as in testl, but mixed up so that the semantic
context information in the document is lost. The fount size is still the same so the
relative size of charactets can still be used to arbitrate between upper and lower case
lettets, though this technique is not used by the GRIPPR system. For this test page
the inter-case contextual processing of the GRIPPR-OCR system was switched off.

Test3

Test3 is a page of very dense numbers intended to demonstrate the high throughput
of the GRIPPR-OCR system. A very dense page has to be used as the scanning speed
of the TAXAN TX-300 scanner is slow. Ideally, the experiment would have been
conducted with a faster scanner processing a less dense document faster. Even though
the document contains 15070 charactets the utilisation of the GRIPPR-OCR system
is still less than 100%, i.e. the processor is often idle waiting for input from the
scanner.

The following key is used in the results table:

FS : False Substitution rate, percent of total

AM : Ambiguity rate, percent of total

HR : Hit rate, percent of total

PU : Processor Utilisation, percent of available (In the case of the GRIPPR-OCR
machine this is the utilisation of the processor in the pipeline which has the greatest
loading. This turns out to be the feature stream to connected object processor rather
than the OCR application specific processor).

TT : Time Taken, seconds

CS : Characters per second

CU : Characters per second of software processor utilisation

Test1 (1280 char) K-5200 GRIPPR-OCR
FS 0.46% 0.08%

AM 0% 3.1%
HR 99.5% 99.7%
PU 100% 8.5%
n 23s 9.9s
CS 55.7 129.3
cu n 1521.2

Test2 (1380 char) K-5200 GRIPPR-OCR
FS 3.3% 0.15%

AM 0% 15.7%
HR 96.7% 99.7%
PU 100% 9.2%
TT 49s 9.9s
CS 28.2 139.4
cu 11 1515.2

Test3 (15070 char.) K-5200 GRIPPR-OCR
FS 0.006% 0.05%

AM 0% 0.7%
HR 99.993% 99.7%
PU 100% 78%
TT 64s 9.9s
CS 235.5 1522.2
cu 11 1951.5

Very few hard conclusions can be drawn from the above statistics, except that the
GRIP PR-OCR machine is very fast and the K -5200 is a highly developed commercial
product which uses contextual information to achieve a very good OCR performance.
Furthermore the ability of the K-5200 to recognise many more founts than the
GRIPPR-OCR machine invalidates any direct comparison of recognition perfor­
mance.

The processor utilisation of the K-5200 is given as 100% for each case as the
processing task takes longer than the image scan. The GRIP PR -OCR processor
utilisation of 78% for the dense number page test3 indicates that the maximum
throughput of the system is about 1950 such numbers per second. This compares
with 235.5 per second for the admittedly superior performance of the K-5200.
However, the throughput of the K-5200 for the more typical test page Testl of only
55.7 characters per second shows that its processing throughput is very dependent
on the ratio of image to characters.

The much slower speed of the K-5200 in processing the context free test2 page
relative to testl demonstrates how important the semantic context of characters is for
the K-5200. The relatively high false substitution rate of 3.3% for this test indicates
the trade-off inherent in any system which resolves ambiguities during the OCR
process. Interestingly, some of the false substitutions made by the K-5200 are

between topologically distinct characters e.g. •s• and •z•. This indicates that the
K-5200 relies more heavily on geometric rather than topological infonnation com­
pared with the GRIPPR-OCR system.

The consistently low false substitution rate and high speed of the GRIPPR-OCR
system indicates that a system based on the GRIPPR approach might fmd application
in DIP OCR processing for document retrieval.

8.3 Conclusions

One of the salient results of this research has been that an OCR demonstration system
could be realised at all in the time available. This indicates that GRIPPR embodies
an inherently practical approach to image processing.

Theoretical Conclusions

The main product of the work presented here has been the development of new
algorithms for feature extraction and component labelling. The feature extraction
algorithm based on the R/BSkel operations is a solution to the problem of how to
generate topological features from an image in fast detenninistic hardware. The
component labelling algorithm presents a way of resolving the connectivity of images
in real-time and for continuous scans, wherein all the pixel dependent operations can
be perfonned in hardware.

These algorithms are brought together in the GRIPPR approach, which converts a
stream of pixels into a stream of connected object feature lists. The importance of
GRIP PR is that it gives a framework within which further research can be conducted.
The tools for further research are provided by the PiNOSim program which can be
used to simulate the many strategies and functions which could modify GRIPPR.

Further work

Possible further work includes some feature extraction which addresses the current
blindness of GRIPPR to curvature. Research could also investigate algorithms which
effect the connectivity of images passed to the component labeller, for example by
a series of erosion/dilation stages.

Another avenue for investigation is the application of the GRIPPR approach to
non-binary images. It might be possible to extend both feature extraction and
component labelling algorithms directly to multilevel data. Alternatively, a different
GRIPPR process could be assigned to different aspects of the same image and
connected components could be associated at a higher level.

The other area for future work is to extend the broad concept of separating algorithmic
complexity from computationally intensive processing to the pattern classification
process. The core pattern classification process is computationally intensive, par­
ticularly if we are to envisage ·many class· recognition as would be required for the
recognition of chinese characters, cursive text and character founts. The simple
model of recognition developed for the OCR application is time proportional to the
class depth. The speed of many class recognition is therefore limited by the time

taken to logic AND the hypothesis lists as the length of the list grows. A simple piece
of hardware could act as a recognition server and data base by performing the
computationally intensive long (1000 bits or more) ANDs given an hypothesis list
pointer provided by a sequential process. This long AND bit-parallel processor could
be based on wide bus memory architectures or possibly VRAM (Video RAM)
technology.

Alternatively, the pattern classification process could be handed over to a Neu­
raljConnectionist Net. It would be interesting to see how well Neural Nets per­
formed, as the geometric/topological characteristics of the data generated by GRIPPR
appear to make it well suited to this type of processing. Perhaps GRIPPR could
provide an objective comparison of the relative performance of the current Neu­
raljConnectionist pattern classifiers with conventional methods of pattern classifica­
tion.

Technological Conclusions

The exploitation of hardware parallelism to perform all the computationally intensive
pixel processing tasks in image processing for pattern recognition has produced an
approach with some potentially useful characteristics. GRIPPR allows the specifi­
cation of any application to be split between the pixel throughput requirement of the
GRIPPR hardware and the feature processing throughput of the GRIPPR software:

- Pixel Processing: The processing of pixel data in the GRIPPR hardware means
that a particular implementation can be matched to the requirements of an
imaging system and that the video bandwidth of the processing can be guaran­
teed. Also, the continuous recycling of component label values in the connec­
tivity process means that GRIPPR is uniquely well adapted to the processing of
continuous images of infinite length. The relatively slow pixel throughput of
lM pixels/second for the OCR application presented here is merely a reflection
of the throughput of the scanner used for image input. The low complexity and
limited physical size of the GRIPPR hardware make the real-time processing of
images at up to 50M pixels/second plausible.

- Feature Processing: By freeing the sequential von Neumann processing com­
ponents from performing the computationally intensive pixel processing tasks,
GRIPPR allows the algorithmically complex feature processing throughput of
these components to match the throughput of imaging hardware. The higher
level non-image parallel processing tasks are relatively easy to split between
sequential processors by adopting process parallelism, so that the feature pro­
cessing throughput of systems based on GRIPPR can also be efficiently matched
to the requirements of particular applications.

Appendix
The Appendix contains five pages used in the training and testing of the GRIPPR­
OCRsystem.

Example training page

- This page shows the input used to train the GRIPPR-OCR machine to recognise
the character ·s·. The page contains 5 founts in various text sizes. Four such
pages where generated for every character to be recognised, two of the pages
were skewed and one page was used to test the recogniser performance during
the learning process.

Test page 1

- This is a page of English words, containing 1,280, 12 point characters in 5
founts.

Test page 2

- This is a page of letters without any semantic context, containing 1380 charac­
ters in 5 founts.

Test page 3

- This is a very dense page containing 15070 numeral characters designed to
demonstrate the high throughput of the GRIPPR-OCR system.

Test page 4

- This page contains 35,000 simply connected objects (full-stop characters).

888888888888888888888888
88888888888888888888

8 8 8 8 8 8 8 8 8 8 8 8 8 888 8 8 8 888 8 8

888888 8 8 8 8 8 8 888888888888

8888888888 8 8888888888888

8888888888 8 88888S8888888

888888888888888888888888
88 88 888 88 888 88 see ee e

888888888888888888888888

888888 8 8 8 8 8 8 888888888888

888888"8888 8 8888888888888

8888 88 8 8 8 8 8 8 888888888888

8888888 8 8 8 8 8 888888888888
88888888888888888888

8888888 8 8 8 8 8 888888888888

888888 8 8 8 8 8 8 888888888888

888888888888888888888888

8888888 88 8 8 8 888888888888

the quick brown fox jumped over the lazy dog 9081726354

THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG

The quick, brown. fox: jumped; over? the-lazy! (dog) *

the quick brown fox jumped over the lazy dog 9081726354

THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG

The quick, brown. fox: jumped; over? the-lazy! (dog) *

the quick brown fox jumped over the lazy dog 9081726354

THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG

The quick, brown. fox: jumped; over? the-lazy! (dog) •

the quick brown fox jumped over the lazy dog 9081726354

THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG

The quick, brown. fox: jumped; over? the-lazy! (dog) *

the quick brown fox jumped over the lazy dog 9081726354

THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG

The quick, brown. fox: jumped; over? the-lazy! (dog) *

the quick brown fox jumped over the lazy dog 9081726354

THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG

The quick, brown. fox: jumped; over? the-lazy! (dog) *

the quick brown fox jumped over the lazy dog 9081726354

THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG

The quick, brown. fox: jumped; over? the-lazy! (dog) *

the quick brown fox jumped over the lazy dog 9081726354

THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG

The quick, brown. fox: jumped; over? the-lazy! (dog) •

the quick brown fox jumped over the lazy dog 9081726354

THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG

The quick, brown. fox: jumped; over? the-lazy! (dog) *

the quick brown fox jumped over the lazy dog 9081726354

THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG

The quick, brown. fox: jumped; over? the-lazy! (dog) *

tGhOe,D9qYu ZiAcO.LkEbH rTBoR:wEnVf 10oDx;EjP7u MrnUpJ?e2XdO
oFvN6!eWrOt Rh3B*e)KlCai 5zUy-Q(dEo4HgT

tGh0e,D9qYu ZiAcO.LkEbH rT8oR:wEnVf 1 OoDx;EjP7u MmUpJ?e2XdO
oFvN6!eWrOt Rh3B*e)KICal 5zUy-Q(dEo4HgT

tGhOe,D9qYu ZiAcO.LkEbH rT8oR:wEnVf 10oDx;EjP7u MmUpJ?e2XdO
oFvN6!eWrOt Rh3B•e)KlCai 5zUy-Q(dEo4HgT

tGhOe,D9qYu ZiAcO.LkEbH rT8oR:wEnVf 10oDx;EjP7u MmUpJ?e2XdO
oFvN6!eWrOt Rh3B*e)KlCai 5zUy-Q(dEo4HgT .

tGhOe,D9qYu ZiAcO.LkEbH rT8oR:wEnVf 10oDx;EjP7u MmUpJ?e2XdO
oFvN6!eWrOt Rh3B*e)K1Cal 5zUy-Q(dEo4HgT

tGhOe,D9qYu ZiAcO.LkEbH rTBoR:wEnVf 10oDx;EjP7u MrnUpJ?e2XdO
oFvN6!eWrOt Rh3B*e)KlCai 5zUy-Q(dEo4HgT

tGhOe,D9qYu ZiAcO.LkEbH rT8oR:wEnVf 1 OoDx;EjP7u MmUpJ?e2XdO
oFvN6!eWr0t Rh3B*e)KICal 5zUy-Q(dEo4HgT

tGhOe,D9qYu ZiAcO.LkEbH rT8oR:wEnVf 10oDx;EjP7u MmUpJ?e2XdO
oFvN6!eWrOt Rh3B•e)KlCai 5zUy-Q(dEo4HgT .

tGhOe,D9qYu ZiAcO.LkEbH rT8oR:wEnVf 10oDx;EjP7u MmUpJ?e2XdO
oFvN6!eWrOt Rh3B*e)KlCai 5zUy-Q(dEo4HgT

tGhOe,D9qYu ZiAcO.LkEbH rT8oR:wEnVf 10oDx;EjP7u MmUpJ?e2XdO
oFvN6!eWr0t Rh3B*e)K1Cal 5zUy-Q(dEo4HgT

tGhOe,D9qYu ZiAcO.LkEbH rTBoR:wEnVf 10oDx;EjP7u MrnUpJ?e2XdO
oFvN6!eWrOt Rh3B*e)KlCai 5zUy-Q(dEo4HgT

tGhOe,D9qYu ZiAcO.LkEbH rT8oR:wEnVf 10oDx;EjP7u MmUpJ?e2XdO
oFvN6!eWrOt Rh3B*e)KICal 5zUy-Q(dEo4HgT

tGhOe,D9qYu ZiAcO.LkEbH rT8oR:wEnVf 10oDx;EjP7u MmUpJ?e2XdO
oFvN6!eWrOt Rh3B•e)K1Cal 5zUy-Q(dEo4HgT

tGhOe,D9qYu ZiAcO.LkEbH rT8oR:wEnVf 10oDx;EjP7u MmUpJ?e2XdO
oFvN6!eWrOt Rh3B*e)KlCai 5zUy-Q(dEo4HgT

tGhOe,D9qYu ZiAcO.LkEbH rT8oR:wEnVf 10oDx;EjP7u MmUpJ?e2XdO
oFvN6!eWrOt Rh3B*e)K1Cal 5zUy-Q(dEo4HgT

567890123456789012345678901234567890123456789012345678901234567890123458789012345678901234567890123456789012345678901234587890123458
567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456
567890123456789012345678901234567890123456789012345878901234567890123456789012345678901234567890123456789012345678901234567890123456
567890123456789012345678901234567890123456789012345678901234567890123456789012345878901234567890123456789012345678901234587890123456
567890123456789012345878901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234587890123456
567890123456789012345678901234567890123456789012345678901234567890123458789012345678901234567890123456789012345678901234567890123456
587890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456
567890123456789012345678901234567890123456789012345678901234587890123456789012345678901234587890123456789012345678901234567890123456
567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456
567890123456789012345678901234567890123458769012345678901234587890123458769012345676901234567690123456789012345676901234587890123456
567690123456789012345678901234567690123456769012345678901234567890123456789012345678901234567890123456789012345678901234567890123456
567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123458
567890123456789012345678901234587890123456789012345678901234587890123456789012345678901234567890123456789012345678901234567890123456
567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456
567890123456769012345678901234567890123456769012345678901234567890123456789012345678901234567890123456789012345678901234567890123456
567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456
567890123456789012345678901234567890123456769012345678901234567890123456789012345678901234567890123456789012345678901234567890123456
567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456
667890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567690123456789012345678901234567890123456
567890123456769012345676901234567890123458789012345678901234567890123456789012345878901234567890123456789012345678901234567890123456
567890123456789012345678901234567890123456789012345676901234567890123456789012345678901234567890123456789012345678901234567890123458
567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456
567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345878901234567890123456
567890123456769012345678901234567690123456769012345678901234567890123456769012345678901234567890123456789012345678901234567890123456
567890123456789012345678901234587890123456789012345678901234567890123456789012345678901234567890123458789012345678901234567890123458
567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456
567890123456769012345678901234567890123456789012345678901234567690123456789012345678901234587890123456789012345678901234567890123458
567890123456789012345678901234567890123456789012345678901234587890123456789012345678901234587890123456789012345878901234567890123456
567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456
567890123456769012345678901234587890123456789012345678901234587890123458789012345878901234567890123456789012345878901234587890123458
567890123456789012345676901234567690123456769012345678901234567890123456789012345678901234567890123456789012345678901234567890123456
567890123456789012345678901234567890123456789012345678901234567890123456789012345676901234567890123456789012345678901234567890123458
567690123456789012345678901234567890123456769012345676901234587890123456789012345676901234567890123456769012345678901234567690123456
567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234587890123456
567890123456789012345878901234567890123456789012345676901234567890123456789012345676901234567890123458789012345678901234587890123456
567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456
567690123456769012345678901234567890123456789012345678901234567890123456789012345676901234587690123456789012345678901234567890123456
567890123456789012345878901234567690123456789012345676901234567890123456789012345676901234567890123456789012345678901234567890123458
567890123456789012345678901234567890123456789012345878901234567890123456789012345678901234567890123456789012345678901234567890123456
567890123456789012345676901234567890123456789012345676901234567890123456769012345676901234587690123456789012345676901234567890123456
567690123456769012345678901234567890123456789012345678901234567890123456789012345678901234587890123456789012345678901234567890123456
587690123456789012345678901234567890123456789012345678901234567890123456789012345878901234587890123456789012345678901234567890123458
567890123456789012345678901234587890123456789012345678901234567890123456789012345878901234567890123456789012345678901234587890123456
567890123456789012345676901234567890123456789012345878901234567890123456789012345678901234567890123456789012345678901234567890123456
567890123456789012345678901234587890123456789012345678901234567890.123458789012345678901234587890123456789012345676901234587890123458
567890123458769012345678901234587890123456789012345878901234587890123458789012345678901234567890123456789012345678901234567890123456
567890123456789012345878901234567890123456789012345676901234567890123456769012345878901234587890123456789012345678901234567890123456
567890123458789012345678901234567690123456769012345678901234567690123456789012345678901234567890123456789012345678901234587890123456
667890123456789012345678901234567890123456789012345678901234567890123456769012345678901234567890123456789012345678901234567890123456
567890123456789012345678901234567890123458789012345676901234567690123456789012345676901234567690123456789012345878901234567890123458
567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345676901234567890123456
567890123456789012345678901234567690123456769012345676901234567890123456789012345678901234567690123456789012345678901234567890123456
567690123456769012345678901234567690123456769012345676901234567690123456789012345678901234567690123456789012345678901234567890123456
567890123458789012345678901234567890123456789012345678901234567890123456789012345676901234567890123456789012345878901234587890123456
567890123456789012345678901234567690123456789012345676901234567690123456789012345676901234567690123456789012345678901234587890123458
567890123456789012345678901234587890123456789012345678901234567890123456789012345878901234567890123456789012345678901234567890123456
567890123456789012345678901234567890123456789012345676901234567690123456789012345876901234587690123456789012345878901234587890123458
567890123456789012345878901234567890123456789012345678901234587890123456789012345676901234587890123456789012345678901234567890123456
567890123456789012345678901234567890123456789012345676901234567890123456769012345678901234567890123458769012345678901234567890123458
567690123456769012345676901234567690123456769012345676901234567690123456789012345678901234567890123456769012345678901234567890123456
567890123456769012345678901234567690123456789012345676901234567890123456769012345678901234567690123456789012345678901234567890123456
567890123456789012345678901234567890123458789012345678901234567890123458789012345878901234587890123458789012345678901234567890123456
567890123458789012345678901234567890123456789012345678901234567890123458789012345678901234587890123456789012345678901234567890123456
567890123456789012345678901234567890123456769012345678901234567890123456769012345878901234567690123456789012345878901234567890123456
587890123456789012345878901234567890123456769012345678901234587890123458789012345678901234567890123456789012345878901234567890123458
567890123458789012345878901234587890123456789012345678901234567890123456789012345678901234567890123456789012345676901234567890123456
567890123456789012345678901234567890123458789012345678901234587890123456789012345878901234567890123456789012345678901234567890123458
5876901234567890123456789012345678901234567890123456789012345878901234567890123458789012345676901~3456789012345678901234567890123456
567890123456789012345676901234567690123456789012345678901234567890123456789012345678901234567890123458789012345878901234567890123456
58789012345876901234587690123456789012345678901234587690123458789012345878901234567890123~567690123456789012345676901234567890123456
567890123456789012345678901234567890123456789012345876901234567890123456789012345678901234567890123456789012345678901234567690123456
587890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456769012345678901234567690123458
567690123456769012345678901234567890123456769012345676901234567890123456789012345676901234567890123456769012345678901234567890123456
567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456
587890123456789012345678901234567890123458789012345878901234567890123456789012345678901234587890123456769012345678901234567890123456
567690123456789012345678901234567890123456789012345676901234567890123456769012345676901234567890123456789012345678901234567890123456
587890123456769012345878901234567890123456789012345678901234567890123458789012345678901234567890123458789012345678901234567890123458
567890123456789012345678901234567890123456789012345678901234567890123458789012345678901234567890123456789012345676901234567890123456
587890123458769012345676901234567890123456789012345876901234587690123456769012345678901234567890123456769012345678901234567690123456
587890123456789012345676901234567890123458789012345678901234587890123456789012345678901234567890123456789012345676901234567890123456
~67890123456789012345678901234567890123458789012345878901234567690123456769012345678901234567890123456789012345878901234587890123458
567890123458769012345678901234587890123458769012345878901234587890123458769012345878901234567890123458789012345878901234567690123458
567890123456789012345878901234567890123456769012345676901234567890123456789012345678901234567890123458789012345678901234567690123456
567690123456769012345678901234567890123456769012345878901234587690123456789012345878901234567890123458769012345676901234567690123458
567690123456769012345678901234567890123456769012345878901234567890123458769012345876901234567690123456769012345678901234567890123456
567690123456769012345678901234567890123458789012345676901234587890123456769012345678901234587890123456769012345876901234567890123456
587690123456769012345678901234567890123456789012345676901234567890123456789012345678901234567690123456769012345676901234567690123456
567690123456769012345878901234567890123458789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456
567890123456789012345678901234567890123456789012345876901234587890123458769012345678901234587890123458789012345676901234567890123456
567890123456789012345678901234567890123456789012345878901234567890123456789012345676901234567890123456789012345878901234567890123458
567890123456789012345678901234567890123456789012345678901234587690123456789012345676901234567690123458769012345676901234567890123456
~67690123456769012345676901234567690123456769012345676901234567690123456769012345678901234567890123456769012345676901234567890123456
567690123456769012345678901234567890123456789012345678901234567690123456769012345678901234567890123456769012345676901234567690123456
567890123456789012345678901234567890123456789012345878901234587890123456769012345678901234567690123456769012345676901234567690123456
567890123458769012345676901234567690123456789012345676901234567690123456789012345678901234567890123456769012345676901234567690123456
5e78901234567890123456789012345678901234567690123456789012345676901234567690123456769012345678901234567690123456769012345B7e9o1 23 456
587890123456789012345876901234567890123456789012345678901234587690123456769012345678901234567690123456789012345676901234567890123456
567890123456769012345876901234567690123456789012345678901234567890123456789012345678901234567890123456789012345676901234567890123456
567890123456789012345676901234567890123456789012345676901234587890123456769012345678901234567890123458789012345676901234567690123456
56769012345~789012345678901234587890123456789012345878901234587690123458789012345678901234567890123456769012345676901234587690123456
587890123458789012345676901234567890123456789012345678901234567690123456789012345678901234567890123456769012345876901234567690123456
567890123458789012345678901234567690123456789012345678901234587890123456769012345678901234567890123456789012345678901234567890123456
567890123458789012345878901234567890123456789012345678901234587890123458789012345678901234567890123456789012345678901234567890123456
567890123456789012345878901234567890123456789012346878901234567690123456789012345678901234567890123456769012345876901234587890123456
567890123456789012345878901234567890123456789012345678901234587690123458789012345678901234567890123456789012345678901234567890123456
567890123456789012345678901234567890123456789012345678901234587890123456789012345878901234567890123456769012345676901234567690123456
567890123456789012345676901234587890123456789012345678901234587890123456789012345678901234567890123458789012345878901234567890123456
567890123458789012345678901234587890123456789012345678901234567890123456789012345678901234567890123456789012345876901234567890123456
587690123456789012345876901234567890123456789012345678901234587890123456769012345678901234567690123456789012345878901234567890123~56
567690123458789012345676901234587890123458789012345678901234567690123~587690123456769012345678901234567890123458789012345678901234~R

H~~~~~~j~:~~=~~:~:~:~;~~;:~:~~:::~~~::::::::::

~~ ;> i ~ ~:: T ~: > ~ ~ ~: T ~! ~~ i~ H: ~~ ~ ~~ ~ ~; ~:::

...
~~~~~::::::iiiiil~~~::~:~::l\i:~~;:~:::;:~:;::~ 

11 I 
~::~:~~~~~~~~~~~~~~~~~~~~~~:~~~~:~:~~~~~~~~:~~~ ::::::.:::::::::: ........................ .. ... . ... . .. .. .. . :::::::.::::::::::::.::::::: ............................................. 
:::::::::::::::·: :::: :·.:::::::::::·::::·::: ........................................... 
::::::::::::::::: ·::::::::·:::::::::·::·::·:: ::::::::::::::::: .......................... . 
::::::::::::::::::·:::::::::::::::::::::::::::: 

11 11 

11 !~ lll1: ll! l j lll;: ~ ~ llllll \ ll t l ~ ~1 ~ 111: lllll ~ l .. .......................................... . 

I I 
............................................ 

! ················ ............................ . ····J········································· 

~ ~ ~ ~ i ~ ~: ~ ~ i ~ ~ ~ ~ ~ ~: ~ ~ ~: ~ ~ ~ j ~ j ~ j ~ ~ i; ~ j j ~ :~ ~ :~: ~: ............................................. 
:::::::::::::::::::::::::::::::::::::::::::::: ...................... ..................... .............................................. 
~~~~~~~~~~~~~~~~~~~~~~~~·~~;~~~;:~;~~~~~~~~~~~ ....................... ····················· ............................................. ............................................. ...................... ··················· 

••

• . • •• • • • • • • . • • • • ' •••••• i ••••
• t !

~:::~~~:~:~~~~~~~:~~~::::.~~:::~;~~=~=:~:~~~~:::::
::::::::::::::=:::::·::::::::.::::::·:::::::::::::
::~~::~:~;:~:;~~~::::~~~~:~~=;~=:~=;~~:~:::::~~· ..

j

f
..

lllll~llll~l~ll~lllll~~:[~~l~ll~l:lllll~llll~~l~:l ...

••• ..

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ [~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ [~ ~: ~ [[~ [~ ~ ~j [~ ~ ~ ~ ..
:::::::::::::::::::::::·:::·::::::::::::::::;.::::

11111 ! 111 ~ l ~ j 11111111 ! 11111 : l11111llllllll j llll ~ ~ l ...

.•••••••••••••••••••••••••• , .•••••.••••••••••••••

.....................................

ill! 1 ll 1 1 ; ll i i lllllll t ll ~ 1 llllll : [lll : lllllllllill ········· ,
::::::::::::::::::::::::::::;::::::::::::::::::::: ···················· ::::::::::::::::::::::::.::::::::::::::::::::::::

; : ~: ~ ~: ~ ~ ll ~ j j llll f llllll ~ ll ~ ll i l :lllll ~ ll ~ l ~ ~ ll ~ l
. ··
~~~~~~~:~~~~~~~~~i~~~~~~~~~~~~~~~~~~~~~~~~~::::::: 

illllli ill I I• l 

! :: ~ ~ ~) ~ ~ [: [ [ [ ~ [ ~ ~ [ ~[ [ ~ [ [: ~ ~ ~ ~ [ [ [ [ [ [): [ [ [ \ [ [ [ ~ [ ~ ~ ~ 

:::·::::::;:::::::.::::::::·:::::::::::::::::::::: 
:::::::: ~: ~: ~ ~ ~: ~ ~: j: ~ [:.: ~ ~:;: [ ~: ~ ~) ~ ~: ~; ~ ~ l ~ ~ lll 

i ! I ! I l 
::~:~\;~~~~:~:~\~;~!~[[[[~:~::;~::~::~::~::::::::: 

I I ! i 

I i ' I • 
1 

I 

i I 11 

l!i li 

::·::::::::::::::::::::::::::: ::::::::::::::::::: 
:::::::::::::::::::::::::::::: ................. .. 
~~~~~~~:;~~~~~~~~~~~~~~~~~~~~~ ii~:I~:~::::::::::: 
~: :~~~~:: ~i~~~~~~~: ~~ ~ ~~~~~~~~ ;~~~;~~~;~ ····· ·········· ··················· ·········· ·········· ··········

References
[1] Duff M.J.B., Ed., 'Intermediate Level Processing', Academic Press, London, 1986.

[2] Aleksander 1.: 'Myths and realities about neural computing architectures', Parallel Processing and
Artificial Intelligence, ed. Reeve M., Zenith S.E., pp. 1-13, John Wiley & Sons, Chichester, England,
1989.

[3] Duff M.J.B.: 'Complexity', Intermediate Level Processing, Chapter 19, pp 307-314, Academic
Press, London, 1986.

[4] Taylor C.J., Dixon R.N., Gregory P.J., Graham J.:'An Architecture for Integrating Symbolic and
Numerical Image Processing', Intermediate Level Processing ed. Duff M.J.B., Academic Press,
London, 1986.

[5] Gregory R.L., 'Eye and Brian, the Psycology of Seeing', 4th ed., Weidenfeld and Nicholson,
London, 1990.

[6] Unger S.H., 'A computer orientated towards spatial problems', Proceedings IRE, Vol. 46, pp
1744-1750, 1958.

[7] Mcormick B.H., 'The illinois pattern recognition computer', IEEE Transactions on Elctronic
Computers, Vol. EC-12, 1963, pp 791-813.

[8] Duff M.J .B., Watson D.M., Fountain T .I.: • A Cellular Logic Array for Image Processing', Pattern
Recognition, Vol. 5, pp. 229-247,1973.

[9] Duff M.J .B., Watson D.M., 'The cellular logic array image processor', Computer Journal, V .20,
pp. 68-72, 1977.

[10] Preston K., Duff M.J.B., Levialdi S., Norgen P.E., Toriwaki J.: 'Basics of Cellular Logic with
Some Apllications in Medical Image Processing', Proc. IEEE, vol. 67, No. 5, pp. 826-856, 1979.

[11] Lougheed R.M., McCubbery D.L., 'The Cytocomputer: A practical Image Processor', The 7th
Annual Symposium on Computer Architecture, IEEE, 1980.

[12] Chen K., Astrom A., Danielsson P.E., 'PASIC. A smart sensor for computer vision', Proc. 1Oth
International Conference on Pattern Recognition, IEEE, June 1990.

[13] Awcock G.J., 'An Edge Detecting Image Sensor Architecture', lEE Colloquium 'Binary Image
Processing Techniques and Applications', March 1991.

[14] Rosenfeld A., Kak A.C.:'Digital Picture Processing', Academic Press, New York, 1982

[15] Fountain T.J., Matthews K.N., Duff M.J.B., 'The CUP7A Image Processor', IEEE transactions
on Pattern Analysis and Machine Intelligence, Vol. 10, No. 3, 1987.

[16] Dew P. and Manning L. 'Comparison of Systolic and SIMD architectures for Computer Vision
Computations' in 'Systolic Arrays' ed: Moore W., McCabe A., Urquhart R., Hilger, Bristol, 1987.

[17] Golay MJ.E.: 'Apparatus for Counting Bi-Nucleate Lymphocytes in Blood', U.S. Patent No.
3,214,574, 1965.

[18] Gray B.S., 'Local properties of binary images in two ditnensions', IEEE Transactions on
Computers, Vol. C-20, pp. 551-561, 1971

[19] Kruse B.: 'A parallel picture processing machine', IEEE Trans. Comput., vol. C-22, No.12, pp.
1075-1087, 1973.

[20] Kruse B.: 'Design and implementation of a picture processor', Unkoping Studies in Science and
Technology Dissertations No13, Linkoping, Sweden, 1977.

[21] Sternberg S.R. 'Automatic Image Processor' U.S. Patent, No. 4,167,728, Sept 1979.

[22] Lougheed R.M., McCubberey D.L., Sterberg S.R.: 'The Cytocomputer: Architectures for
Parrallel Image Processing', Proc. IEEE Workshop on Picture Data Description and Management,
pp. 281-286, August 1980.

[23] Wambacq P., Van Eycken L., De Roo J., Oosterlinck A., Van den Berghe H.: 'Description of
Two Hardware Convolvers as a part of a General Image Computer', IEEE Pattern Recognition and
Image Processing, 1981.

[24] Gennery D.B., Wilcox B.: 'A Pipelined Processor for low-level vision', Proc. IEEE conference
on Computer Vision and Pattern Recognition, 1985.

[25] Yoda H., Ohuchi Y., Taniguchi Y., Ejiri M., 'An Automatic Wafer Inspection System Using
Pipelined Image Processing Techniquies', IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. 10, No. 1, January 1988.

[26] Riganati J.P., Vitols A. 'Two-Dimensional Binary Data Enhancement System' U.S. Patent, No.
4,003,024, January 1977.

[27] Kondo T., 'Line Figure Connecting Apparatus', U.S. Patent, No. 4,855,933, Aug 1989.

[28] Persoon E., 'A Pipelined Image Analysis System Using Custom Integrated Circuits', Transac­
tions on Pattern Analysis and Machine Intelligence, Vol. 10, No. 1, 1988.

[29] Rosenblatt F., 'The Perceptron:a probabilistic model for information storage and organization
in the brain', Psychological Review 65, pp 386-408, 1958.

[30] Block H.D., 'The Perceptron: a model for brain functioning', Reviews of Modem Physics 34,
pp 123-135, 1962.

[31] Minsky M., Papert S., 'Preceptrons', MIT Press, Cambridge, Mass, 1969.

[32] Alexandar 1., Morton H., 'An Introduction to Neural Computing', Chapman and Hall, London,
1990.

[33] Sivilotti M.A. Mahowald M.A. Mead C.A. 'real-time visual computations using analog CMOS
processing arrays', Advanced Research in VLSI:Proceedings of the 1987 Stanford Conference, MIT
Press,pp.295-312, 1987.

[34] Fukushima K., Miyake S., lto T., 'Neocognitron:a neural network model for a mechanism of
visual pattern recognition', IEEE transactions on Systems, Man and Cybernetics SMC-13, pp
826-834, 1983.

[35] Bienenstock E.L., Cooper L.N., Munro P.W., 'Theory for the development of neron selectiv­
ity:orientation specificity and binocular interaction in visual cortex', Journal of Neuroscience, Vol.
2, pp 32-48, 1982.

[36] Boccignone G., Marcelli A., Steensma J. 'Investigation on a Structural Solution of Merged
Characters Segmentation in OCR'. Lecture Notes in Computer Science, No. 399, 'Recent Issues in
Pattern Analysis and Recognition', Springer-Verlag, Berlin, 1989.

[37] Kronsjo L., 'Computational Complexity of Sequential and Parallel algorithms', John Wiley and
Sons, 1985.

[38] W. Daniel Hillis, 'The Connection Machine', MIT Press, Cambridge Mass., 1985.

[39] Rosenfeld A., 'Connectivity in Digital Pictures', Journal of ACM, vol 17, pp. 146-160, 1970.

[40] Ye Q.Z., Danielsson P.E., 'Inspection of Printed Circuit Boards by Connectivity Preserving
Shrinking', IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 10, No. S,
September 1988.

[41] Cypher R., Sanz L.C., Snyder L., 'An EREW PRAM Algorithm for Image Component Label­
ling', IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 11, No.3, pp. 258-262,
March 1989.

[42] Rosenfeld A., Pfaltz J. L., 'Sequential Operations in Digital Picture Processing', Journal of the
ACM, Vol. 13, No. 4, pp. 471-494, 1966.

[43] Komeichi M., Ohta Y ., Gotoh T., Mima T., Yoshida M., 'Video-Rate Labelling Processor', SPIE
Vol. 1027, 1988,pp. 69-76,1988.

[44] Gotoh T., Ohta Y., Yoshida M., 'High-Speed Algorithm for Component Labelling', Systems
and Computers in Japan, Vol. 21, No. S, 1990.

[45] Selkow S.M., 'One-Pass Complexity of Digital Picture Properties', Journal of the ACM, Vol.
19, No. 2, April1972.

[46] Cederberg R.L. T., 'Chain-Link Coding and Segmentation for Raster Scan Devices', Computer
Graphics and Image Processing, Vol. 10, pp. 224-234, 1979.

[47] Danielsson P.E., 'An improved Segmentation and Coding Algorithm for Binary and Nonbinary
Images', ffiM J. Research Developments, Vol. 26, No. 6, Nov. 1982.

[48] Ronse C., Devijver P.A., 'Connected Components in Binary Images: the Detection Problem',
Research Studies Press, Herts, England, 1984.

[49] Okazaki A., Kondo T., Mori K., Tsunekawa S., Kawamoto E., 'Automatic Circuit Diagram
Reader with Loop-Structure-Based Symbol Recognition', IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. 10, No. 3, May 1988.

[50] Stefanelli R., Rosenfeld A., 'Some Parallel Thinning Algorithms for Digital Pictures', Journal
of the ACM, Vol. 18, No. 2, April1971, pp. 255-264, 1971.

[51] Pavlidis T., 'A vectorizer and feature Extractor for Document Recognition', Computer Vision,
Graphics and Image Processing, Vol. 35, pp. 111-127, 1986.

[52] Baird H.S., Kahan S., Pavlidis T, 'Components of an Omnifont Page Reader', IEEE Proceedings
eighth International Conference on Pattern Recognition, Paris, France, Oct. 1986.

[53] Govindan V.K., Shivaprasad A.P., 'Character Recognition- A Review' Pattern Recognition,
Vol. 23, pp. 671-683, 1990.

[54] Devijver P.A., Kittler J., 'Pattern Recogntion, A Statistical Approach', Prentice-Hall, 1982.

[55] Pav lidis T ., 'Structural Pattern Recognition', Springer-V erlag, 1977.

[56] Fu K.S., 'Syntactic Pattern Recognition and Applications', Prentice-Hall, 1982.

[57] Baird H.S., 'Feature Identification for Hybrid Structural/Statistical Pattern Classification',
Computer Vision, Grpahics, and Image Processing, Vol. 42, No. 3, June 1988.

[58] Hall A.D., 'Pipelined Logical Convolvers for Binary Picture Processing', Electronic Letters,
Vol.25, No.15, 1989.

[59] Tout N., Norton-Wayne L., Reedman D., 'Automated Identification of Shoe Upper Components',
lEE Colloquium on: Binary Image Processing and Applications, March 1991.

[60] Ye Q.Z., Danielsson P.E., 'Inspection of Printed Circuit Boards by Connectivity Preserving
Shrinking', IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 10, No. 5, September 1988.

[61] Hilditch, 'Linear skeletons from square cupboards', in Machine Intelligence IV, Meltzer B.,
Michie D., Eds. Edinburgh University Press, pp. 403-420, 1969.

[62] Jeung Y.C., 'A 50Mbit/sec. CMOS Cideo Linestore System', SPIE Vol. 1001 Visual Communi­
cations and Image Processing, 1988.

[63] 'Transputer Technical Notes', Prentice Hall International (UK), 1989.

